导航:首页 > 安装方法 > 数据挖掘方法的主要步骤五个

数据挖掘方法的主要步骤五个

发布时间:2023-01-20 16:59:33

㈠ 数据挖掘有哪些步骤

1、业务理解


业务理解,指从业务角度来理解项目目标和要求,接着把这些理解知识转换成数据挖掘问题的定义和实现目标的初规划。


2、数据理解


数据理解,指从数据收集开始,然后接着是一系列活动,这些活动的目的是:熟悉数据,甄别数据质量问题、发现对数据的真知灼见、或者探索出令人感兴趣的数据子集并形成对隐藏信息的假设。


3、数据准备


数据准备,指从初原始数据构建终建模数据的全部活动。数据准备很可能被执行多次并且不以任何既定的秩序进行。包括为建模工作准备数据的选择、转换、清洗、构造、整合及格式化等多种数据预处理工作。


4、建立模型


建立模型,指选择和使用各种建模技术,并对其参数进行调优。一般地,相同数据挖掘问题类型会有几种技术手段。某些技术对于数据形式有特殊规定,这通常需要重新返回到数据准备阶段。

㈡ 数据挖掘的基本步骤是什么

数据输入:输入要发掘的数据。

数据转化:做数据预处理的步骤,经过了数据转化之后,数据就是一个可用的,简练的、完整的、一致的、精确的数据集。

(1)数据清理:对噪声数据和不一致的数据做铲除操作。或者是对重复数据做删除,或者是对缺失数据做填充(众数、中位数、自己判断)。

(2)数据集成:将多个数据源的数据做整合。

(3)数据选择:选择需要的数据做发掘。比如一个人买不买电脑和他叫什么没什么联系,所以就不需要输入到机器中进行分析。

(4)数据改换:不同的数据被经过数据集成集成到一同的时分,就会出现一个问题,叫做实体辨认问题。那么数据改换除了处理实体辨认问题以外,还需要一致不同的数据库的数据的格局。

数据发掘:经过数学算法对数据进行分析,得到数据之间的规则,或者是我们所需要的常识。

模型评价:评价机器获得的模型是否不适用例如,假如模型是在机器学习后得到的,而且模型猜测的精度为10%。因而模型评价的很大一部分也是对从学习机器中获得的常识是否准确和可用的评价。

数据输出:将成果数据输出,而且将得到的常识表明出来,对应了常识表明。

数据在进行发掘时,我们往往都是经过某些属性得以判断某个成果,这就是数据发掘的基本规则。

关于数据挖掘的基本步骤是什么,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

㈢ 数据挖掘过程

数据挖掘的过程主要有:
1、定义目标

2、获取数据(直接获取或者爬虫)

3、数据探索(初步研究,无特别严格的流程)

4、数据预处理(数据清洗【去掉脏数据】、数据集成【集中】、数据变换【规范化】、数据规约【精简】)
脏数据:无效、异常、空
数据集成:不同来源的数据放在一起

5、挖掘建模(分类、聚类、关联、预测)

6、模型评价与发布

㈣ 数据挖掘的基本步骤

1、建立数据挖掘库
建立数据挖掘库包括以下几个步骤:数据收集,数据描述,选择,数据质量评估和数据清理,合并与整合,构建元数据,加载数据挖掘库,维护数据挖掘库。
2、分析数据
分析的目的是找到对预测输出影响最大的数据字段,和决定是否需要定义导出字段。如果数据集包含成百上千的字段,那么浏览分析这些数据将是一件非常耗时和累人的事情,这时需要选择一个具有好的界面和功能强大的工具软件来协助你完成这些事情。
3、准备数据
建立模型之前的最后一步数据准备工作。可以把此步骤分为四个部分:选择变量,选择记录,创建新变量,转换变量。
4、建立模型
建立模型是一个反复的过程。需要仔细考察不同的模型以判断哪个模型对面对的商业问题最有用。先用一部分数据建立模型,然后再用剩下的数据来测试和验证这个得到的模型。有时还有第三个数据集,称为验证集,因为测试集可能受模型的特性的影响,这时需要一个独立的数据集来验证模型的准确性。
5、评价模型
模型建立好之后,必须评价得到的结果、解释模型的价值。从测试集中得到的准确率只对用于建立模型的数据有意义。在实际应用中,需要进一步了解错误的类型和由此带来的相关费用的多少。

㈤ 数据挖掘标准作业流程,主要分为哪几个步骤

数据挖掘建模的标准流程,同时亦称为跨产业数据挖掘标准作业程序,数据挖掘主要分为商业定义、数据理解、数据预处理、建立模型、实施六步,各步骤的叙述说明如下:

