1. 电流的测量方法有几种
电流检测被用来执行两个基本的电路功能。
首先,是测量多大电流在电路中流动,这个信息可以用于DC/DC电源中的电源管理,来判定基本的外围负载,来实现节能。
第二个功能是当电流过大或出现故障时,做出判断。如果电流超过了安全限值,满足软件或硬件互锁条件,就会发出一个信号,把设备关掉,比如电机堵转或电池中发生短路的情况。
电流测量方法如下,
有各种不同的测量方法能产生提示或过大的信号,如下:
电阻式(直接)
检流电阻
磁(间接)
电流互感器
罗氏线圈
霍尔效应器件
晶体管(直接)
RDS(ON)
比率式
2. 电计量方法
1kw*h=3.6*10^6J
一千瓦时=3600000焦耳的能量=1度电
一瓦特=1焦耳每秒=1伏特*安培
1千瓦时就是一个功率为1千瓦的耗能设备在1小时内所消耗的能量,等于3.6兆焦耳。
这样够清楚了吧
3. 如何测量高压电压
高压侧测量方法有以下几种:
1.用电压互感器测量
在试验变压器高压侧与被试品并联一测量用电压互感器,在电压互感器低压二次侧接电压表或示波器测量电压,然后根据所测电压值和电压互感器的变比换算出高压侧电压。一般用电压互感器在0.5级以上。这种测量方法测量简单,准确度高,但测量电压不宜太高。测量电压太高则要求电压互感器的一次电压高,使制造出的电压互感器体积大,成本高,且不宜携带。
2.用静电压表测量
用静电压表可以方便地测量交流高压的有效值。测量时,将静电电压表与被试品并接,可直接测量出被试品的高压电压。静电电压表的结构如图1-2所示。
图1-2 国产Q4-V型静电电压表结构图
静电电压表能耐受的电压由两级间的距离及固定高电压电极的绝缘蜘蛛表面的放电电压决定。改变电极间距离,能改变策测量电压范围,所以频率高达1MHz的电压。
静电电压表两极间有绝缘介质(空气),电容量极小(10~30pF),因此阻抗较大,测量时几乎不改变被试品上的电压。该表还可以用来测量感应电压表。
静电电压表的缺点是:额定电压100V及以上的静电电压表的电极暴露在外面,无屏蔽密封措置,现场使用时受风、天气、外界电磁场干扰影响较大,现场不宜使用,多用于试验室内。
3.用球隙测量
在交流耐压试验时,球隙不仅可以作保护用,还可以作测量用。测量球隙由一对相同直径的金属球构成。
球隙测量高压的原理是在一定大气条件下,一定直径的铜球,球隙间的放电电压决定于球隙距离。因此可以用球隙来直接测量交流高压、冲击高压的峰值。附录四球隙放电标准表给出了不同球径球隙的放电电压与球隙距离的关系。
用球隙测量高压时,只有当球隙放电时,才能从表中查得电压。每次放电必须跳闸,放电时可能产生振荡,也可能引起过电电压,所以球隙测量电压不太方便。现场及试验实际使用时,常用球隙来校订别的测量仪器的测量结果,即做校订曲线。有了校订曲线,就可以从仪表的指示读数,随时知道升压过程中的电压值。实际校订时的接线图如图1-3所示。
图1-3 用球隙来测定试验变压器校订曲线的接线
F-球隙;CX-被试品
图中R1是保护变压器用的防振电阻,限制被试品或球隙击穿时流过变压器的短路电流。R2的作用有两方面:一是限制球隙放电时流过球级的短路电流,以免烧伤球级;二、是阻尼试验回路出现局部放电时连接电感与球隙电容和被试品电容等所产生的高频振荡。
图1-4 试验变压器的校订曲线
具体校订过程如下:接上被试品,按图1-3接线,电压逐步提高,球隙距离逐级调大,在各种球隙距离下放电时,记下相应低压侧电压表读数,查表并经过一定的计算可求得每种球隙距离下的放电电压。用该电压和低压侧电压表读数绘出的曲线如1-4所示。这就是校订曲线。实际上该曲线表明了在一定负载下试验变压器的一、二次电压关系。做校订曲线时的电压要求低于或接近于试验电压,一般允许做到试验电压的80%,然后可用外推法,把曲线延伸到所需值,推算出试验电压时的低压侧电压表读数。把球隙距离调到相应试验电压值的1.1~1.2倍,作为保护间隙,然后推算出的低压侧电压表读数升压即可。气体间隙的放电电压受大气条件的影响,因而对现场测量结果应根据大气条件进行校订。
4. 电容器电容量测量方法
1、检测10pF以下的小电容:因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。
