1. 运筹学在生活中的实际应用
(1)规划论。数学规划主要包括线性规划、非线性规划、整数规划、目标规划、和动态规划。研究内容与生产活动中有限资源的分配有关,在组织生产的经营管理活动中,具有极为重要的地位和作用。它主要解决两个方面的问题。一是对于给定的人力、物力、财力,怎样才能 发挥它们的最大效益;二是对于给定的任务,怎样才能用最少的人力、物力和财力去完成它。这两个方面有一个共同特点.即在给定的条件下,按照某一衡量指标来寻找最优方案,求解约束
--3-- 条件下目标函数的极值(极大值或极小值)问题。具体来讲,线性规划可以解决生产过程的优化、物流方面的运输以及资源的配置问题等;整数线性规划可以 求解企业的投资决策问题、旅行售货员问题等;而动态规划所研究的对象是多阶段决策问题,主要用来解决最短路线问 题、多阶段资源分配问题、生产和存储控制问题及设备更新问题等。根据他研究问题的特点,它主要用于总体的生产,存储和劳动力的配合问题等进行合理的统计规划,是获得最大的收益。例如某家制造公司利用了线性规划的科学理论对生产的成本和劳动力的分配,最后是的企业在制造费用上节省了10%的生产费用。此外还可以用于生产作业计划,日程表的编排,还有在合理下料,配料问题,无聊问题等方面的应用。
(2)决策论。所谓决策就是根据客观可能性,借助一定的理论,方法和工具,分析问题提出可行方案以及研究从多种可供选择的行动 方案中选择最优方案的方法。决策问题通常分为三种类型:确定型决策、风险型决策和不确定型决策.针对不同的情形套用相应的模型便可求解。经济领域中利用决策论解决的问题有:企业管理者制定投资、生产计划、物资调运计划的问题。新产品的销路问题,一种新股票发行的变化问题等。现代的财政与会计分析也多会用到决策分析。
(3)运输问题。运输问题在研究某些问题是具有其他的方法无法比拟的便利性,当我们遇到一些大宗的物资调运时如煤,铁,木材等,如何制定合理的调运方案,将这些物资运到各个消费地点而且总运费要达到最小。除了这些还有一些客运问题,如空运问题涉及航班和飞机的人员服务时间的安排,为此国际运筹学协会中还专门设立了航空组,专门研究空运问题中的运筹学问题。水运同样有船舶航运计划,港口配置和船到港后的运行安排。而在铁路方面的应用就更加广泛了,如经典的并为大家熟知的运输问题,再妇最长(短)路问题、阿络流问题(最小费用商品流问题、多商品流问题)等,以及旅行商TSP问题.这些问题都非常容易在交通运输领域找到广泛的应用实例。
(4)图论。线性规划是运筹学中理论比较完善成熟、方法比较方便有效的一个分支,但是用来解决某些大型系统的问题仍 能力,具有描述问题直观,模型易于计算实现的特点,能很方便地将一些复杂的问题分解或转化为可能求解的子问题。网络在经济领域中主要用来解决生产组织、计划管理中诸如最短路径、最小连接、最小费用流问题以及最优分派问题等。另外,物流方面的运输、配送
--4-- 问题,工厂、仓库等的选址问题等,也可运用网络分析的知识辅助决策者进行最优安排。总之,特别是在计划和安排大型的复杂工程时,网络技术是重要的工具
2. 简述运筹学的工作方法
简述运筹学的工作方法
运筹学方法主要是通过把管理问题抽象成一个模型,求解模型来获得解决问题的最优解,依据最优解和组织的实际情况来制定的方法。
运筹学方法目前已在市场销售、生产计划、库存管理、运输问题、财政与会计、人事管理、设备维修、更新和可靠性、项目的选择与评价、工程的优化设计、计算机与信息系统、城市管理等方面得到广泛应用。
3. 运筹学解决问题的6个步骤 意义
我这学期也在修运筹学
四个步骤:确定目标、制定方案、建立模型、制定解法
4. 运筹学分析与解决问题一般要经过哪些步骤
明确问题、建立模型、模型求解、解的检验、解的实施
5. 运筹学有什么用在实际工作中如何运用
现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。
运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。
运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。
随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。
6. 运筹学方法的基本步骤
一般来说,采用运筹学方法来编制组织计划,大致需要经过如下几个步骤: 结合组织的实际,如有必要,可以反复上述步骤,利用上述求出的有关数据,编制组织计划。