‘壹’ 矿石在哪检验成分
据了解,矿石成分化验目前来说比较困难,很多家检测机构都不能够分析出来,但是英格尔技术买了大量的进口设备,成功了解决这个难题。以后会有越来越多的检测实验室从事成分分析的,矿石成分检测也会越来越方便。
‘贰’ 任务了解矿物鉴定的常用方法
一、鉴定矿物的化学方法
矿物鉴定的化学方法包括简易化学分析和化学全分析。
(一)简易化学分析法
简易化学分析法,就是以少数几种药品,通过简便的试验操作,能迅速定性地检验出样品 (待定矿物)所含的主要化学成分,达到鉴定矿物的目的。常用的有斑点法、显微化学分析法及珠球反应等。
1.斑点法
这一方法是将少量待定矿物的粉末溶于溶剂 (水或酸)中,使矿物中的元素呈离子状态,然后加微量试剂于溶液中,根据反应的颜色来确定元素的种类。这一试验可在白瓷板、玻璃板或滤纸上进行。此法对金属硫化物及氧化物的效果较好。
现以测试黄铁矿中是否含镍 (Ni)为例,说明斑点法的具体做法。将少许矿粉置玻璃板上,加一滴HNO3并加热蒸干,如此反复几次,以便溶解进行完全,稍冷后加一滴氨水使溶液呈碱性,并用滤纸吸取,再在滤纸上加一滴2%的二甲基乙二醛肟酒精溶液(镍试剂),若出现粉红色斑点 (二甲基乙二醛镍),表明矿物中确有镍的存在。因此该矿物应为含镍黄铁矿。
2.显微化学分析法
该法也是先将矿物制成溶液,从中吸取一滴置载玻片上,然后加适当的试剂,在显微镜下观察反应沉淀物的晶形和颜色等特征,即可鉴定出矿物所含的元素。
这种方法用来区别某些相似矿物是很有效的,例如呈致密块状的白钨矿Ca[WO4]与重晶石Ba[SO4]相似,此时只要在前者的溶液中滴一滴1∶3H2SO4,如果出现石膏结晶(无色透明,常有燕尾双晶),表明要鉴定的矿物为白钨矿而不是重晶石。
3.珠球反应
这是测定变价金属元素的一种灵敏而简易的方法。测定时将固定在玻璃棒上的铂丝之前端弯成一直径约为1mm的小圆圈,然后放入氧化焰中加热。清污后趁热粘上硼砂 (或磷盐),再放入氧化焰中煅烧,如此反复几次,直到硼砂熔成无色透明的小球为止。此时即可将灼热的珠球粘上疑为含某种变价元素的矿物粉末 (注意!一定要少),然后将珠球先后分别送入氧化焰及还原焰中煅烧,使所含元素发生氧化、还原反应,借反应后得到的高价态和低价态离子的颜色来判定为何种元素。例如在氧比焰中珠球为红紫色,放入还原焰中煅烧一段时间后变为无色时,表明所试样品应为含锰矿物,具体矿物的名称可根据其他特征确定之。
(二)化学全分析
化学全分析包括定性和定量的系统化学分析。进行这一分析时需要较为繁多的设备和标准试剂,需要较纯 (98%以上)和较多的样品,需要较高的技术和较长的时间。因此,这一方法是很不经济的,除非在研究矿物新种和亚种的详细成分、组成可变矿物的成分变化规律以及矿床的工业评价时才采用。通常在使用这一方法之前,必须进行光谱分析,得出分析结果以备参考。
二、鉴定矿物的物理方法
矿物鉴定的物理方法是以物理学原理为基础,借助各种仪器测定矿物的各种物理性质来鉴定矿物。主要方法有:
1.偏光显微镜和反光显微镜鉴定法
偏光显微镜鉴定方法是根据晶体的均一性和异向性,并利用晶体的光学性质而鉴定矿物的方法。应用这种方法时,须将矿物、岩石磨制成薄片,在透射光作用下,观察和测定矿物的晶形、解理和各项光学性质 (颜色、多色性、突起、干涉色、折射率、双折射、消光类型、消光角、延性符合以及轴性、光性符号等)。
