导航:首页 > 安装方法 > 测量总银方法

测量总银方法

发布时间:2023-02-07 19:34:05

A. 银的测定,用碘量法怎么测详细一点

楼主好!
碘量法测银?这个……碘量法一般是指氧化还原吧?我不晓得您指的是类似于佛尔哈德法一类的测银方法,还是真的就是指氧化还原的碘量法(因为之前有人把这俩玩意搞混了,结果弄得乱七八糟的,故问一下)?
如果指的就是氧化还原的碘量法,那方法很多,比如用铜置换成铜离子之后,让铜离子与过量碘离子反应,之后再用硫代硫酸钠滴定;或者类似于返滴,先加过量硫代硫酸钠,之后再用碘滴回去什么的;更高级一点的还有类似于测金的方法测银,或者是用双硫腙-甲基异丁酮富集之后再用碘量法测定银………………我很长时间没碰这个了,有点遗忘,如果有说错什么,欢迎指正。上述的方法想要测得准的话,对溶液浓度什么的还是有一定要求的,而且最好还要有一定的缓冲溶液,而且所用的试剂啥的有的也不便宜,精度要求也不一样,我不晓得您是想问哪一个,您能具体一点好吗?

PS:我最近很忙,有何怠慢之处,请见谅!

B. 石墨炉原子吸收光谱法测定银

方法提要

试样经盐酸、硝酸、氢氟酸、高氯酸分解后,继续加热至冒高氯酸白烟除尽氟,制备成(1+99)HNO3溶液,用铱作为基体改进剂,GF-AAS法直接测定银。

方法适用于水系沉积物及土壤中银量的测定。

方法检出限(3s)0.01μg/g。测定范围0.03~5.0μg/g。

仪器及材料

原子吸收光谱仪,带石墨炉及自动进样装置。

石墨管。

氩气(纯度99.9%)。

聚四氟乙烯坩埚(30mL)。

试剂

盐酸。

硝酸。

高氯酸。

氢氟酸。

银标准储备溶液ρ(Ag)=1.00mg/mL称取0.7874g高纯硝酸银溶于水中,加入5mLHNO3,移入500mL棕色容量瓶中,用水稀释至刻度,摇匀。

银标准溶液ρ(Ag)=0.250μg/mL用(1+99)HNO3逐级稀释银标准储备溶液于棕色容量瓶中。

铱溶液ρ(Ir)=1.50mg/mL称取0.3441g光谱纯氯铱酸铵,用(1+99)HNO3溶解后,移入100mL容量瓶中,用(1+99)HNO3稀释至刻度,摇匀。

校准曲线

分别吸取0.00mL、0.50mL、1.00mL、2.00mL银标准溶液(0.250μg/mL)置于加有1.0mL(1+3)HNO3的25mL比色管中,用水稀释至刻度,摇匀,校准曲线的银量分别为0.00ng/mL、5.00ng/mL、10.0ng/mL、20.0ng/mL。然后按表84.54仪器工作条件操作,由仪器自动进样器将澄清液加入石墨管中,每当注入一个标准溶液进入石墨管后,随即用手动微量进样器注入10μL铱溶液进入石墨管,测量溶液的吸光度,绘制校准曲线。

表84.54 偏振塞曼原子吸收光谱仪石墨炉工作条件

注:日本日立180-80为例。

分析步骤

称取0.1~0.5g(精确至0.0001g)试样(粒径小于0.075mm,经室温干燥后,装入磨口小玻璃瓶中备用)置于30mL聚四氟乙烯坩埚中,用水润湿,加入5mLHCl,于电热板上低温加热10min,再加入2mLHNO3,继续加热20min,取下,待冷后加入2mL(1+1)HClO4及10mLHF,继续加热至冒尽白烟。取下,加1.0mL(1+3)HNO3,用水冲洗坩埚壁,加热溶解盐类后,移入25mL比色管中,用水稀释至刻度,摇匀,放置澄清。

取部分澄清液放入试样杯中,与校准曲线同批按表84.54仪器工作条件操作,测量试样溶液的吸光度,从校准曲线上查得试液中的银量。

银含量的计算见式(84.14)。

C. 银量的测定 石墨炉原子吸收光谱法

1 范围

本方法规定了地球化学勘查试样中银含量的测试方法。

本方法适用于水系沉积物及土壤试料中银量的测定。

本方法检出限(3S):0.01μg/g银。

本方法测定范围:0.03μg/g~5.0μg/g银。

2 规范性引用文件

下列文件中的条款通过本方法的本部分的引用而成为本部分的条款。

下列不注日期的引用文件,其最新版本适用于本方法。

GB/T 20001.4 标准编写规则 第4部分:化学分析方法

GB/T 14505 岩石和矿石化学分析方法总则及一般规定。

GB 6379 测试方法的精密度通过实验室间试验确定标准测试方法的重复性和再现性。

GB/T 14496—93 地球化学勘查术语。

3 方法提要

试料经盐酸-硝酸-氢氟酸-高氯酸分解后,继续加热至冒高氯酸白烟除尽氟后,制备成 HNO3(1+99)溶液,用铱作为基体改进剂。以银空心阴极灯为光源,辐射出银元素特征光波,通过石墨炉中试料蒸气时,被蒸气中银元素的基态原子所吸收,由辐射光强度减弱的程度,可以求得试料中银的含量。

