① 分子克隆的基本方法
载体所谓载体是指携带靶DNA片段进入宿主细胞进行扩增和表达的工具。
基因库的建造
特异基因的筛选
核酸序列测定
一、基因克隆的基本方法
一个典型的基因克隆实验,主要有以下操作和结果:
(1)包括有目的基因在内的DNA片断插入另一个DNA分子(克隆载体,通常是环状的),形成重组DNA分子。
(2)重组DNA分子通过转化或其他类似的方法被导入受体细胞。大肠杆菌是使用较多的受体细胞。
(3)在受体细胞中,克隆载体指导重组DNA分子复制,产生许多完全相同的拷贝。
(4)当受体细胞分裂时,重组DNA分子的拷贝进入子细胞,克隆载体的复制将在子细胞中继续。
(5)大量分裂的受体细胞形成克隆:一个细胞群体,其中每个细胞都含有许多重组DNA分子的拷贝。
显而易见,基因克隆是一个比较直观而简单的操作程序。它之所以具有非常重要的生物学意义,是因为这一技术可以为我们提供一个纯粹的基因标本。通常,一个基因总是和细胞里其他基因同在。基因克隆技术诞生之前,我们根本无法纯化单个基因,这意味着我们只能对基因群、而不是特定基因的结构与功能进行研究和开发利用。
1、重组DNA分子的构建
构建重组DNA分子是基因克隆实验的第一步,亦即,把环状的载体在指定部位切断,然后把含目的基因的DNA分子插入其中,再将两者连接起来。这一过程需要两种DNA操作酶:限制性内切酶(restriction endonucleases)和连接酶(ligases)。
限制性内切酶能够识别DNA分子上的特定核苷酸序列,并在该处特异性切断DNA分子。例如,PvuI(细菌Proteus vulgaris分离)只识别和切断6核苷酸序列CGATCG;从相同细菌分离的PvuII,却只识别并切断CAGCTG。许多限制性内切酶的识别位点是6个核苷酸,但是,也有识别4个或5个、甚至8个核苷酸顺序的限制性内切酶。此外,有些限制性内切酶的识别顺序可能不是唯一的,例如,HinfI可以识别并切断GAATC、GATTC,GAGTC和GACTC。因此,通常也将HinfI的识别位点记为GANTC,N代表A、T、G和C中的任意一种核苷酸。
经限制性内切酶处理后的DNA分子断端有两种:平端和粘端,它们的性质对基因克隆的实验设计有重要影响。其中,具有不同识别位点的限制性内切酶可以产生相同的粘端。例如,BglII(AGATCT)和BamHI(GGATCC)产生与Sau3A相同的GATC粘端。显然,经上述三种酶处理的DNA分子片断之间均可以在相应的断端形成互补双链。
DNA分子片断通过粘端形成的碱基互补并不能使之相互连接,后一过程需要连接酶的催化作用。所有生物细胞中都产生连接酶,但是,基因克隆中最常用的是T4噬菌体的连接酶。连接酶催化相邻核苷酸之间形成磷酸二酯键。由于平端不能使DNA片断保持相互接近的位置,因而,和粘端相比,连接酶对平端DNA分子之间连接反应的催化效率较差。
2、克隆载体及其主要功能
② 简述DNA重组与分子克隆化基本原理与过程
(一)外源DNA和质粒载体的连接反应
外源DNA片段和线状质粒载体的连接,也就是在双链DNA5'磷酸和相邻的3'羟基之间形成的新的共价链。如质粒载体的两条链都带5'磷酸,可生成4个新的磷酸二酯链。但如果质粒DNA已去磷酸化,则吸能形成2个新的磷酸二酯链。在这种情况下产生的两个杂交体分子带有2个单链切口(图1.8),当杂本导入感受态细胞后可被修复。相邻的5'磷酸和3'羟基间磷酸二酯键的形成可在体外由两种不同的DNA连接酶催化,这两种酶就是大肠杆菌DNA连接酶和T4噬菌体DNA连接酶。实际上在有克隆用途中,T4噬菌体DNA连接酶都是首选的用酶。这是因为在下述反应条件下,它就能有效地将平端DNA片段连接起来。
DNA一端与另一端的连接可认为是双分子反应,在标准条件下,其反应速度完全由互相匹配的DNA末端的浓度决定。不论末端位于同一DNA分子(分子内连接)还是位于不同分子(分子间连接),都是如此。现考虑一种简单的情况,即连接混合物中只含有一种DNA,也就是用可产生粘端的单个限制酶切割制备的磷酸化载体DNA。在加作用的底物。如果反应中DNA浓度低,则配对的两个末端同一DNA分子的机会较大(因为DNA分子的一个末端找到同一分子的另一末端的概率要高于找到不同DNA分子的末端的概率)。这样,在DNA浓度低时,质粒DNA重新环化将卓有成效。如果连接反应中DNA浓度有所增高,则在分子内连接反应发生以前,某一个DNA分子的末端碰到另一DNA分子末端的可能性也有所增大。因此在DNA浓度高时,连接反的初产物将是质粒二聚体和更大一些的寡聚体。Dugaiczyk等(1975;同时参见Bethesda Res,Lab.