反光显微镜 (也称矿相显微镜)主要用以观察和测定不透明矿物 (金属矿物)的光学性质 (矿物的反射率、双反射率、反射色、反射多色性、内反射等),以确定矿石矿物成分、矿石结构、构造及矿床成因方面的问题。
2.电子显微镜研究法
电子显微镜研究法是一种适宜于研究粒度在1μm以下的微粒矿物的方法,尤以研究粒度小于5μm的具有高分散度的黏土矿物最为有效。可分为扫描电子显微镜和透射电子显微镜两种方法。
黏土类矿物由于颗粒极细 (一般2μm左右),常呈分散状态,研究用的样品需用悬浮法进行制备,待干燥后,置于具有超高放大倍数的电子显微镜下,在真空中使通过聚焦系统的电子光束照射样品,可在荧光屏上显出放大数十万倍甚至百万倍的矿物图像,据此以研究各种细分散矿物的晶形轮廓、晶面特征、连晶形态等,用此来区别矿物和研究它们的成因。
此外,超高压电子显微镜发出的强力电子束能透过矿物晶体,这就使得人们长期以来梦寐以求的直接观察晶体结构和晶体缺陷的愿望得到实现。
3.X射线分析法
X射线分析法是基于X射线的波长与结晶矿物内部质点间的距离相近,属于同一个数量级(Å),当X射线进入矿物晶体后可以产生衍射。由于每一种矿物都有自己独特的化学组成和晶体结构,其衍射图样也各有其独有的特征。对这种图样进行分析计算,就可以鉴定结晶矿物的相 (每个矿物种就是一个相),并确定它内部原子 (或离子)间的距离和排列方式。因此,X射线分析已成为研究晶体结构和进行物相分析的最有效方法。
4.光谱分析
光谱分析法的理论基础是,各种化学元素在受到高温光源 (电弧或电火花)激发时,都能发射出它们各自的特征谱线,经棱镜或光栅分光测定后,既可根据样品所出现的特征谱线进行定性分析,也可按谱线的强度进行定量分析。这一方法是目前测定矿物化学成分时普遍采用的一种分析手段。其主要优点是样品用量少 (数毫克),能迅速准确地测定矿物中的金属阳离子,特别是对于稀有元素也能获得良好的结果。缺点是仪器复杂昂贵,并需较好的工作条件。
5.电子探针分析
电子探针分析是一种最适用于测定微小矿物和包体成分的定性、定量以及稀有元素、贵金属元素赋存状态的方法。其测定元素的范围由从原子序数为5的硼直到92的铀。仪器主要由探针、自动记录系统及真空泵等部分组成,探针部分相当于一个X射线管,即由阴极发出来的高达35~50kV的高速电子流经电磁透镜聚焦成极细小 (最小可达0.3μm)的电子束——探针,直接打到作为阳极的样品上,此时,由样品内所含元素发生的初级X射线 (包括连续谱和特征谱),经衍射晶体分光后,由多道记数管同时测定若干元素的特征X射线的强度,并用内标法或外标法算出元素含量。
6.红外吸收光谱
简称红外光谱,是在红外线的照射下引起分子中振动能级 (电偶极矩)的跃迁而产生的一种吸收光谱。由于被吸收的特征频率取决于组成物质的原子量、键力以及分子中原子分布的几何特点,即取决于物质的化学组成及内部结构,因此每一种矿物都有自己的特征吸收谱,包括谱带位置、谱带数目、带宽及吸收强度等。
红外吸收光谱分析样品一般需要1.5mg,最常使用的制样方法是压片法,即把试样与KBr一起研细,压成小圆片,然后放在仪器内测试。
目前红外吸收光谱分析在矿物学研究中已成为一种重要的手段。根据光谱中吸收峰的位置和形状可以推断未知矿物的结构,是X射线衍射分析的重要辅助方法,依照特征峰的吸收强度来测定混入物中各组分的含量。此外,红外光谱分析对考察矿物中水的存在形式、配阴离子团、类质同象混入物的细微变化和矿物相变等方面都是一种有效的手段。
三、鉴定矿物的物理-化学方法