2、检测10PF~001μF固定电容器:通过判断是否有充电现象,进而判断其好坏。万用表选用R×1k挡。两只三极管的β值均为100以上,且穿透电流要小。可选用3DG6等型号硅三极管组成复合管。万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。
(4)电测量方法扩展阅读:
电容器的种类:
1、钽电解电容器
用烧结的钽块作正极,电解质使用固体二氧化锰。温度特性、频率特性和可靠性均优于普通电解电容器,特别是漏电流极小,贮存性良好,寿命长,容量误差小,而且体积小,单位体积下能得到最大的电容电压乘积。
2、独石电容器(多层陶瓷电容器)
在若干片陶瓷薄膜坯上被覆以电极桨材料,叠合后一次绕结成一块不可分割的整体,外面再用树脂包封而成。是一种小体积、大容量、高可靠和耐高温的新型电容器。高介电常数的低频独石电容器也具有稳定的性能,体积极小,容量误差较大。
3、金属化聚丙烯电容器
一般在低频电路内,通常不能在高于3~4MHz的频率上运用。油浸电容器的耐压比普通纸质电容器高,稳定性也好,适用于高压电路微调电容器(半可变电容器)电容量可在某一小范围内调整,并可在调整后固定于某个电容值。
参考资料来源:网络—电容器
5. 电压的测量方法
不知道你说的是大尺寸还是中尺寸还是小尺寸,所以有总的方法。
如果是好的模组,你直接测试点亮的就好了。
如果背光灯能拆掉的话,拆掉直接看线路也可以看出来电压。
只有出现不允许拆卸的时候,不允许点亮的时候,才能去通过方法评定电压,你可以采取以下方法测试:
1、先确定背光灯是ccfl还是led,如果是ccfl的话,你只需要看ccfl升压电容的电压,然后用电压除以1.414即可得到大致的ccfl电压。
2、如果是led的话,要确定led的fpc金手指是并联还是串联,如果是串联,那么给一个标准的20ma恒流驱动,然后从小到大逐渐升高电压,同时观察led亮点的位置有几个,就可以判定led的使用数量。当背光的电压不再升高时,用这个电压去除以led的数量,看是否对应,如果不对应,那么这个fpc内部还存在并联,然后再按照20ma的倍数去射定,直到得到的电压与电流乘积是led数量的功率即可。然后这个电压就是背光灯的驱动电压。
3、如果led背光的fpc金手指是并联的,那么只需要单独测试分开的线路,按照以上方法,单独得出并联的电压即可。
6. 电气测量方法有
按测量过程分:直接测量,间接测量、组合测量、
按测量方式分:偏差式测量法、零位式测量法、微差式测量法
按被测量的性质分:时域测量、频域测量、数据域测量、随即测量
赏分哦
7. 怎样用万用表测漏电
万用表内部的电池9v到15v,电阻档和电压档只能确定短路,粗略的判断是否漏电。
用万用表检查漏电有以下三种方法:
1、断电测量:关闭断开所有用电器,用万用表RX10K档,一个表笔接待测火线,另一表笔接地(或水龙头),应该显示电阻无穷大,否则漏电。
拓展资料
使用注意
1、在使用万用表之前,应先进行“机械调零”,即在没有被测电量时,使万用表指针指在零电压或零电流的位置上;
2、在使用万用表过程中,不能用手去接触表笔的金属部分,这样一方面可以保证测量的准确,另一方面也可以保证人身安全;
3、在测量某一电量时,不能在测量的同时换档,尤其是在测量高电压或大电流时,更应注意。否则,会使万用表毁坏。如需换档,应先断开表笔,换档后再去测量;
4、万用表在使用时,必须水平放置,以免造成误差。同时,还要注意到避免外界磁场对万用表的影响;
5、万用表使用完毕,应将转换开关置于交流电压的最大档。如果长期不使用,还应将万用表内部的电池取出来,以免电池腐蚀表内其它器件。
8. 电功率测量方法有几种
测量用电器的电功率的三种方法:
a.利用专用的电功率表直接测量;
b.利用电压表、电流表,采用伏安法测小灯泡的电功率。
c.利用电能表测量电功率。
希望帮助到你,若有疑问,可以追问~~~
祝你学习进步,更上一层楼!(*^__^*)
9. 电流和电压的测量方式
一、电流的大小用电流表测量,测量流程如下:
1、电流表要与被测用电器串联。
2、正负接线柱的接法要正确:使电流从正接线柱流入,从负接线柱流出,俗称正进负出。
3、被测电流不要超过电流表的量程(否则会烧坏电流表),可用试触的方法确定量程。