4 试剂

除有指定外,其余试剂均为分析纯,水为去离子水或蒸馏水。在空白试验(6.2)中,若已检测到所用试剂中含有大于5ng/g的银量,并确认已经影响试料中低量银的测定,应净化试剂。

4.1 盐酸(ρ1.19 g/mL)

4.2 硝酸(ρ1.40 g/mL)

4.3 硝酸(1+3)

4.4 硝酸(1+99)

4.5 高氯酸(ρ1.67g/mL)

优级纯

4.6 高氯酸(1+1)

4.7 氢氟酸(ρ1.13 g/mL)

4.8 银标准溶液

4.8.1 银标准溶液Ⅰ[ρ(Ag)=1.000mg/mL]称取高纯硝酸银0.7874g溶于水中,加入5mL硝酸(4.2),移入500mL棕色容量瓶中,用水稀释至刻度,摇匀备用。

4.8.2 银标准溶液Ⅱ[ρ(Ag)=20.0μg/mL]吸取银标准溶液(4.8.1)5.00mL于250mL棕色容量瓶中,用硝酸溶液(4.4)稀释至刻度,摇匀备用。

4.8.3 银标准溶液Ⅲ[ρ(Ag)=0.25μg/mL]用10mL微量滴定管,分取银标准溶液(4.8.2)6.25mL于500mL棕色容量瓶中,用硝酸溶液(4.4)稀释至刻度,摇匀备用。

4.9 铱溶液[ρ(Ir)=1.5mg/mL]称取光谱纯氯铱酸铵0.3441g,用硝酸溶液(4.4)溶解后,移入 100mL容量瓶中,用硝酸溶液(4.4)稀释至刻度,摇匀备用。

5 仪器及材料

5.1 原子吸收光谱仪(日本日立)

带石墨炉及自动进样装置。工作条件见附录A。

5.2 银空心阴极灯

5.3 石墨管

5.4 氩气[w(Ar)99.9%]

5.5 聚四氟乙烯坩埚

规格:30mL。

6 分析步骤

6.1 试料

试料粒径应小于0.097mm,经室温干燥后,装入磨口小玻璃瓶中备用。

试料量 依据元素含量,称取0.1g~0.5g试料,精确至0.0002g。

6.2 空白试验

随同试料分析全过程做双份空白试验。

6.3 质量控制

选取同类型水系沉积物或土壤一级标准物质2个~4个,随同试料同时分析。

6.4 测定

6.4.1 称取试料(6.1)置于聚四氟乙烯坩埚(5.5)中,用水润湿,加入5mL盐酸(4.1),于电热板上低温加热10min,再加入2mL硝酸(4.2),继续加热20min,取下;待冷后加入2mL高氯酸(4.6)及10mL氢氟酸(4.7),继续加热至冒尽白烟。取下,加入1.0mL硝酸(4.3),用水冲洗坩埚壁,加热溶解盐类后,移入25mL比色管中,用水稀释至刻度,摇匀,放置澄清。

6.4.2 将部分澄清液(6.4.1)倒入样品杯中,按附录A仪器工作条件操作,由仪器自动进样器将澄清液导入石墨管中,每当注入一个试料溶液进入石墨管后,随即用手动微量进样器注入10μL铱溶液(4.11)进入石墨管并测量试料溶液的吸光度。同时进行工作曲线的测定。从工作曲线上查得试料中的银量。6.4.3 工作曲线的绘制 分别吸取银标准溶液Ⅲ(4.8.3)0.0mL、0.5mL、1.0mL、2.0mL于加有1.0mL硝酸溶液(4.3)的25mL 比色管中,用水稀释至刻度,摇匀,此工作曲线的银量分别为(0.0ng/mL、5ng/mL、10ng/mL、20ng/mL)。以下操作按(6.4.2)条步骤进行。测量完成后,以银量为横坐标,吸光度为纵坐标,绘制工作曲线。

7 分析结果的计算

按下式计算结果:

区域地球化学勘查样品分析方法

式中:ρ———从工作曲线上查得试料溶液中镉的浓度,ng/mL;ρ0———从工作曲线上查得空白试验溶液中镉的浓度,ng/mL;V1———制备溶液的总体积,mL;V2———分取制备溶液的体积,mL;V3———测定溶液的体积,mL;m———试料质量,g。

8 精密度

银量的精密度见表1。

表1 精密度[w(Ag),10-6

附 录 A

(资料性附录)

A.1 180-80偏振塞曼原子吸收光谱仪(日本日立)石墨炉工作条件

如表A.1。

表A.1 塞曼原子吸收光谱仪(日本日立)石墨炉工作条件

附 录 B

(资料性附录)