当前用于矿物鉴定最主要的物理-化学方法有热分析、极谱分析及电渗分析等。其中,热分析是一种较为普遍的方法,几乎适用于各类矿物,特别是对黏土矿物,以及碳酸盐、硫酸盐、氢氧化物矿物的鉴定最为有效。
热分析法是根据矿物在不同温度下所发生的脱水、分解、氧化、同质多象转变等热效应特征,来鉴定和研究矿物的一种方法。它包括热重分析和差热分析。
1.热重分析
热重分析是测定矿物在加热过程中的质量变化来研究矿物的一种方法。由于大多数矿物在加热时因脱水而失去一部分质量,故又称失重分析或脱水试验。用热天平来测定矿物在不同温度下所失去的质量而获得热重曲线。曲线的形式决定于水在矿物中的赋存形式和在晶体结构中的存在位置。不同的含水矿物具有不同的脱水曲线。
这一方法只限于鉴定、研究含水矿物。
2.差热分析
矿物在连续地加热过程中,伴随物理—化学变化而产生吸热或放热效应。不同的矿物出现热效应时的温度和热效应的强度是互不相同的,而对同种矿物来说,只要实验条件相同,则总是基本固定的。因此,只要准确地测定了热效应出现时的温度和热效应的强度,并和已知资料进行对比,就能对矿物做出定性和定量的分析。
差热分析法的具体工作过程是,将试样粉末与中性体 (在加热过程中不产生热效应的物质,通常用煅烧过的Al2O3)粉末分别装入样品容器,然后同时送入一高温炉中加热。
由于中性体是不发生任何热效应的物质,所以在加热过程中,当试样发生吸热或放热效应时,其温度将低于或高于中性体。此时,插在它们中间的一对反接的热电偶 (铂-铑-铂热电偶)将把两者之间的温度差转换成温差电动势,并借光电反射检流计或电子电位差计记录成差热曲线。
图1-1中的实线曲线为高岭石的差热曲线,其横坐标表示加热温度 (℃),纵坐标表示发生热效应时样品与中性体的温度差 (ΔT)。高岭石的差热曲线特点是:在580℃时,由于结构水 (OH)-的失去和晶格的破坏而出现一个大的吸热谷,980℃时,因新结晶成γ-Al2O3,而显出一个尖锐的放热峰。
图1-1 高岭石差热曲线(1)和脱水曲线(2)
差热分析的优点是样品用量少 (100~200mg),分析时间短 (90min以下),而且设备简单,可以自行装置。缺点是许多矿物的热效应数据近似,尤其当混合样品不能分离时,就会互相干扰,从而使鉴定工作复杂化。为了排除这种干扰,应与其他方法 (特别是X射线分析)配合使用。
对非专业鉴定人员而言,主要是根据工作的目的、要求和具体条件,正确地选择适当而有效的测试方法 (表1-1),按送样要求进行加工,并正确地使用测试结果。
表1-1 矿物鉴定方法的选择
续表
以上介绍的是目前最常使用的方法,其他方法还很多,如中子活化分析、核磁共振、顺磁共振、穆斯堡尔效应、包裹体研究、稳定同位素研究等,需要时可查阅专门资料。
学习指导
通过学习情境的学习了解矿物鉴定的基本方法,目的是为了我们在今后工作中知道怎样去鉴定矿物,并不要求我们掌握所有的鉴定方法,目前只需要掌握肉眼鉴定和简易化学试验方法即可,但要知道鉴定矿物的一般步骤、正确选择鉴定方法。
练习与思考
1.名词解释
矿物 矿物鉴定 肉眼鉴定 仪器鉴定
2.选择题
(1)确定矿物的外部特征采用哪种方法? ()
A.肉眼鉴定法
B.显微镜
C.化学分析
D.核磁共振
(2)测定矿物的化学成分用哪种方法? ()
A.均一法
B.光谱分析
C.热分析
D.质谱分析
(3)测定矿物某种物性或晶体结构数据采用哪种方法? ()
A.冷冻法
B.简易化学分析法
C.电子显微镜
D.中子活化分析
3.简答题
(1)怎样鉴定矿物? 怎样选择矿物鉴定方法?
