❶ 设计6个测汽车启动过程的加速度实验方案及方法原理
1,单摆法,测量启动时单摆和树立方向的夹角,就可以得到加速度。
2,用一根弹性系数已知的弹簧,连接一个质量一直的铁球,水平放置在车内, 测量加速时弹簧的身长量就可以算出加速度
3,用弹簧秤连接一个质量已知的铁球,水平放置在车内,加速时读出示数,计算。
4,放一杯水在车内,测量加速是水面与水平的夹角,计算(与单摆同哩)
5 测量出两段相等时间内的路程(车上一般有行程表),计算。
6,直接读出两个时刻的速度(速度表),除以之间的时间间隔。
❷ 怎样测量物体的加速度
用刻度尺测出相同时间间隔T内物体(秒表读数,如1秒)的位移,s1、s2、s3、s4……
有△S=s2-s1=s3-s2=s4-s3=aT².(加速度为单位时间内位移的改变,就是单位时间内改变△S,对于匀加速直线运动,△S不变)
得a=△S/T² (如果T为1秒,a=△S)
❸ 如何测量重力加速度
利用万有引力定律
高一第四章天体运动公式即可得出
方法如下
1.用天平测量质量m,再用弹簧测力计测出重量G,则重力加速度g=G/m.
2.利用单摆,用1m长的细线一端固定,另一端系一个小切密度大的小球,作越5°的单摆,测量每个周期时间T,及固定点到球心长度L,可得g=4π^2/T^2
3.机械能守恒定律也能测量,用到打点计时器,测量速度与下降高度,利用机械能守恒即可计算重力加速度.
希望能帮到您
答题不易请采纳谢谢
❹ 怎样测定匀加速直线运动加速度,高分!!!
测定匀变速直线运动的加速度
[实验目的]
1.练习使用打点计时器,学习利用打上点的纸带研究物体的运动。
2.学习用打点计时器测定即时速度和加速度。
[实验原理]
1.打点计时器是一种使用交流电源的计时仪器,它每隔0.02s打一次点(由于电源频率是50Hz),纸带上的点表示的是与纸带相连的运动物体在不同时刻的位置,研究纸带上点之间的间隔,就可以了解物体运动的情况。
2.由纸带判断物体做匀变速直线运动的方法:如图所示,0、1、2……为时间间隔相等的各计数点,s1、s2、s3、……为相邻两计数点间的距离,若△s=s2-s1=s3-s2=……=恒量,即若连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体的运动为匀变速直线运动。
3、实验原理
分析一个以加速度a向右运动的物体,如图所示。物体初速为vA,经过时间T运动了Sn,速度增加到了v中,又经时间T再前进Sn+1,速度为vB。根据匀变速直线运动的位移公式、速度公式和平均速度公式不难推出,在以上运动中,物体在相邻两个时间间隔内所通过的位移之差是一个常数,即:
Sn+1-Sn=aT2同理Sn+3-Sn=3aT2
让纸带与小车相连,测出打点计时器在纸带上所打轨迹点间的位移S1、S2、S3……,若小车做匀变速直线运动,则相邻位移之差应该是一个常数,于是,就可以进一步运用公式计算小车的瞬时速度和加速度。
由匀变速直线运动的速度公式和平均速度公式还可以推出,做匀变速运动的物体,在某段位移中间时刻的瞬时速度,就等于物体在这段位移上的平均速度,对上图有:
v中= = =
为了减小长度测量的误差,通常每隔四个轨迹点选一个记数点来计算位移,这样T=0.02s×5=0.1s。
4.由纸带求物体运动加速度的方法:
(1)用“逐差法”求加速度:即根据s4-s1=s5-s2=s6-s3=3aT2(T为相邻两计数点间的时间间隔)求出a1= 、a2= 、a3= ,再算出a1、a2、a3的平均值即为物体运动的加速度,即:
a=
(2)用v-t图法:即先根据vn= 求出打第n点时纸带的瞬时速度,后作出v-t图线,图线的斜率k=tana=Δv/Δt=a,即为物体运动的加速度。
图线法可以减小偶然误差对实验的影响。
[实验器材]
小车,细绳,钩码,一端附有定滑轮的长木板,打点计时器,低压交流电源,导线两根,纸带,米尺等。
[实验步骤]
1.把一端附有定滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路,如图所示。