出版的Focus第2卷,第2、3期合刊)从理论上探讨了DNA浓度对连接产物性质的影响。简而言之,环化的连接产物与多联体连接产物的比取决于两个参数:j和i。j是DNA分子的一个末端在同一分子的另一末端附近的有效浓度,j的数值是根据如下一种假设作出的:沉吟液中的DNA呈随机卷曲。这样,j与DNA分子的长度成反比(因为DNA越长,某一给定分子的两末端的越不可能相互作用),因此j对给定长度的DNA分子来说是一个常数,与DNA深度无关。j=[3/(3πlb0)]3/2其中l是DNA长度,以cm计,b是随机卷曲的DNA区段的长度。b的值以缓冲液的离子强度为转移,而后者可影响DNA的刚度。
i是溶液中所有互补末端的深度的测量值,对于具有自身互补粘端的双链dna而言,i=2NoMx10-3末端/ml这里No是阿佛伽德罗常数,M是DNA的摩尔浓度(单位:mol/L)。理论上,当j=i时,给定DNA分子的一个末端与同一分子的另一末端,以及与不同分子的末端相接触的可能性相等。因而在这样的条件下,在反应的初始阶段中,环状分子与多联体分子的生成速率相等。而当j>i时,有利于重新环化;当i>j,则有利于产生多联体。图1.9显示了DNA区段的大小与连接反应混合物中j:i之比分别为0.5、1、2和5时所需DNA浓度之间关系(Dugaiczyk等,1985)。现在考虑如下的连接反应混合物:其中除线状质粒之外,还含有带匹配末端的外源DNA片段。对于一个给定的连接混合物而言,产生单体环状重组基因组的效率不仅受反应中末端的绝对浓度影响,而且还受质粒和外源DNA末端的相对浓度的影响。当i是j的2-3倍(即末端的绝对浓度足以满足分子间连接的要求,而又不致引起大量寡聚体分子的形成时)外源DNA末端浓度的2倍时,有效重组体的产量可达到最大。这些条什下,连接反应终产物的大约40%都是由单体质粒与外源DNA所形成的嵌合体。当连接混合物中线性质粒的量恒定(j:i=3)而带匹配末端的外源DNA的量递增时,这种嵌合体在连接反应之末的理论产量。
涉及带粘端的线状磷酸化质粒DNA的连接反应应包含:
1)足量的载体DNA,以满足j:i>1和j:i<3。对一个职pUC18一般大小的质粒,这意味着连接反应中应含有载体DNA为20-60μg/ml。
2)末端浓度等于或稍高于载体DNA的外源DNA,如外源DNA浓度比载体低得多,在效连接产物的数量会很低,这样就很难别小部分带重组抽粒的转化菌落。这种情况下,可考虑采用一些步骤来减少带非重组质粒的背景菌落。如用磷酸酶处理线状质粒DNA或发迹克隆策略以便通过定向克隆的方法构建重组质粒。
(二)粘端连接
1)用适当的限制酶消化质粒和外源DNA。如有必要,可用凝胶电泳分离片段并(或)用碱性磷酸酶处理质粒DNA。通过酚:氯仿抽提和乙沉淀来纯化DNA,然后用TE(pH7.6)溶液使其浓度为100/ml。
2)按如下所述设立连接反应混合物:
a.将0.1μl载体DNA转移到无菌微量离心管中,加等摩尔量的外源DNA。
b.加水至7.5μl,于45℃加温5分钟以使重新退炎的粘端解链,将混合物冷却到0℃。
c.加入:10xT4噬菌体DNA连接酶缓冲液 1μl
T4噬菌体NDA连接酶 0.1Weiss单位
5mmol/L ATP 1μl
于16℃温育1-4小时
10xT4噬菌体DNA连接酶缓冲液
200mmol/L同Tris.Cl(pH7.6)
50mmol/K MgCl2
50mmol/L二硫苏糖醇
500μg/ml牛血清白蛋白(组分V.Sigma产品)(可用可不用)
该缓训液应分装成小份,贮存于-20℃。
另外,再设立两个对照反应,其中含有(1)只有质粒载体;(2)只有外源DNA片段。如果外源DNA量不足,每个连接反应可用50-100ng质粒DNA,并尽可能多加外源DNA,同时保持连接反应体积不超过10μl。可用至少3种不同方法来测定T4噬菌体DNA连接酶的活性。大多数制造厂商(除New England Biolabs公司外)现在都用Weiss等,11968)对该酶进行标化。1个Weiss单位是指在37℃下20分钏内催化1mmol32P从焦磷酸根置换到[γ,β-32P]ATP所需酶时,1个Weiss单位相当于0.2个用外切核酸酶耐受试验来定义的单位(Modrich和Lehman,1970)或者60个粘端单位(如New England Biolabs公司所定义)。因此,0.015Weiss单位的T4噬菌体DNA连接酶在16℃下30分钟内可使50%的λ噬菌体HindⅢ片段(5μg)得以连接。在本书中,T4噬菌体DNA连接酶一律用Weiss单位表示。\par 目前提供的T4噬菌体DNA连接酶均为浓溶液(1-5单位/μl),可用20mmol/L Tris.Cl(pH7.6)、60mmol/L KCl、5mmol/L二硫苏糖醇、500μg/ml牛血清白蛋白、50%甘稀释成100单位/ml的浓度置存。处于这种浓度并在这种缓冲液中的T4噬体DNA连接酶于-20℃保存3个月可保持稳定。