(2)肉眼鉴定矿物时应注意的问题?
‘叁’ 矿物成分分析方法
矿物化学成分的分析方法有常规化学分析,电子探针分析,原子吸收光谱、激光光谱、X射线荧光光谱,等离子光谱和极谱分析,中子活化分析及等离子质谱分析等。
在选择成分分析方法时,应注意检测下限和精密度。
检测下限(又称相对灵敏度)指分析方法在某一确定条件下能够可靠地检测出样品中元素的最低含量。显然,检测下限与不同的分析方法或同一分析方法使用不同的分析程序有关。
精密度(又称再现性或重现性)指某一样品在相同条件下多次观测,各数据彼此接近的程度。通常用两次分析值(C1和C2)的相对误差来衡量分析数值的精密度。即
相对误差RE=
常量元素(含量大于或等于0.1%)分析中,根据要求达到分析相对误差的大小,对分析数据的精密度作如下划分:
定量分析:RE<±5%近似定量分析:RE<±(5~20)%
半定量分析:RE=(20~50)%
定性分析:RE>±100%
定量分析要求主要是对常量组分测定而言的,微量组分测定要达到小于±5%的相对误差则比较困难。
1.化学分析法
化学分析方法是以化学反应定律为基础,对样品的化学组成进行定性和定量的系统分析。由于化学分析通常是在溶液中进行化学反应的分析方法,故又称“湿法分析”。它包括重量法、容量法和比色法。前两者是经典的分析方法,检测下限较高,只适用于常量组分的测定;比色法由于应用了分离、富集技术及高灵敏显色剂,可用于部分微量元素的测定。
化学分析法的特点是精度高,但周期长,样品用量较大,不适宜大量样品快速分析。
2.电子探针分析法
电子探针X射线显微分析仪,简称电子探针(EMPA)。它是通过聚焦得很细的高能量电子束(1μm左右)轰击样品表面,用X射线分光谱仪测量其产生的特征X射线的波长与强度,或用半导体探测器的能量色散方法,对样品上被测的微小区域所含的元素进行定性和定量分析。样品无论是颗粒,还是薄片、光片,都可以进行非破坏性的分析。
电子探针的主体由电子光学系统、光学显微镜、X射线分光谱仪和图像显示系统4大部分组成。此外,还配有真空系统、自动记录系统及样品台等(图24-3)。其中测定样品成分的可分为X射线波谱仪和X射线能谱仪,过去电子探针只采用前者,因为它分辨率高,精度高,但速度慢。现代新型电子探针一般两者皆用。能谱分析方法可做多元素的快速定性和定量分析,但精度较前者差。
图24-3 电子探针结构示意图
电子探针可测量元素的范围为4Be—92U。灵敏度按统计观点估计达十万分之三,实际上,其相对灵敏度接近万分之一至万分之五。一般分析区内某元素的含量达10-14就可感知。测定直径一般最小为1μm,最大为500μm。它不仅能定点作定性或定量分析,还可以作线扫描和面扫描来研究元素的含量和存在形式。线扫描是电子束沿直线方向扫描,测定几种元素在该直线方向上相对浓度的变化(称浓度分布曲线)。面扫描是电子束在样品表面扫描,即可在荧屏上直接观察并拍摄到该元素的种类、分布和含量(照片中白色亮点的稠密程度表示元素的浓度)。目前,电子探针已卓有成效地应用于矿物的成分分析、鉴定和研究等各个方面。
