A. 解不等式的方法高中
(1)当含参数的一元二次不等式的二次项系数为常数,但不知道与之对应的一元二次方程是否有解时需要对判别式进行讨论。(2)当含参数的一元二次不等式的二次项系数为常数,且与之对应的一元二次方程有两解,但不知道两个解的大小时,需要对解的大小进行讨论。(3)当含参数的一元二次不等式的二次项系数含有参数时,首先要对二次项系数进行讨论,其次,要对对应的一元二次方程的判别式进行讨论,有时还要对方程的解的大小进行讨论
B. 高中不等式解题方法与技巧
高中不等式的解题方法与技巧如下:
一、解决绝对值问题(化简、求值、方程、不等式、函数),把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:
1、分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
2、零点分段讨论法:适用于含一个字母的多个绝对值的情况。
3、两边平方法:适用于两边非负的方程或不等式。
4、几何意义法:适用于有明显几何意义的情况。
5、待定系数法:是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
3、一元一次不等式:含有一个未知数(即一元)并且未知数的次数是1次(即一次)的不等式。如3-x>0
同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是一次的不等式。
三、总结:
高中掌握以上概念与方法,相信你会学好不等式!
C. 解不等式(详细步骤)
不等式就是用不等式符号把一个式子连接起来的算式;不等式和等式主要的区别就是他们的符号不同,一个是“=”,一个是“>、<、≥、≤”。但解不等式是完全可以用等式的性质来解。下面我就以一道例题来讲一下解不等式的标准步骤。
第一步、如果是应用题就要先理清楚思路,然后列出不等式,最后再解不等式;如果是解不等式的计算题,就直接写“解”,开始写出计算过程。
(3)解不等式的方法步骤高一扩展阅读:
1、如果x>y,则y<x;如果y<x,则x>y(对称性)
2、如果x>y,y>z;则x>z(传递性)
3、如果x>y,而z为任意实数或整式,则x+z>y+z;(同向不等式可加性)
4、如果x>y,z>0,则xz>yz;如果x>y,z<0,则xz<yz;(乘法原则)
5、如果x>y,m>n,则x+m>y+n;(充分不必要条件)
6、如果x>y>0,m>n>0,则xm>yn;
7、如果x>y>0,则x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。
8、不等式的基本性质的另一种表达方式有:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性。