3)每个样品各取1-2μl转化大肠杆菌感受态细胞。
(三)平端DNA连接
T4噬菌体DNA连接酶不同于大肠杆菌DNA连接酶,它可以催化平端DNA片段的连接(Sgaramella和Khorana,1972;Sgaramella和Ehrlich,1978),由于DNA很容易成为平端,所以这是一个极为有用的酶学物性。有了这样的物性,才能使任何DNA分子彼此相连。然而,相对而言,平端连接是低效反应,它要求以下4个条件:
1)低浓度(0.5mmol/L)的ATP(Ferretti和Sgaranekka,1981)。
2)不存在亚精胺一类的多胺。
3)极高浓度的连接酶(50Weiss单位.ml)。
4)高浓度的平端。
1.凝聚剂
在反应混合物中加入一些可促进大分子群聚作用并可导致DNA分子凝聚成集体的物质,如聚乙二醇(Pheiffer和Zimmerman,1983;Zimmerman和Pheiffer,1983;ZimmermanT Harrison,1985)或氯化六氨全高钴(Rusche和Howard-Flanders,1985),可以使如何取得适当浓度的平端DNA的总是迎刃而解。在连接反应中,这些物质具有两作用:
1)它们可使平端DNA的连接速率加大1-3个数量级,因此可使连接反应在酶DNA浓度不高的条件下进行。
2)它们可以改变连接产物的分布,分子内连接受到抑制,所形成的连接产物一律是分子间连接的产物。这样,即使在有利于自身环化(j:i=10)的DNA浓度下,所有的DNA产物也将是线状多聚体。\par 在设立含凝聚剂的连接反应时,下列资料可供参考。
(1)聚乙二醇(PEG8000)
1)用去离子水配制的PEG8000贮存液(40%)分装成小份,冰冻保存,但加入连接反应混合物之前应将其融化并使其达到室温。在含15%PEG 8000的连接反应混合物中,对连接反刺激效应最为显着。除PEG 800和T4噬菌体DNA连接酶以外,其他所有连接混合物的组分应于0℃混合,然后加适当体积的PEG 8000(处于室温),混匀,加酶后于20℃进行温育。
2)连接混合物中含0.5mmol/L ATP和5mmol/L MgCl2时对连接反应的刺激效应最为显着,甚至ATP浓度略有增加或MgCl2浓度略有降低,都会严重降低刺激的强度(Pheiffer和Zimmerman,1983)。
3)浓度为15%的PEG 8000可刺激带粘端的DNA分子的连接效率提高至原来的10-100倍,反应的主产物是串联的多联体。
4)PEG 8000可刺激短至8个核苷酸的合成寡聚物的平端连接,在这一方面,它与氯化六氨合高钴有所不同。
(2)氯化六氨合高钴
1)氯化六氨合高钴可用水配成10mmol/L贮存液贮存于-20℃,它对连接反应的刺激具有高度的浓度信赖性。当连接反应混合物中盐深度为1.0-1.5μmol/L时,其刺激作用最大。氯化六氨合高钴可使平端连接的效率大约提高到原来的50W部,但只能使端连接的效率提高到原来的5倍(Rusche和Howard-Flanders,1985)。
2)在单价阳离子(30mmol/L KCl)存在下,它对平端连接仍有一定的刺激作用,但此时连接产物的分布有所改变。连接产物不再是清一色的分子间连接产物,相反,环状DNA将点尽优势。
3)与PEG 8000不同,氯化六氨合高钴不能显着提高合成寡核苷酸的连接速率。
(四)质粒载体中的快速克隆
质粒克隆中最慢的步骤是所需的外源DNA片段和相应质粒DNA区段的电泳纯化,下面的操作方案[由S.Michaelis(个人通讯)根据Struhl(1985)的方法修订而成]是从纯化的凝胶中回收琼脂糖块,熔化后直接进行质粒和外源DNA的连接。这一方法寻平端连接和粘端连接都同样奏效,但需大量的连接酶,而且效率要比标准操作方案约低一个数量级。
1)用适当的限制酶消化外源DNA,其量应足以产生约0.2μg的靶片段。反应体积应为20μl或更小。在另一管中,用相应的限制酶消化约0.5μg载体DNA,总反应体积为20μl或更小。如载体DNA带相同的端,应用磷酸处理如下:用限制酶消化完全后,加2.5μl 100mmol/L Tris.Cl(pH8.3)、10mmol/L ZnCl2,加0.25单位牛小肠碱性磷酸酶,于37℃温育30分钟。