值得注意的是,电子探针一个点的分析值只能代表该微区的成分,并不是整个矿物颗粒的成分,更不能用来代表某工作区该矿物的总体成分。因为在矿物中元素的分布是不均一的,不能“以点代面”。对微米级不均匀的矿物,只有采用适当的多点测量,以重现率高的点为依据讨论矿物成分的特征和变化,才能得到较可靠的认识。此外,电子探针对查明混入元素在矿物中存在形式的能力是有限的。它能分析已构成足够大小的矿物相的机械混入物,而对以类质同象混入物形式存在的元素,电子探针是无能为力的。要解决这个问题,必须用综合的手段。应当指出,根据在电子探针面扫描图像上,将分布均匀的混入元素视为类质同象混入物的依据是不够充分的,因为混入元素的均匀分布,并不都是因为呈类质同象形式所引起,还可以由固溶体分解而高度离散所致。而现代电子探针的分辨率(约7.0μm),还不能区分它们,需要用高分辨的透射电镜(分辨率达0.5~1nm,相当于2~3个单位晶胞)、红外光谱分析、X射线结构分析等方法相互配合,才能解决混入元素在矿物中存在的形式问题。
电子探针分析法对发现和鉴定新矿物种属起了重要的作用。这是由于电子探针在微区测试方面具有特效,因而对于难以分选的细小矿物进行鉴定和分析提供了有利条件。如对一些细微的铂族元素矿物、细小硫化物、硒化物、碲化物的鉴定都很有成效。
电子探针也有它的局限性。例如,它不能直接测定水(H2O,OH)的含量;对Fe只能测定总含量,不能分别测出Fe2+和Fe3+含量等。
电子探针分析的样品必须是导电体。若试样为不导电物质,则需将样品置于真空喷涂装置上涂上一薄层导电物质(碳膜或金膜),但这样往往会产生难于避免的分析误差,同时也影响正确寻找预定的分析位置。样品表面必需尽量平坦和光滑,未经磨光的样品最多只能取得定性分析资料,因为样品表面不平,会导致电子激发样品产生的X射线被样品凸起部分所阻挡,所得X射线强度会减低,影响分析的精度。
3.光谱类分析法
光谱类分析法是应用各种光谱仪检测样品中元素含量的方法。此类分析方法很多,目前我国以使用发射光谱分析(ES)、原子吸收光谱分析(AA)、X射线荧光光谱分析(XRF)和电感耦合等离子发射光谱(ICP)、原子荧光光谱(AF)、极谱(POL)等较为普遍。它们的特点是灵敏、快速、检测下限低、样品用量少。适于检测样品中的微量元素,对含量大于3%者精度不够高。
光谱分析的基本原理概括起来是:利用某种试剂或能量(热、电、粒子能等)对样品施加作用使之发生反应,如产生颜色、发光、产生电位或电流或发射粒子等,再用光电池、敏感膜、闪烁计数器等敏感元件接收这些反应讯号,经电路放大、运算,显示成肉眼可见的讯号。感光板、表头、数字显示器、荧光屏或打印机等都是显示输出装置。光谱分析的流程见图24-4。
图24-4 光谱分析流程图
4.X射线光电子能谱分析法
X射线光电子能谱仪由激发源、能量分析器和电子检测器(探测器)三部分组成。其工作原理是:当具有一定能量hv的入射光子与样品中的原子相互作用时,单个光子把全部能量交给原子中某壳层上一个受束缚的电子,这个电子因此获得能量hv。如果hv大于该电子的结合能Eb,该电子就将脱离原来的能级。若还有多余能量可以使电子克服功函数ϕ,电子将从原子中发射出去,成为自由电子。由入射光子与原子作用产生光电子的过程称光电效应。只有固体表面产生的光电子能逸出并被探测到。所以光电子能谱所获得的是固体表面的信息(0.5~5nm)。
光电过程存在如下的能量关系:
hv=Eb+Ek+Er
式中:Er为原子的反冲能;Eb为电子结合能;Ek为发射光电子的动能。Er与X射线源及受激原子的原子序数有关(随原子序数的增大而减小),一般都很小,从而可以忽略不计。Ek可实际测得,hv为X射线的能量,是已知的。因此从上式可算出电子在原子中各能级的结合能(结合能是指一束缚电子从所在能级转移到不受原子核吸引并处于最低能态时所需克服的能量)。光电子能谱就是通过对结合能的计算并研究其变化规律来了解被测样品的元素成分的。