B.1 从实验室间试验结果得到的统计数据和其他数据

如表B.1。

本方法精密度协作试验数据是由多个实验室进行方法合作研究所提供的结果进行统计分析得到的。

表B.1中不需要将各浓度的数据全部列出,但至少列出了3个或3个以上浓度所统计的参数。

B.1.1 列出了试验结果可接受的实验室个数(即除了经平均值及方差检验后,属界外值而被舍弃的实验室数据)。

B.1.2 列出了方法的相对误差参数,计算公式为,公式中为多个实验室测量平均值;x0为一级标准物质的标准值。

B.1.3 列出了方法的精密度参数,计算公式为,公式中Sr为重复性标准差、SR为再现性标准差。为了与GB/T20001.4所列参数的命名一致,本方法精密度表列称谓为“重复性变异系数”及“再现性变异系数”。

B.1.4 列出了方法的相对准确度参数。相对准确度是指测定值(平均值)占真值的百分比。

表B.1 Ag统计结果表

附加说明

本方法由中国地质调查局提出。

本方法由武汉综合岩矿测试中心技术归口。

本方法由广东省物料实验检测中心负责起草。

本方法主要起草人:李展强、张汉萍、潘孝林、李锡坤。

本方法精密度协作试验由武汉综合岩矿测试中心江宝林、叶家瑜组织实施。

D. 如果一个东西里面含铜和银,怎么来测量里面的含银量

最简单的方法:铜的密度比银大,可以找一个同体积的纯铜物体放在一个盛满水的容器中,用天平测出溢出水的体积,既可知道该纯铜物体的质量为M1=水的密度*溢出水的体积。然后把现在这个物体放在刚那个盛满水的容器中,测量出这次溢出水的体积,就可以知道这个物体的质量为M2。

现在这个物体的含银量为:M2/M1*100%

E. 目前银离子浓度的测量方法哪些

常量分析就用容量分析法:
1、莫尔法的反滴定法:就是先加入定量、过量的氯化钠溶液,再用硝酸银返滴
2、佛尔哈德法
3、法扬司法
微量分析可用银离子选择电极直接测、电位滴定法测、原子吸收光谱法、ICP原子发射光谱法、离子选择性电极分析法等多种仪器分析方法。

F. 任务矿石中银含量的测定

——原子吸收光谱法

任务描述

银的测定方法很多,视银的含量和实验室的工作条件可以选用不同的方法。发射光谱法在测定痕量银的同时,还可以测定硼、钼、铅等组分;低含量的银也可以用光度测定;原子吸收光谱法在银的测定中,获得了广泛的应用,方法简便,灵敏度高。微克级的银可用火焰原子吸收光谱法测定,石墨炉原子吸收光谱法可测定纳克级的银。含量较高的银可以采用容量法进行测定。通过本次任务的学习,掌握原子吸收光谱法测定的方法原理、实验条件、操作方法,能够正确填写数据记录表格。

任务实施

一、仪器及试剂

(1)原子吸收分光光度计、银空心阴极灯。

(2)银标准贮存溶液:称取0.5000g银(99.99%)于100mL烧杯中,加入20mL硝酸(1+1),微热溶解完全,煮沸驱除氮的氧化物。取下冷至室温,移入1000mL容量瓶中,加入20mL硝酸(1+1),用不含氯离子水定容。此溶液含银0.5mg/mL。

(3)银标准溶液:移取10mL 银标准贮存溶液于100mL 容量瓶中,加入4mL 硝酸(1+1),用不含氯离子水定容。此溶液含银50μg/mL。

(4)盐酸(AR)。

(5)硝酸(AR)。

(6)高氯酸(AR)。

二、分析步骤

称取0.2500~1.0000 g试样于250mL烧杯中,加少许水润湿摇散(随同试样做空白试验),加25mL盐酸,加热溶解,低温蒸至溶液体积10mL。加入5~10mL硝酸,继续加热溶解至体积为10mL左右,加5mL高氯酸,加热冒烟至湿盐状,取下冷却,用水吹洗表面皿及杯壁,加入盐酸(加入量使最后测定溶液酸度保持在10%),煮沸使可溶性盐类溶解,冷却至室温,移入容量瓶中(容量瓶大小视含量而定),以水定容,静置或干过滤。滤液于原子吸收分光光度计灯电流3mA,波长328.1nm,光谱通带0.4nm,燃烧器高度5mm,空气流量5L/min,乙炔流量1.0L/min,用空气-乙炔火焰,以水调零,测量溶液的吸光度。将所测吸光度减去试样空白吸光度,从工作曲线上查出相应的银的质量浓度。随同试样做空白试验。

工作曲线的绘制:移取0、1.00、2.00、3.00、4.00、5.00mL 银标准溶液于一组100mL容量瓶中,加20mL盐酸(1+1 ),用水定容。与试样相同的测定条件下,测量标准溶液吸光度。以吸光度(减去零浓度溶液吸光度)为纵坐标,以银的质量浓度为横坐标,绘制工作曲线。

三、结果计算

样品中银的含量按下式计算:

岩石矿物分析

式中:w(Ag)为银的质量分数,μg/g;ρ为从工作曲线上查得试样溶液中银的浓度,μg/mL;ρ0为从工作曲线上查得试样空白中银的浓度,μg/mL;m为称取试样的质量,g;V为试样溶液的体积,mL。

四、质量表格填写

测定完成后,填写附录一质量记录表格3、4、7。

任务分析

一、原子吸收光谱法测定银的原理

试样经盐酸、硝酸、氢氟酸、高氯酸分解,赶尽氟和破坏有机物后,在酸性介质中用空气-乙炔火焰,于原子吸收光谱议上,在波长328.1 nm处测量银的吸光度。方法测定范围为1~500μg/g。