2)通过琼脂糖凝胶电泳分离目标片段。务必用低熔点琼脂糖灌制凝胶,务必用含溴化乙锭(0.5μg/ml)的1xTAE作为电泳缓冲液而不是常规的0.5xTBE来配制凝胶并进行电泳。
3)在长波长紫外照射下检查凝胶,根据目标条带的相对荧光强度估计所含DNA的量(见附录E)。用刀片切出目标条带,尽可能少琼脂糖的体积(通常40-50μl)。将切下凝胶片分别放入作好标记的各个微量离心管中。
4)于70℃加热10-15分钏,使琼脂糖熔化。
5)合并熔化的小份凝胶并放到加温至37℃的中一管中,共终体积应不超过10μl,外源DNA与质粒载体的摩尔比应接近2:1。
用另外两个管设立两个对照连反应,一个只含质粒载体,另一个只含外源DNA片段。
6)将3个管于37℃温育5-10分钟,然后每管加10μl用冰预次的2xT4噬体DNA连接酶混合物,在琼脂糖凝固前,充他混匀各管内容物,于16℃温育12-16小时。
2xT4噬菌体DNA连接酶混合物可制备如下:
1mol/L Tris.Cl(pH7.6) 1.0μl
100mmol/L氯化镁 1.0μl
200mmol/L三硫苏糖醇 1.0μl
10mmol/L ATP 1.0μl
水 5.5μl
T4噬菌体DNA连接酶 1Weiss单位
混匀后放置于冰浴上。
7)连接反应行将结束时,取出贮存于-70的3管各200μl的冻存大肠杆菌感受态细胞
8)于70℃中热10-15分钟重新溶化连接混合物中的琼脂糖。
9)立即从每管连接混全物中取出5μl加到200μl大肠杆菌感受态细胞中,小心摇晃,快速地混匀内容物。从剩下每管连接混合物中分别再取5μl重复以上步骤,将转化混合物在冰浴上放置30分钟。
10)完成转化方案的其余各步 分子克隆化是在分子水平上提供一种纯化和扩增特定DNA片段的方法。常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA的许多拷贝,从而获得目的基因的扩增。克隆(clone,clon)一词源于希腊文Klon,原意为树木的枝条。在生物学中其名词含义系指一个细胞或个体以无性繁殖的方式产生一群细胞或一群个体,在不发生突变的情况下,具有完全相同的遗传性状,常称无性繁殖(细胞)系;其动词(clone,cloned,cloning)含义指在生物体外用重组技术将特定基因插入载体分子中,即分子克隆技术。将DNA片段(或基因)与载体DNA分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为DNA和cDNA克隆两类。cDNA克隆是以mRNA为原材料,经体外反转录合成互补的DNA(cDNA),再与载体DNA分子连接引入寄主细胞。每一cDNA反映一种mRNA的结构,cDNA克隆的分布也反映了mRNA的分布。特点是:①有些生物,如RNA病毒没有DNA,只能用cDNA克隆;②cDNA克隆易筛选,因为cDNA库中不包含非结构基因的克隆,而且每一cDNA克隆只含一个mRNA的信息;③cDNA能在细菌中表达。cDNA仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息。分子克隆化-方法 (1)DNA片段的制备:常用以下方法获得DNA片段:①用限制性核酸内切酶将高分子量DNA切成一定大小的DNA片段;②用物理方法(如超声波)取得DNA随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA反转录产生cDNA。(2)载体DNA的选择:①质粒:质粒是细菌染色体外遗传因子,DNA呈环状,大小为1-200千碱基对(kb)。在细胞中以游离超螺旋状存在,很容易制备。质粒DNA可通过转化引入寄主菌。在细胞中有两种状态,一是“紧密型”;二是“松驰型”。此外还应具有分子量小,易转化,有一至多个选择标记的特点。质粒型载体一般只能携带10kb以下的DNA片段,适用于构建原核生物基因文库,cDNA库和次级克隆。②噬菌体DNA:常用的λ噬菌体的DNA是双链,长约49kb,约含50个基因,其中50%的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA两端。中间是非必需区,进行改造后组建一系列具有不同特点的载体分子。λ载体系统最适用于构建真核生物基因文库和cDNA库。M13噬菌体是一种独特的载体系统,它只能侵袭具有F基因的大肠杆菌,但不裂解寄主菌。M13DNA(RF)在寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒。寄主菌可分泌含单链DNA的M13噬菌体,又能方便地制备单链DNA,用于DNA顺序分析、定点突变和核酸杂交。③拷斯(Cos)质粒:是一类带有噬菌体DNA粘性末端顺序的质粒DNA分子。是噬菌体-质粒混合物。此类载体分子容量大,可携带45kb的外源DNA片段。也能象一般质粒一样携带小片段DNA,直接转化寄主菌。这类载体常被用来构建高等生物基因文库。(3)DNA片段与载体连接:DNA分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA可产生相同的粘性末端。在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端。②平头末端连接,用物理方法制备的DNA往往是平头末端,有些酶也可产生平头末端。平头DNA片段可在某些DNA连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接。④人工接头分子连接,在平头DNA片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端。连接反应需注意载体DNA与DNA片段的比率。以λ或Cos质粒为载体时,形成线性多连体DNA分子,载体与DNA片段的比率高些为佳。以质粒为载体时,形成环状分子,比率常为1∶1。(4)引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA或噬菌体DNA(M13)与氯化钙处理过的宿主细胞混合置于冰上,待DNA被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重组分子的转化效率比非重组DNA低,原因是连接效率不高,有许多DNA分子无转化能力,而且重组后的DNA分子比原载体DNA分子大,转化困难。②转导,病毒类侵染宿主菌的过程称为转导,一般转导的效率比转化高。(5)克隆的选择:①直接筛选:有些载体带有可辨认的遗传标记,能有效地将重组分子与本底区分。例如:有些λ噬菌体携带外源基因后形成的噬菌斑就会从原来的混浊变为清亮;还有些载体分子携带外源基因后,形成的菌落或噬菌斑的颜色有明显变化,如蓝色变为无色;有些λ噬菌体能侵染甲菌而不能侵染乙菌,携带外源DNA片段后便能侵染乙菌,因此乙菌释放的噬菌体均为重组分子。②间接筛选:有引起载体分子带有一个或多个抗药性标记基因,当外源DNA插入到抗药基因区后,基因失活,抗性消失。如一质粒有A和B两个抗药性基因,当外源基因插入到B基因区后,便只抗A药而不抗B药。因此能在A药培养基上正常生长而不能在B药培养上生长的便是重组分子。③核酸杂交:广泛用于筛选含有特异DNA顺序的克隆。方法是将菌落或噬菌斑“印迹”到硝酸纤维膜等支持物上,变性后固定在原位,然后与标记的核酸探针进行杂交。阳性点的位置就是所需要的克隆。④免疫学方法:如果重组克隆能在宿主菌中表达,就可以用特异的蛋白质抗体为探针,进行原位杂交,选择特异的克隆。分子克隆化-重要意义 分子克隆技术是70年代才发展起来的,它的出现和应用开辟了分子遗传学研究的新领域,打开了人类了解、识别、分离和改造基因,创造新物种的大门。它的成就对于工业、农牧业和医学产生深远影响,并将为解决世界面临的能源、食品和环保三大危机开拓一条新的出路。在医学方面,利用分子克隆技术已将胰岛素,人、牛和鸡的生长激素、人的干扰素、松驰素、促红细胞生长激素、乙型肝炎病毒抗原和口蹄疫病毒抗原的基因制成工程菌,利用发酵工业进行了大规模生产。还可提高微生物本身所产生的蛋白酶类和抗生素类药物的产量。在基因治疗方面。通过遗传工程看到癌细胞具有逆转为正常细胞的可能性,例如SV40病毒引起的小鼠肿瘤细胞,在温度高时可逆转为正常细胞。为治疗半乳糖血症,用带有大肠杆菌乳糖操纵子的λ噬菌体去感染半乳糖血症患者的离体培养细胞,发现这种细胞的半乳糖苷酶达到了正常水平,并确实能代谢半乳糖。在工业生产方面,以分子克隆技术为主体的基因工程、细胞工程、酶工程和发酵工程,四者紧密联系、常综合利用。许多化学试剂如丙烯酸、己二酸、乙二醇、甲醇、环氧乙烷、乌头酸和水杨酸等都可能利用分子克隆技术得到产品。在环境保护方面,人们根据需要进行基因操作,将某种微生物的基因转入另一微生物,创造一些对有害物质降解能力更强的新菌种,以分解工业污水中的有毒物质。在食品工业方面,细菌可为人类生产有价值的蛋白质、氨基酸和糖等。在农业生产方面,植物遗传工程对提高农作物的产量、培育新的农作物品种提供了可能。有许多外源基因导入植物获得成功。