X射线光电子能谱仪可用于测定固、液、气体样品除H以外的全部元素,样品用量少(10-8g),灵敏度高达10-18g,相对精度为1%,特别适于做痕量元素的分析,而且一次实验可以完成全部或大部分元素的测定,还可选择不同的X射线源,求得不同电子轨道上的电子结合能,研究化合物的化学键和电荷分布等,还可测定同一种元素的不同种价态的含量。
5.电感耦合等离子质谱分析法
电感耦合等离子体质谱(Inctively Coupled Plasma Mass Spectrometry,简称ICP-MS)技术是1980年代发展起来的、将等离子体的高温(8000K)电离特性与四极杆质谱计的灵敏快速扫描优点相结合而形成的一种新型的元素和同位素分析技术。
ICP-MS的工作原理及其分析特性:在 ICP-MS 中,等离子体作为质谱的高温离子源(7000K),样品在通道中进行蒸发、解离、原子化、电离等过程。离子通过样品锥接口和离子传输系统进入高真空的四极快速扫描质谱仪,通过高速顺序扫描分离测定所有离子,扫描元素质量数范围从6到260,并通过高速双通道分离后的离子进行检测,直接测定的浓度范围从10-12到10-6。因此,与传统无机分析技术相比,ICP-MS技术提供了最低的检出限、最宽的可测浓度范围,具有干扰最少、分析精密度高、分析速度快、可进行多元素同时测定以及可提供精确的同位素信息等分析特性。
ICP-MS的谱线简单,检测模式灵活多样,主要应用有:①通过谱线的质荷之比进行定性分析;②通过谱线全扫描测定所有元素的大致浓度范围,即半定量分析,不需要标准溶液,多数元素测定误差小于20%;③用标准溶液校正而进行定量分析,这是在日常分析工作中应用最为广泛的功能;④利用ICP-MS测定同位素比值。
在矿物研究方面的应用有:矿物稀土、稀散以及痕量、超痕量元素分析;铂族元素分析;溴、碘等非金属元素的分析;同位素比值分析;激光剥蚀固体微区分析等。
6.穆斯堡尔谱
穆斯堡尔谱为一种核γ射线共振吸收谱。产生这种效应的约有40多种元素、70多种同位素。目前得到广泛应用的是57Fe和119Sn。
图24-5 某透闪石石棉的穆斯堡尔图谱
由于地壳中铁的分布相当广泛,很多矿物都含铁,因此铁的穆斯堡尔谱已成为矿物学研究中一个重要课题。应用这种方法可以测定晶体结构中铁的氧化态、配位以及在不同位置上的分布等。图24-5 为某一透闪石石棉的穆斯堡尔谱,图中显示了 Fe2+离子在两种八面体配位位置M1和M2中的分配情况,AA′双峰表示M1位的Fe2+,CC′双峰表示M2位的Fe2+。
穆斯堡尔谱技术可鉴定铁、锡矿物种类;确定矿物中铁、锡的氧化态(如 Fe3+,Fe2+含量及比值)、电子组态(如低自旋、高自旋)、配位状态及化学键;确定铁、锡离子的有序度、类质同象置换及含铁、锡矿物的同质多象变体;进而探讨不同温压下矿物的相转变过程。
穆斯堡尔技术目前还不太成熟,通常要求低温工作条件,可测的元素种类不多,谱线解释理论也不够完善,但却是矿物学研究中一个很有远景的新技术。
‘肆’ 矿石检测用什么方法
矿石是指可从中提取有用组分或其本身具有某种可被利用的性能的矿物集合体。可分为金属矿物、非金属矿物。
矿石检测的方法有:物相分析法、岩石全分析、粘土分析法、化学分析法、光薄片鉴定法、岩石鉴定等等。