二、银的测定方法概述

1.滴定法

银的滴定法是使用较为广泛的方法之一。基于银与某种试剂在一定条件下生成难溶化合物的沉淀反应,其中碘量法和硫氰酸盐滴定法用得最为普遍。其他还有配位滴定法、亚铁滴定法、电位滴定法、催化滴定法等。这里重点介绍硫氰酸盐滴定法。

在弱的硝酸介质中,硫氰酸钾或硫氰酸铵与银离子反应,形成微溶的硫氰酸银沉淀,反应式如下:

Ag+SCN-→AgSCN↓

用硝酸铁或铁铵钒作为指示剂,终点时过量的硫氰酸钾同 Fe3+形成红色配合物[Fe(SCN)63-。由于Ag与SCN-结合能力远比Fe3+强,所以只有当Ag与SCN-反应完后,Fe3+才能与SCN-作用,使溶液呈现浅红色。

Ni2+、Co2+、Pb2+(大于300mg),Cu2+(大于10mg)、Hg2+(大于10μg)、Au3+以及氯化物、硫化物干扰硫氰酸盐滴定银。此外氧化氮和亚硝酸根离子可氧化硫氰酸根离子,也干扰测定,所以必须预先除去。Pd与SCN-离子生成棕黄色胶状沉淀,也消耗SCN-。以硫氰酸盐作为银滴定剂专属性较差,因此在滴定前一般先将银与其他干扰元素分离。常用的分离方法有火试金法、氯化银沉淀法、巯基棉分离法、硫化银沉淀法、泡沫塑料分离法等。

2.可见分光光度法

自从原子吸收光谱法用于银的测定以来,光度法测定银的研究工作和实际应用显着地减少。然而某些银的光度法具有灵敏度高、设备简单等优点。因此在某种场合下,分光光度法仍不失为银的一种方便的测定手段。

分光光度法测定银的显色剂种类很多,主要有:

(1)碱性染料:三苯甲烷类、罗丹明B类;

(2)偶氮染料:吡啶偶氮类、若丹宁偶氮类;

(3)含硫染料:双硫腙、硫代米蚩酮、金试剂;

(4)卟啉类染料;

(5)其他有机染料。

下面重点介绍含硫类染料光度法。

用于光度法测定银的含硫染料有:双硫腙、硫代米蚩酮(TMK )、金试剂等。其中TMK最为常用。TMK是测定银的灵敏度较高的试剂,通常采用胶束增溶光度法进行测定,现已用于岩石、矿物、废水等物料中微量银的测定。在pH值为2.8~3.2 的乙酸-乙酸钠缓冲溶液中,TMK与银形成一种不溶于水的红色配合物,可溶于与水混溶的乙醇溶液中,最大吸收波长为525nm,银量在2.0~25μg/25mL范围内符合比尔定律。具体分析步骤如下:

称取0.5000~1.000g矿样于瓷坩埚中,放入700℃马弗炉中灼烧1.5h,取出冷却,将试样移入100mL烧杯中,加5mL盐酸-磷酸混合酸(4+1),5mL氯化钠(100g/L),加热溶解,冷却,加40~50mL氨水(1+3 )使溶液pH为8~9,过滤于100mL容量瓶中,用水定容,摇匀。吸取10mL清液于50mL烧杯中,加入5mL乙酸(10%),4mL乙酸-乙酸钠(pH4 )缓冲溶液,1mL 柠檬酸铵(400g/L )、1mL EDTA(100g/L )溶液(用15% 氨水配制),1.5mL 0.1g/L硫代米蚩酮的乙醇溶液,摇匀,加入1mL十二烷基苯基磺酸钠溶液(30g/L),移入25mL容量瓶中,用水定容,摇匀。用1cm比色皿,以试剂空白作参比,于波长525 nm处测量吸光度。

3.原子吸收光谱法

在原子吸收光谱法测定贵金属元素中以银的灵敏度为最高,也是目前测定银的主要手段,广泛应用于岩石、矿物、矿渣、废水、化探样品等物料中银的测定。银在火焰中全部离解,自由银原子的浓度仅受喷雾效率的影响。火焰法测定水溶液中银的灵敏度以1% 吸收计,一般为0.05~0.1μg/mL。无论是用空气-丙烷或是空气-乙炔火焰,溶液中共存的各种离子对银的火焰法测定几乎都不产生干扰。此类方法有两种常用的测定介质:氨性介质和酸性介质,酸性介质一般含较高浓度的盐酸,方法最简单,试液中大量铅的影响采用加入乙酸铵、氯化铵或在EDTA及硫代硫酸钠共存下消除。

银的原子吸收分为火焰法和无火焰法两种,方法的对比见表7-4。

为了发挥原子吸收光谱法的优势,广大分析工作者做了大量工作,如采用预富集浓缩、石英缝管技术、原子捕集技术等,进一步提高了方法的灵敏度,满足不同含量银的测定要求,使之成为测定银的行之有效的方法。