③ 典型的DNA重组实验通常包括哪些步骤
重组DNA技术主要包括四个步骤:提取目的基因、目的基因与运载体结合、将目的基因导入受体细胞、目的基因的检测和表达。
1、提取目的基因:
获取目的基因主要有两条途径:一条是从供体细胞的DNA中直接分离基因;另一条是人工合成基因。直接分离基因最常用的方法是“鸟枪法”,又叫“散弹射击法”。
2、目的基因与运载体结合:
目的基因与运载体结合的过程实际上是不同来源的DNA重新组合的过程,是基因工程的核心。
3、将目的基因导入受体细胞:
用人工方法使体外重组的DNA分子转移到受体细胞,主要是借鉴细菌或病毒侵染细胞的途径。目的基因导入受体细胞后,就可以随着受体细胞的繁殖而复制,由于细菌的繁殖速度非常快,在很短的时间内就能够获得大量的目的基因。
4、目的基因的检测和表达:
目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程。
(3)分子克隆方法步骤扩展阅读:
重组DNA技术是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序,也称为分子克隆技术。因此,供体、受体、载体是重组DNA技术的三大基本元件。
④ DNA 分子克隆主要环节
DNA分子克隆可以分为以下几个步骤:
(1)目的基因的分离、获取和制备
(2)目的基因与载体连接构建成重组载体分子
(3)重组DNA分子导入受体细胞
(4)外源目的基因阳性克隆的鉴定和筛选
(5)外源目的基因的表达
⑤ 分子克隆步骤
步骤:DNA片段的制备、载体的选择、片段与载体连接。在分子水平上提供一种纯化和扩增特定DNA片段的方法。
常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA的许多拷贝。
片段的制备:
常用以下方法获得DNA片段:①用限制性核酸内切酶将高分子量DNA切成一定大小的DNA片段②用物理方法(如超声波)取得DNA随机片段③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段④从mRNA反转录产生cDNA。
质粒DNA可通过转化引入寄主菌。在细胞中有两种状态,一是“紧密型”;二是“松弛型”。此外还应具有分子量小,易转化,有一至多个选择标记的特点。
以上内容参考分子克隆
⑥ 求分子克隆具体实验步骤一份~~多谢各位大侠啦~
分子克隆实验流程
第一天
一:目的片段的扩增(PCR)
PCR反应的基本成分包括:模板DNA(待扩增DNA)、引物、4种脱氧核苷酸(dNTPs)、DNA聚合酶和适宜的缓冲液。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的高温变性:模板DNA经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的低温退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的适温延伸:DNA模板--引物结合物在。
1.PCR(50ul)
ddH2O 37.5ul
10x buffer 5ul
MgCl2(25mmol) 3ul
dNTP (10mmol) 1ul
primer 1(10mmol) 1ul
primer 2(10mmol) 1ul
cDNA 1ul
Taq 0.5ul
PCR反应条件:
94℃ 5min(94℃ 30s . 55℃ 30s . 72℃ 45s)x30 72℃ 5min.4℃保温 或者
94℃ 5min (94℃ 30s . 64℃ 30s . 72℃ 45s)x10 (94℃ 30s . 66℃ 30s . 72℃ 45s)x10(94℃ 30s . 68℃ 30s . 72℃ 45s)x10 72℃ 5min.4℃保温
注意:当所要扩增的目的片段较大时需要适当的增加延伸时间(一般产物越长,需要的时间越长:1分钟/1kb)
2.琼脂糖凝胶电泳检测:取5ul样品+5ul DNA Loading buffer混匀上样,150V恒压电泳20-30min,保存电泳图片。(琼脂糖凝胶的配制:1xTAE缓冲液+琼脂糖 加热至琼脂糖全部溶解然后冷却至60℃以下加入EB混匀倒板。其中琼脂糖含量为1g/100ml,EB含量为0.1ul/ml)
注:琼脂糖凝胶电泳检测如果有杂带侧需要割胶回收目的片段。
3.PCR产物纯化:根据PCR产物回收试剂盒上流程回收PCR产物,最后用45ddH2O洗脱-20℃保存或下一步实验.