1.定义商业问题,数据挖掘的中心价值主要在于商业问题上,所以初步阶段必须对组织的问题与需求深入了解,经过不断与组织讨论与确认之后,拟订一个详尽且可达成的方案。

2.数据理解,定义所需要的数据,收集完整数据,并对收集的数据做初步分析,包括识别数据的质量问题、对数据做基本观察、除去噪声或不完整的数据,可提升数据预处理的效率,接着设立假设前提。

3.数据预处理,因为数据源不同,常会有格式不一致等问题。因此在建立模型之前必须进行多次的检查修正,以确保数据完整并得到净化。

4.建立模型,根据数据形式,选择最适合的数据挖掘技术并利用不同的数据进行模型测试,以优化预测模型,模型愈精准,有效性及可靠度愈高,对决策者做出正确的决策愈有利。

5.评价和理解,在测试中得到的结果,只对该数据有意义。实际应用中,使用不同的数据集其准确度便会有所差异 ,因此,此步骤最重要的目的便是了解是否有尚未被考虑到的商业问题盲点。

6.实施,数据挖掘流程通过良性循环,最后将整合过后的模型应用于商业,但模型的完成并非代表整个项目完成,知识的获得也可以通过组织化、自动化等机制进行预测应用,该阶段包含部署计划、监督、维护、传承与最后的报告结果,形成整个工作循环。

㈥ 数据挖掘的完整步骤是怎样的

1、理解数据和数据的来源(understanding)。
2、获取相关知识与技术(acquisition)。

3、整合与检查数据(integration and checking)。

4、去除错误或不一致的数据(data cleaning)。

5、建立模型和假设(model and hypothesis development)。

6、实际数据挖掘工作(data mining)。

7、测试和验证挖掘结果(testing and verification)。

8、解释和应用(interpretation and use)。

㈦ 数据挖掘步骤一般有哪些

1、定义问题


在开始知识发现之前最先的也是最重要的要求就是了解数据和业务问题。必须要对目标有一个清晰明确的定义,即决定到底想干什么。比如,想提高电子信箱的利用率时,想做的可能是“提高用户使用率”,也可能是“提高一次用户使用的价值”,要解决这两个问题而建立的模型几乎是完全不同的,必须做出决定。


2、建立数据挖掘库


建立数据挖掘库包括以下几个步骤:数据收集,数据描述,选择,数据质量评估和数据清理,合并与整合,构建元数据,加载数据挖掘库,维护数据挖掘库。


3、分析数据


分析的目的是找到对预测输出影响最大的数据字段,和决定是否需要定义导出字段。如果数据集包含成百上千的字段,那么浏览分析这些数据将是一件非常耗时和累人的事情,这时需要选择一个具有好的界面和功能强大的工具软件来协助你完成这些事情。


4、准备数据


建立模型之前的最后一步数据准备工作。可以把此步骤分为四个部分:选择变量,选择记录,创建新变量,转换变量。


5、建立模型


建立模型是一个反复的过程。需要仔细考察不同的模型以判断哪个模型对面对的商业问题最有用。先用一部分数据建立模型,然后再用剩下的数据来测试和验证这个得到的模型。有时还有第三个数据集,称为验证集,因为测试集可能受模型的特性的影响,这时需要一个独立的数据集来验证模型的准确性。训练和测试数据挖掘模型需要把数据至少分成两个部分,一个用于模型训练,另一个用于模型测试。


6、评价模型


模型建立好之后,必须评价得到的结果、解释模型的价值。从测试集中得到的准确率只对用于建立模型的数据有意义。在实际应用中,需要进一步了解错误的类型和由此带来的相关费用的多少。


关于数据挖掘步骤一般有哪些,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

阅读全文

与数据挖掘方法的主要步骤五个相关的资料

热点内容
女性肛周湿疹治疗方法 浏览:414
老年人玩电脑的方法 浏览:285
寻找真爱有哪些方法 浏览:552
如何才是最好的减肥方法 浏览:509
头孢拉定鉴别显色的方法是 浏览:962
电脑手机在线连接方法 浏览:629
什么方法治扁平疣 浏览:336
公主蛋糕怎么做的方法 浏览:401
打开膏肓穴有哪些方法 浏览:583
腈纶可用什么方法鉴别 浏览:96
足球对抗技战术训练方法180例 浏览:170
枕套的正确安装方法 浏览:296
工程资料教学方法 浏览:93
治疗青胎记最好的方法 浏览:332
肾阳虚腹泻最快治疗方法 浏览:136
吊扇变速器的安装方法 浏览:298
如何选择生茶存放方法和条件 浏览:525
让头发直有哪些方法 浏览:470
大肠菌群检测方法实验报告 浏览:850
把手机变成高逼格的方法 浏览:259