2.把一条细绳拴在小车上,细绳跨过滑轮,并在细绳的另一端挂上合适的钩码,试放手后,小车能在长木板上平稳地加速滑行一段距离,把纸带穿过打点计时器,并把它的一端固定在小车的后面。
3.把小车停在靠近打点计时器处,先接通电源,再放开小车,让小车运动,打点计时器就在纸带上打下一系列的点,取下纸带,换上新纸带,重复实验三次。
4.选择一条比较理想的纸带,舍掉开头的比较密集的点子,确定好计数始点0,标明计数点,正确使用毫米刻度尺测量两点间的距离,用逐差法求出加速度值,最后求其平均值。也可求出各计数点对应的速度,作v-t图线,求得直线的斜率即为物体运动的加速度。
[注意事项]
1.纸带打完后及时断开电源。
2.小车的加速度应适当大一些,以能在纸带上长约50cm的范围内清楚地取7~8个计数点为宜。
3.应区别计时器打出的轨迹点与人为选取的计数点,通常每隔4个轨迹点选1个计数点,选取的记数点不少于6个。
4.不要分段测量各段位移,可统一量出各计数点到计数起点0之间的距离,读数时应估读到毫米的下一位。
❺ 速度与加速度的检测原理
加速度测量的原理十分简单并且相当可靠,其理论基础为与惯性质量有关的牛顿第二定律。
加速度传感器元件的基本构成包括主体、弹簧和惯性质体。当传感器主体的速度发生变化时,会产生随着速度变化而变化的力,该力将通过弹簧被施加于惯性质体上。具体来说,首先该力使弹簧发生弯曲,然后元件主体与惯性质体的距离会与加速度成比例地发生变化。
传感器的工作原理会根据主体与惯性质体相对移动的检测方式的不同而有所差异。电容式传感器,主体与惯性质体是相互绝缘的,通过测量电容来检测加速度。当主体与惯性质体之间的距离减小时,电容就会增加,电流会向传感器的信号处理IC流动。距离增加时,情况则会相反。传感器可将主体的加速度转化为电流、电荷、电压三者之一从而进行测量
❻ 求测量加速度的方法
单片机接收传感器设置成定时测一下小车位置,然后把这几个位置记录下来,配合时间间隔就可以了。
最简单的方法是你们有打点机吧,就是有个纸条能弄在后面,有机器能在纸条上定时打点的那种,取几个点,测一下点与点之间的距离,配合打点的时间间隔,就可以测出小车的加速度了。
方法:1.在细线一段打上一个比小球上的孔径稍大的结,将细线穿过球上的小孔做成一个单摆
2.将铁夹固定在铁架台上方,铁架台放在桌边,使铁夹伸到桌面以外,使摆球自由下垂。
3.测量摆长:用游标卡测出直径2r,再用米尺测出从悬点到小球上端的距离,相加
4.把小球拉开一个角度(小于5度)使在竖直平面内摆动,测量单摆完成全振动30到50次所用的平均时间,求出周期T
5.带入公式求出g
6.多次测量求平均值
❽ 速度,加速度的测定和牛顿运动定律的验证 实验报告
****中学物理实验
实验报告
课程名称:物理
实验名称:速度、加速度的测定和牛顿运动定律的验证
实验形式:现场实践
提交形式:提交书面实验报告
学生姓名: 学号:
年级:
提交时间: 2015 年 10 月 12 日
一、实验目的
1.了解气垫导轨的构造和性能,熟悉气垫导轨的调节和使用方法。
2.了解光电计时系统的基本工作原理,学会用光电计时系统测量短暂时间的方法。
3.掌握在气垫导轨上测定速度、加速度的原理和方法。
4.从实验上验证F=ma的关系式,加深对牛顿第二定律的理解。
5.掌握验证物理规律的基本实验方法。
二、实验原理
1.速度的测量
一个作直线运动的物体,如果在t~t+Δt时间内通过的位移为Δx(x~x+Δx),则该物体在Δt时间内的平均速度为,Δt越小,平均速度就越接近于t时刻的实际速度。当Δt→0时,平均速度的极限值就是t时刻(或x位置)的瞬时速度
(1)
实际测量中,计时装置不可能记下Δt→0的时间来,因而直接用式(1)测量某点的速度就难以实现。但在一定误差范围内,只要取很小的位移Δx,测量对应时间间隔Δt,就可以用平均速度近似代替t时刻到达x点的瞬时速度。本实验中取Δx为定值(约10mm),用光电计时系统测出通过Δx所需的极短时间Δt,较好地解决了瞬时速度的测量问题。
2.加速度的测量