4.PCR产物酶切(50ul)
PCR纯化产物 43ul
10xBuffer Tango 5ul
E1 1ul
E2 1ul
酶切反应条件:37℃反应过夜或者37℃反应3-4h。
. PCR产物酶切纯化:根据PCR产物回收试剂盒上流程回收PCR产物,最后用25-30ddH2O洗脱-20℃保存或下一步实验.
琼脂糖凝胶电泳检测:取2-5ul样品+5ul DNA Loading buffer混匀上样,150V恒压电泳20-30min,保存电泳图片。以确保回收到目的片段。
二.载体的制备
1.质粒DNA的制备:用柱式质粒DNA小量试剂盒抽提我们所要的载体质粒。
2.载体酶切(100ul)
质粒DNA 2ug
10xBuffer Tango 10ul
E1 2ul
E2 2ul
ddH2O 补足至100ul
反应条件:一般pGEX-4T 37℃水浴3-4h,pET系列37℃水浴过夜。
3. 琼脂糖凝胶电泳检测:取5ul样品+5ul DNA Loading buffer混匀上样,150V恒压电泳20-30min,同时取200ng左右没有酶切的质粒做对照,保存电泳图片。(琼脂糖凝胶的配制:1xTAE缓冲液+琼脂糖 加热至琼脂糖全部溶解然后冷却至60℃以下加入EB混匀倒板。其中琼脂糖含量为1g/100ml,EB含量为0.1ul/ml)
4.酶切产物纯化:根据PCR产物回收试剂盒上流程回收酶切产物,最后用20-30ul ddH2O洗脱-20℃保存或下一步实验.
第二天
三.外源DNA片段在质粒载体中的克隆
1.外源DNA片段与质粒载体的连接(10ul)
DNA片段 6ul
载体 2ul
T4 DNA Ligase 1ul
Buf T4 DNA Ligase 1ul
反应条件:22℃水浴3-4h或者16℃或4℃水浴过夜。
一般目的片段:载体摩尔比约为3:1,但是在这里我们通常是按体积比。
2.连接产物转化
取全部连接产物加入到不少于5-7倍体积感受态细胞溶液中,冰浴20min,42℃热激90s后静置与冰浴中3-5min加入500-800ul(一般800)LB或SOB培养基,37℃ 200rmp恒温培养0.5-1h。4000rmp离心1min弃上清同时保留100-200ul混匀菌体沉淀后均匀涂布抗性平板上。37℃恒温箱培养过夜。
质粒转化
取质粒1ul或50-100ng加入50-70ul所需的感受态细胞溶液中,冰浴20min,42℃热激90s后静置与冰浴中3-5min加入500-800ul(一般800)LB或SOB培养基,37℃ 200rmp恒温培养0.5-1h。取100-200ul菌体均匀涂布抗性平板上。37℃恒温箱培养过夜。
注:1一定要区分质粒和连接产物转化的不同,不要理所当然。
2根据实验要求选择所需要的感受态。
3在选择抗性平板的时候要根据所选载体和感受态两个方面确定。
第三天
收集涂布的抗性平板检查菌落生长情况4℃保存待下一步实验;筛选鉴定或酶切鉴定
筛选鉴定
菌落 PCR(25ul)
ddH2O 19.2ul
10x buffer 2.5ul
MgCl2(25mmol) 1.5ul
dNTP (10mmol) 0.5ul
primer 1(10mmol) 0.5ul
primer 2(10mmol) 0.5ul
Taq 0.3ul
模板为单菌落
PCR反应条件:
94℃ 5min(94℃ 30s . 55℃ 30s . 72℃ 45s)x30 72℃ 5min.4℃保温 或者
94℃ 5min (94℃ 30s . 64℃ 30s . 72℃ 45s)x10 (94℃ 30s . 66℃ 30s . 72℃ 45s)x10(94℃ 30s . 68℃ 30s . 72℃ 45s)x10 72℃ 5min.4℃保温
注:1一般一个项目要挑选5个单菌落做菌落PCR
2在以菌落为模板时要事先准备相应抗性平板,用枪头挑选菌落时要先在事先准备的相应平板上划线标记好顺序再将枪头放入上述反应体系中搅匀一下。
3该PCR 的primer 为通用primer 所以在原来目的片段的大小上加上100-200bp。
琼脂糖凝胶电泳检测:取5ul样品+5ul DNA Loading buffer混匀上样,150V恒压电泳20-30min,保存电泳图片。根据大小判断该菌落是否正确。下班前挑取(在划线的板子上)筛选正确的菌体接种到5ml 含相应抗性的LB培养基37℃ 200rmp培养过夜。
⑦ 分子克隆知识
NLS 具有与核输出信号 nuclear export signal (NES) 相反的功能,后者针对细胞核外的蛋白质。**