原子吸收光谱法按其测定方式,分为直接测定法和预富集分离法。预富集分离又分为溶剂萃取、萃取色谱、离子交换等。

表7-4 火焰法与无火焰法测定银对比

原子吸收光谱法采用空气-乙炔火焰,以银空心阴极灯为辐射光源。用328.1 nm为吸收线,溶液中共存的各种离子均不干扰测定,但如果称样量较大,稀释体积较小时,其背景值较大,此时须用氘灯扣除背景吸收。也可用非吸收线332.3 nm进行背景校正。

本法适用于矿石中20~1000 g/t银的测定。

4.原子发射光谱法——平面光栅摄谱仪

银是属于易挥发元素。在炭电弧游离元素的挥发顺序中它是位于前半部,在铁、锰之间,铅的后面。用电弧光源蒸发铅的试金熔珠时,银要在大部分铅蒸发之后才进入弧焰。在银和金同时存在的矿石中,银总是比金和其他铂族元素蒸发得更快。银的电弧光谱线并不多,灵敏线仅有328.068 nm和338.289 nm两条。其中328.068 nm更灵敏些,测定灵敏度通常可达 1×10-6。其余的次灵敏线,如 224.641 nm、241.318 nm、243.779 nm、520.907 nm、546.549 nm等,测定灵敏度仅为0.03%~0.1%。银缺乏中等灵敏度的谱线。采用上述两条灵敏线测定地质样品中的银是很方便的。它们的光谱干扰很少,对于Ag 328.068 nm需注意Mn 328.076 nm和Zr 328.075 nm的干扰。当矿样中的Cu、Zn含量高时,Cu 327.396 nm、Cu 327.982 nm以及Zn 328.233 nm的扩散背景,也将对这根银线产生极不利的影响。

5.原子发射光谱法——等离子体法

(1)ICP-AES法。ICP-AES具有良好的检出限和分析精密度,基体干扰小,线性动态范围宽,分析工作者可以用基准物质配制成一系列的标准,以及试样处理简便等优点,因此,它已广泛应用于地质、冶金、机械制造、环境保护、生物医学、食品等领域。ICP-AES测银常用的谱线是328.07 nm。

用ICP-AES测银,主要解决基体干扰问题,对于含量较高的试样,经稀释后可不经分离富集而直接测定,对于含微量银的试样,必须经过分离富集,常用手段仍然是火试金、活性炭吸附富集分离、泡沫塑料富集分离等,如果分离方法合适,尚可实现贵金属多元素的同时测定。

(2)ICP-MS法。ICP-MS具有许多独特的优点,与ICP-AES相比,ICP-MS的主要优点是:①检出限低;②谱线简单,谱线干扰少;③可进行同位素及同位素比值的测定。用ICP-MS测定银,基体干扰仍是主要问题,除了经典的火试金法外,也可根据试样性质的不同采用相应的分离手段。

实验指南与安全提示

高氯酸烟不能蒸得太干,否则结果会偏低。

如果试样含硅很高或被灼烧过,加入氢氟酸分解试样。

原子吸收光谱法测定银,按其测定方式,可分为直接原子吸收光谱法和预富集分离-原子吸收光谱法:

——直接原子吸收光谱法:对于银量在10 g/t以上的矿样都可采用直接原子吸收光谱法,一般都在酸性和氨性介质中测定。采用的酸性介质有HCl介质、HCl-HNO3介质、HNO3介质、HClO4介质。HCl介质为10%~20%,由于酸度大,对雾化器腐蚀严重,有人采用HCl-NH4Cl、HCl-硫脲、HNO3-硫脲介质。采用HCl-硫脲介质,能避免大量钙、铁的吸收干扰。若在HClO4-硫脲介质中进行测定,可测定高铜、高铅中的银。在上述介质中引入酒石酸铵、碳酸铵、柠檬酸铵、酒石酸等掩蔽剂,可消除锰、钙、铅等元素的干扰。在HClO4-硫脲、HCl-硫脲、HNO3-硫脲介质中测定银是目前原子吸收光谱法测定银的较好方法。

氨性介质火焰原子吸收光谱法:氨性介质火焰原子吸收光谱法测定银,是将试样用王水冷浸过夜,用氨水处理后离心制备成氨水-氯化铵介质溶液,将清液喷入空气-乙炔火焰,进行原子吸收光谱法测定。该法已用于化探样品中银的测定。对于含硫、碳的化探样品,不能与金在同一称样中测定,也不能借助灼烧来除去。试样在700℃高温下灼烧1h,银的损失非常严重。该法采用酸浸法直接分解试样,如含有大量有机物易产生一些泡沫,并使溶液呈黄色,但不影响测定。采用氨水-氯化铵为测定介质,使大量金属离子沉淀分离,也使背景值降到最低程度。这样可以提高测量精度,但却降低了方法的检出限。方法的选择性好,经氨水分离后,溶液中的共存离子一般不干扰测定,大量钙产生Ca 328.6 nm背景,在分辨率较高的原子吸收光谱仪上基本没有波及Ag 328.1 nm测定线,但高浓度钙离子会使火焰中原子密度增大,改变银的吸收系数,会产生微小的负误差。在含有足够氯化铵条件下,氢氧化铁对银的吸附甚微,故亦不干扰测定。