4、因为电流表内阻太小(相当于导线),所以绝对不允许不经过用电器而把电流表直接连到电源的两极上。
5、确认使用的电流表的量程。
6、确认每个大格和每个小格所代表的电流值。
二、电压的大小用电压表测量,测量流程如下:
1、测量时,应将电流表串接于被测电路的低电位一侧。
2、测量直流时,需要注意电流表端钮的符号,对单量限电流表,被测量电流应从标有 “+”的端钮流人电流表,从标有“—”的端钮流出电流表;对多量限电流表,标有“*”的是公共端钮;
如果其他端钮标有“+”符号.则应使被测电流从“+”端钮流入,从“*”端钮流出;如果其他端钮标有“—”符号,则连接正好与上述情况相反。
10. 电压测量的测量方法
测量交流电压的方法主要有检波法、采样法、热电法、测辐射热法和补偿法等。检波法利用电子管、晶体管的检波作用将交流电压转换为直流电压进行测量。检波式电压表的工作频率一般从几十赫到一千多兆赫,量程达 100微伏~1000伏。频率在300兆赫以下时,精确度一般约为百分之几,频率在1000兆赫时则可达百分之几十。采样法采样实质上是频率变换,是用一系列离散的取样脉冲来描述一个连续变量的过程。一般是将被测高频信号变成20千赫的低频信号,再进行检波测量。这种电压表的频率范围为 1~1000兆赫,甚至更高;电压范围约300微伏~1伏(外接衰减器可测量大的电压),精确度从百分之一到百分之十几。热电法主要采用热电转换标准或微电位计。热电转换标准由热电偶配以适当的限流电阻或衰减器组成,可测0.1~300伏或更高的电压,频率范围一般为20赫~100兆赫,若采取高频补偿措施则可达1000兆赫,测量精确度约为 0.01%~1%(定标后)。利用多元热偶特制的热电转换器,在低频段的交直流转换精度可达1×10-5或更高,当代的低频电压原始标准皆属此类;微电位计主要由热电偶和圆盘电阻组成,利用已知电流乘电阻得到标准输出电压,一般为0.1微伏~400毫伏,频率范围一般为0~1000兆赫,精确度为0.02%~5%。测辐射热器法一般是利用测辐射热电阻(简称测热电阻)进行测量。实用的测热电阻主要有热敏电阻、镇流电阻和薄膜热变电阻。热敏电阻的灵敏度最高(可达数万欧/瓦),但频率响应差;镇流电阻的灵敏度较高(约数千欧/瓦),频率响应也较差。薄膜热变电阻的灵敏度较低(约1~100欧/瓦),但频率响应好,可根据不同需要选用。测辐射热装置的工作原理是利用测热电阻对电功率的敏感性,将被测高频电压转换成相应的阻值变化,再根据功率替代原理,利用测热技术以已知的直流或低频电压代替高频电压。这种装置有功率计式(标准表式)和标准源式二种类型。前者是通过测量功率和阻抗换算出电压,随着功率和阻抗测量精确度的不断提高,可以达到很高的精确度,是建立高频电压原始标准的方法之一;后者是直接给出标准电压值,比较方便,可获得较高的精确度,其典型的方案是测热电阻电桥。高频电压的原始标准主要是测辐射热装置。它的量程约为0.1~1伏,频率范围约为10~1000兆赫,精确度约为0.2%~1%。中国的高频电压国家标准采用测热电阻电桥方案。图中薄膜热变电阻作为电桥的一个臂接在回路中,其组成部分RT1和RT2对于直流是串联的,对于高频则是并联的。在电桥两端只加直流偏压U1,将电桥调至平衡,然后加高频信号,电桥失衡,将直流偏压由U1降到U2,使电桥重新平衡,由公式计算出高频电压Urf,式中α=(RT1/RT2)≥1。中国的高频电压国家标准改进了薄膜热变电阻性能,因而减轻了电磁场扰动的影响,提高了标准精确度,并扩展了频段上限。所达到的具体技术指标是:电压范围为0.1~2伏;频率范围为10~3000兆赫;精确度为0.2%~0.7%。补偿法将被测的高频电压与相应的直流电压进行比较,再根据确定的关系式求得被测电压。这种方法的工作频率为20赫~1000兆赫;量程为20毫伏~1000伏;精确度为千分之三到百分之十几。测量高频电压一般是在同轴系统中进行。影响高频电压测量的精确度的主要因素有:①传输误差,由于被校设备的输入阻抗与传输线不匹配,在传输线上会有驻波存在,使被校设备的输入面和标准电压面的电压不等,所引入的误差是高频测量时的主要误差;②加载误差;③接地电流引入的误差;④干扰引入的误差;⑤波形误差等。