Tm值与退火温度:
PCR产物纯化的方法 在PCR扩增完成后,反应体系中除了DNA片段,还存在离子、dNTP、引物及聚合酶等物质,这些物质会对后续的实验(克隆、测序等)产生不利的影响,需要对产物进行纯化回收。 回收DNA片段有两种途径,即直接回收和从凝胶中回收,每种纯化途径都有相对应的试剂盒。
在 PCR 扩增完成后进行琼脂糖凝胶电泳检测,在条带单一无其他杂带的情况下,可以用产物纯化试剂盒对 PCR 扩增产物直接进行纯化。目前市面上的产物纯化试剂盒大多是利用吸附柱的方法,其实验过程为“吸附-洗杂-洗脱”:将 PCR 产物置于 DNA 纯化柱中,产物中 DNA 片段会吸附于 DNA纯化柱上,利用 wash buffer 通过一系列快速漂洗-离心的步骤,将引物、核苷酸、蛋白、酶等杂质去除(洗杂需重复多次以尽可能的洗去杂质,提高产物纯度),最后用洗脱液将 DNA 片段洗脱。
如果电泳检测结果存在非特异性条带,则需要通过切胶将目的条带分离出来,随后利用胶回收试剂盒对凝胶回收纯化。凝胶回收纯化与产物直接纯化相比多了一个溶胶的过程,两者纯化原理基本相同。 产物直接纯化与凝胶回收纯化区别产物直接纯化的回收率比胶回收高,但只适用于电泳结果为单一条带的情况。凝胶回收纯化需要先跑胶然后将目的条带切胶回收,纯化产物更纯净。
PCR 产物纯化回收有两个重要的技术指标:纯度和回收率。回收率不理想会使工作量大大的增加,
如果质粒DNA打算用作PCR模板,建议将其用作线性DNA。圆形质粒大多具有超螺旋结构,其目的序列不易被引物和聚合酶获得。(If the plasmid DNA is intended for use as a PCR template, it is recommended to use it as a linear DNA. A circular plasmid mostly has a supercoiled conformation, where the target sequence is less accessible for primers and for polymerase.)
普通taq聚合酶:
只有5’-3’端聚合酶活性和5’-3’端外切酶活性。
高保真taq聚合酶:
还有3’-5’端外切酶活性,可以进行矫正。
因为TAE缓冲液的pH约为8.0,而DNA分子在pH为8.0时,磷酸基团全部解离,而碱基几乎不解离,从而使DNA分子带上负电荷,在电场的作用下会向正极移动 总结2:胶染料(Gelstain)和上样缓冲液(10x loading buffer)
1、胶染料作用:对核酸进行染色,使核酸分子在紫外光照射下能够被检测到。
2、上样缓冲液:
①溴酚蓝:可以指示电泳进度,当溴酚蓝染料移动到距离凝胶前沿1~2cm处停止电泳;②甘油、蔗糖:增加样品密度,使样品沉入胶孔。
Gibson无缝连接技术:
poly(A) tail:真核生物mRNA的3’端都有一段) ,这种尾巴不由基因编码,而是在转录后加到mRNA上的。加尾过程受位于终止密码3’端的加尾信号序列所控制。 在结构基因的最后一个外显子中有一个保守的AATAAA序列,此位点下游有一段GT丰富区或T丰富区,这两部分序列共同构成poly(A)加尾信号。
哺乳动物细胞表达质粒主要是用于转录出mRNA, 常用的转录终止子有 SV40, hGH, BGH, 和rbGlob ,同时包含有AAUAAA基序促进聚腺苷酸化和转录终止。除了上面列出的, SV40 late polyA 和 rbGlob polyA 被认为可以更加有效的终止转录。
有一点特别需要注意的是,哺乳动物细胞的 poly(A) 信号和病毒包装系统的联合使用可能会降低病毒滴度,延长转录本的寿命,所以处理的时候需要谨慎一点。因为这个原因,病毒载体通常会使用其他非poly(A)的转录本稳定元件和出核元件,如 WPRE和CTE 或者使用其他弱的poly(A)信号,如 BGH 。
聚腺苷酸化一般认为是真核细胞特有的加工过程,但是原核细胞中它也会在RNA产物的末尾加上聚腺苷酸。与真核细胞不同的是,在真核细胞中poly(A)通常加在特定的poly(A)信号位点处,而在原核细胞中这个位点不是特异的,比较随机。poly(A)尾巴会加快RNA的降解,这一点与真核细胞也是不同的。由于加poly(A)尾没有特异性,所以poly(A)尾通常被认为是用来调节细胞内的RNA浓度水平,并作为一种质量控制机制来清楚错误折叠的RNA。