——预富集分离-原子吸收光谱法:预富集分离主要有溶剂萃取、萃取色谱、离子交换溶剂萃取法是富集分离银的有效手段。在原子吸收光谱法测定中,采用溶剂萃取银是目前测定微量银应用最广泛的富集分离方法。该法的优点是:①操作简单快速,不需要特殊的仪器设备;②大大降低检出限,提高灵敏度;③选择性较好,能够排除大量基体的干扰;④直接雾化,使萃取富集分离和原子吸收光谱法测定为一体,联合进行测定。萃取色谱法是原子吸收测定银常用的富集分离方法之一。采用该法富集分离银不但操作简单快速,富集能力强,回收率高,而且易于解脱。与溶剂萃取法相比具有试剂用量少、成本低、不污染环境等优点。采用的萃取剂有:双硫腙、磷酸三丁酯、三正辛胺、P350等。采用的载体有:聚四氟乙烯、泡沫塑料等。离子交换树脂法应用于原子吸收测定银的预富集报道较少。

拓展提高

银精矿分析方法

银精矿为有色金属工业生产过程中的中间产品,确定银的品位及相关元素的含量对银精矿供需双方的交易和生产工艺流程的确定起着重要的作用。主要测定元素除主成分银外,还有金、铜、砷、铋、铅、锌、硫、铝和镁。目前,银和金含量的测定,主要采用最经典的火试金重量法,一般都进行二次试金回收;铜含量的测定,高含量的采用碘量法,低含量的采用原子吸收光谱法;铅和锌的测定,高含量的采用EDTA滴定法,低含量的则采用原子吸收光谱法;砷含量的测定,采用溴酸钾滴定法,低含量的采用原子荧光光谱法;硫含量的测定,采用硫酸钡重量法和燃烧中和法;铋含量的测定,主要是原子荧光光谱法;铝的测定,有光度法和EDTA滴定法;镁的测定,一般采用原子吸收光谱法。随着科学技术的进步和发展,先进的分析测试手段和方法已应用到银精矿的分析测定中,如ICP-AES、ICP-MS和XRF等方法。

火试金法测定金和银:试样经配料,高温熔融,融态的金属铅捕集试料中的金银形成铅扣,试样中的其他物质与熔剂生成易熔性熔渣。将铅扣灰吹,得金银合粒,用乙酸煮沸处理合粒表面黏附的杂质,合粒经硝酸分金后,用重量法测定金和银的含量。

本方法适用于银精矿中0.5~40 g/t金和3000~15000 g/t银的测定。

1.试剂

(1)碳酸钠。

(2)氧化铅:金含量小于2×10-8,银含量小于2×10-7

(3)氯化钠。

(4)二氧化硅:粒度180~150μm。

(4)以上试剂均为工业纯、粉状。

(5)铅箔:铅含量大于99.9%,不含金银。

(6)硼砂:粉状。

(7)淀粉:粉状。

(8)硝酸钾:粉状。

(9)硝酸,优级纯:不含氯离子,硝酸(1+7)(1+2)。

(10)冰乙酸(1+3)。

2.仪器、设备

(1)分析天平:感量0.1mg和0.01mg;微量天平:感量0.01mg、0.001mg。

(2)试金电炉:最高加热温度在1350℃。

(3)试金坩埚:材质为耐火黏土。高130mm,顶部外径90mm,底部外径50mm,容积约为300mL。

(4)镁砂灰皿:顶部内径约35mm,底部外径约40mm,高30mm,深约17mm。

制法:水泥(标号425 )、镁砂(180μm )与水按质量比(15∶85∶10 )搅拌均匀,在灰皿机上压制成型,阴干3个月后备用。

(5)骨灰灰皿:1份质量的骨灰粉与3份质量的水泥(标号425)混匀,加入适量水搅拌,在灰皿机上压制成型,阴干3个月后使用。

3.分析步骤

(1)称样量:5.00~10.00g。

(2)配料:根据试样的化学组成及试样量,按下列方法于黏土坩埚中进行配料并搅匀,覆盖约5 mm厚氯化钠。①碳酸钠:40 g;②氧化铅:150 g;③二氧化硅:按等于1.0硅酸度的渣型计算加入量;④硝酸钾、淀粉:根据试样中硫及碳量,按铅扣40 g计算加入量(硝酸钾的氧化力为4.0;淀粉的还原力为12 )。

(3)熔融:将配好料的黏土坩埚置于900℃的试金电炉中,升温40min至1100℃,保温15min出炉,将熔融物倒入已预热过的铸铁模中,保留坩埚。冷却后,铅扣与熔渣分离,把熔渣去掉覆盖剂后收回原坩埚中,用于补正。将铅扣捶成立方体。适宜的铅扣应表面光亮、重35~45 g。否则应重新配料。

(4)灰吹:将铅扣置于已在900℃预热30min的灰皿中,关闭炉门1~2min,待铅液表面黑色膜脱去,稍开炉门,使炉温尽快降至840℃进行灰吹,当合粒出现闪光后,灰吹结束。将灰皿移至炉门口,稍冷后,移入灰皿盘中。

(5)分金:用医用止血钳夹住合粒,置入30mL瓷坩埚中,保留灰皿,用于补正。加入30mL乙酸(1+3),置于低温电热板上,保持近沸,并蒸至约10mL,取下冷却,倾出液体,用热水洗涤3 次,放在电炉上烤干,取下冷却,称重,即为合粒质量。用锤子捶扁合粒,将捶扁的合粒放回30mL瓷坩埚中,加入15mL硝酸(1+7 )放在低温电热板上,保持近沸,并蒸至约5mL,取下冷却,倾出硝酸银溶液,再加入10mL硝酸(1+1),置于电热板上并蒸至约5mL,取下冷却,用热水洗涤坩埚3次。将盛有金粒的瓷坩埚置于高温电炉上烘烤5min,取下冷却后称量,此为金的质量。将合粒质量减去金粒质量即为银的质量。

(6)补正:将熔渣和灰皿置于粉碎机中粉碎后加入40g 碳酸钠、20g 二氧化硅、15 g硼砂、4 g淀粉搅匀,覆盖约5mg氯化钠。以下按上述操作进行。

4.结果计算

按下式计算金、银的含量,以质量分数表示:

岩石矿物分析

岩石矿物分析

式中:w(Au)和w(Ag)分别为金和银的质量分数,g/t;m1为第一次试金金银合粒的质量,mg;m2为补正金银合粒的质量,mg;m3为试金空白金银合粒的质量,mg;m4为第一次试金获得金的质量,mg;m5为补正合粒中金的质量,mg;m6为空白中金的质量,mg;m0为试样的质量,g。

阅读材料

金银的分析方法发展过程

中国古代金的分析技术可以追溯到石器时代,最古老的黄金分析方法是淘金法,淘金法伴随着黄金被发现和开采的历史,它出现在夏代的新石器时代晚期,距今有4000年以上。当时只能根据拣出的金的个数来判断含金砂石的价值及其产地价值,所以最初的淘金法是一种数量分析法。夏代开始人们认识了黄金的密度较大,以砂石中淘洗出金的多少来判断砂石价值。春秋战国时期淘金法有了新的发展,天平的使用使人们可以定量分析判断砂石及其产地的价值。随着“先碎”、“后淘”工艺的出现,在宋朝淘金法得以进一步的发展,使淘采的对象从砂石扩展到矿石,加上使用天平得以定量分析矿石含金量。

金、银的火法试金在国内外已有悠久的历史,该法是以冶金学的原理和技术运用到分析化学领域。12世纪英国已将灰吹法作为公认的检定方法,1343年法国提出了分金技术。16世纪中期,欧洲已有不少论述试金法的着作,其中载记的方法,已近于现在所用的方法。我国在15~16世纪明代的着作中已经详细地记载了与试金分析有关的金属铅定量捕集银的方法、铅银合金的灰吹法分离、金与银定量分离等技术。在《天工开物》中记载:“欲去银存金,则将其金打成薄片,剪碎,每块以土泥裹涂,入坩埚中鹏砂(即硼砂)焙化,其银即吸入土内,让金流出,以成足色。然后,入铅少许,另入坩埚内,勾出土中银,亦毫厘具在也。”这段记载说明了当时已经掌握了金与银的分离方法,以及明确地提出金属铅捕集银是定量的。

金银的火试金法虽然操作较繁杂,但它是特效方法,迄今仍广泛应用。火试金法从铅试金开始,逐渐发展了锡试金法、锑试金法、铋试金法、锍试金法等。早期用多种含硫、氮的有机物和无机物沉淀的重量法也不少,但多数因选择性不好受到限制,只有少数方法,如还原沉淀金的重量法仍在应用,并列为国内外标准分析方法。经典的火试金法随着科学技术的发展而发展,近年来使用了放射性同位素来检查贵金属在试金过程中的行为,可以直观地和精确地了解贵金属的分布,从而设法减少贵金属在试金过程中的损失。试金法与各种先进的测试手段相结合,并加之电子微量天平的应用,使火试金法得以进一步的发展。该方法具有取样代表性好,方法适用性广,富集效果好等优点。

在中国古代人们还通过利用黄金、白银一些物理性质来对黄金、白银进行鉴别、鉴定、检验。如利用表面颜色、硬度、氧化法、溶解法、试金石法、密度法等来鉴别金、银。

硬度法是人们利用黄金硬度小的特征,对其进行粗略辨识的方法,在《本草拾遗》中就有“咬时极软,即是真金”的记载,因此在民间就流传着用牙咬、指甲划,辨别真金的方法。

表面A色鉴别法就是利用A色鉴别金的成色高低,是一种简单实用的方法。在曹昭着的《新增格古要论》中对不同成色的金有如下记载“其色七青、八黄、九紫、十赤,以赤为足色金也”,是一种半定量的黄金鉴定方法。

试金石法和密度法是较为准确的方法,一直延续至今。

《前汉书·食货志》中有“黄金方寸,二中一斤”的说法。《天工开物》中有“凡金之至重,每铜方寸重一两者,银照依其则寸增重三钱,银方寸重一两者,金照依其则寸重二钱”的记载,由于测试方法和测试仪器的改进,密度法测定金的成色目前仍然使用。

试金石法是一种鉴定金、银真伪和成分的方法。该法实质上与比色分析法中的目视比色法极为相似。通常采用一种称作试金石的石头,在待测物料上磨道,再把对牌以同样的方式在试金石上磨道,通过对比色泽的比较就可以初步确定待测物料的成色。

金银的湿法分析,近年来有很大的发展,出现了一些成熟的、快速的分析方法,利用金银变价性质建立的氧化还原滴定法是测定高含量金银的有效方法。其中金的氧化还原反应滴定法根据反应情况分为两大类:一是以三价金还原为一价金的反应,这类方法的典型代表是氢醌滴定法;另一类是三价金还原为零价金的反应,其代表是碘量法。而银的滴定法最常见是基于银与某种试剂在一定的条件下生成难溶的化合物的沉淀反应,主要有氯化钠法、硫氰酸盐滴定法和碘量法。光度法是研究应用较多的一种方法。吸光光度法与有机溶剂萃取结合,可用于复杂物料的分析,如硫代米蚩酮吸光光度法测定金、双硫腙吸光光度法测定银。此外还有荧光光度法、化学光度法都可以达到很低的检出限。溶出伏安法、离子选择性电极电位法在金、银分析中也有新的发展。原子发射光谱法(AES)用于纯金、纯银已日趋成熟,原子吸收光谱法用于金银的测定是非常成功的,等离子体的应用,为金银分析开拓了广阔的前景。此外,X射线荧光光谱法、动力学法、中子活化分析也有应用。

G. 银的检测方法

1、看首饰颜色:纯度愈高,银色愈洁白,首饰表面看上去均匀发亮,有润色。如果含铅,首饰会呈现出青灰色;如含铜,首饰表面会显得粗糙,颜色没有润泽感。
2、掂首饰重量:白银密度较一般常见金属略大,一般地讲: “铝质轻、银质重、铜质不轻又不重。”因而掂掂重量可对其是否为白银做出初步判断。若饰品体积较大而重量较轻,则可初步判断该饰品属其它金属。

3、查硬度:白银硬度较铜低,而较铅、锡大,可用大头针划首饰不起眼的地方进行测试,如针头打滑,表面很难留下痕迹,则可判定为铜质首饰饰品;如为铅、锡质地,则痕迹很明显、突出;如实物留有痕迹而又不太明显,便可初步判定为白银首饰饰品。

4、听声韵:纯银首饰饰品掷地有声,无弹力,声响为 “卟哒卟哒”。成色越低,声音越低,且声音越尖越高而带韵;若为铜质,其声更高且尖,韵声急促而短;若为铅、锡质地,则掷地声音沉闷、短促,无弹力。

H. 银量法分为哪三种

银量法分为莫尔法、佛尔哈德法、法扬斯法。银量法可以测定银离子,氯离子,碘离子等,也可以测定经过处理能定量转化为这些离子的有机物,银量法是以生成难溶银盐的沉淀滴定分析法。

沉淀滴定法是通过滴定方式来测定被测物质含量的方法,其中,利用生成难溶性银盐来进行测定的方法叫做银量法 (argentimetry) 。定量分析的原理是以硝酸银液为滴定液,测定能与Ag+生成沉淀的物质,根据消耗滴定液的浓度和毫升数,可计算出被测物质的含量。

滴定分析的分类:

1、酸碱滴定法

滴定分析法中,酸碱滴定最基本。

中心问题:“酸碱平衡”,本质是酸碱之间的质子传递。

2、配位滴定法

主要是:EDTA的结构、性质、配位平衡、稳定常数、滴定曲线、指示剂的选择

及消除干扰的方法。

重点:配位平衡

在配位滴定中, 除主反应外, 还有各种副反应干扰主反应的进行, 反应条件对配位平衡有很大的影响。

3、氧化还原滴定法

氧化还原滴定法的核心仍然是平衡,是以电子转移为依据的平衡,反应条件对平衡的影响很大。

4、沉淀滴定法

沉淀滴定法的核心是沉淀平衡。重点是银量法, 根据确定终点的方法不同, 可分为摩尔法、福尔哈德法、吸附指示剂法。

阅读全文

与测量总银方法相关的资料

热点内容
发动机舱的鉴别方法 浏览:914
有什么催尿的方法 浏览:175
如何洗脚养肾的方法 浏览:571
胜利兆欧表使用方法 浏览:137
朱砂使用方法 浏览:954
缓解牙疼的最快方法按摩哪里 浏览:51
游完泳耳朵闷堵快速解决方法 浏览:940
厨房中鉴别白醋显酸性的三种方法 浏览:966
折纸飞机折得最远的简便方法 浏览:67
尿酸碱度检测标准方法 浏览:828
浴室热水管道安装方法 浏览:278
手机网络黑屏解决方法 浏览:209
花卉土培检测方法 浏览:277
获取检测信息的方法有哪些 浏览:120
蛋糕比容的计算方法 浏览:738
破坏动物细胞膜最常用的方法 浏览:246
社会作业研究方法 浏览:542
手机怎么拍摄长视频的方法 浏览:302
如何把数字变成字母的方法 浏览:194
板类零件的安装方法有哪三种 浏览:448