在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两个位置时的速度v1和v2。对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。
(1)由测量加速度
在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过两个光电门之间的时间为t21,则加速度a为
(2)
根据式(2)即可计算出滑块的加速度。
(2)由测量加速度
设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为
(3)
根据式(3)也可以计算出作匀加速直线运动滑块的加速度。
(3)由测量加速度
还可以根据匀加速直线运动加速度a、位移S(S=x-x0)及运动时间t之间的关系式测量加速度。据此计算加速度有多种方法,其中一种方法是根据式(4)由作图法求出加速度。
(4)
实验时固定初位置x0(光电门1的位置),改变不同的末位置x(光电门2的位置),使物体(滑块)从静止开始运动,测出相应的运动时间t,作关系图线。如果是直线,说明物体作匀加速运动,直线的斜率为。
以上介绍了3种测量加速度a的方法。具体测量时先把气垫导轨调水平,再使滑块在水平方向受到一恒力的作用,那么滑块的运动就是匀加速直线运动;也可先把气垫导轨调水平,然后将其一端垫高h高度,使气垫导轨倾斜,滑块在倾角为θ的导轨上面下滑,其运动也是匀加速直线运动。
3.验证牛顿第二定律
牛顿第二定律所描述的内容,就是一个物体的加速度与其所受合外力成正比,与其本身质量成反比,且加速度的方向与合外力方向相同。数学表述为
F=ma (5)
为了研究牛顿第二定律,考虑如图1所示一个运动物体系统,系统由(滑块)和(砝码)两个物体组成,忽略空气阻力及气垫对滑块的粘滞力,不计滑轮和细线的质量等。
图1验证牛顿第二定律
调节气垫导轨水平后,将一定质量的砝码盘通过一细线经气垫导轨的滑轮与滑块相连。设滑块部分的质量为,滑块本身所受重力为,气垫对滑块的漂浮力为N,此二力相平衡,滑块在垂直方向受到的合外力为零。滑块在水平方向上受到细线的拉力,此力为重物作用于细线所产生的张力T,由于气垫导轨和滑块及细线所受的粘滞阻力及空气阻力忽略不计,则有
(6)
式中a为运动系统的加速度,根据式(6)有
(7)
在式(7)中,若令m=m1+m2表示运动物体系统的总质量,F=m2g表示物体系统在运动方向所受的合外力,则式(7)即为式(5)F=ma。根据式(7),验证牛顿第二定律可分为以下两步来完成。
(1)当系统总质量m保持不变时,加速度a应与合外力F成正比,比值为常数,即
(8)
实验时,在保持总质量m不变的情况下,改变合外力Fi=m2ig,即逐次改变砝码盘中砝码的质量,测出系统相应的加速度ai。如果在实验误差允许的范围内式(9)成立,
(9)
则验证了m不变的情况下,a与F成正比。还可以利用上述a和F数据作a~F关系图,若为直线,则可验证式(8),即a与F成正比。
(2)当保持系统所受合外力F=m2g不变时,加速度a的大小应与系统的总质量m=m1+m2成反比,即
(10)
同样,实验时保持合外力F=m2g不变,改变系统总质量mi=m1i+m2,即逐次向滑块增加不同重量的质量块,测出系统相应的加速度ai。如果在实验误差允许的范围内式(11)成立,
(11)
则验证了F不变的情况下,a与m成反比。还可以利用上述a和m数据作a~关系图,若为直线,则可验证式(10),即a与m成反比。
如果式(8)和式(10)均被验证,则式(7)即式(5)得到验证,也就是说,验证了牛顿第二定律。
4.判定实验与理论是否相符
根据实验数据,计算加速度a实验值的不确定度和理论值的不确定度,如果式(12)成立,
(12)
则说明实验验证了理论;否则,实验不能验证理论,应查出原因。式(12)中的就是允许的实验最大误差可能范围。
三、实验器材
气垫导轨、光电计时系统、滑质量块(铁块)等块、砝码、。
四、实验内容
1.实验内容
在本实验装置的条件下,设计测量滑块在气垫导轨上运动所受空气阻力的实验方案。
2.设计要求
(1)阐述基本实验原理和实验方法;(2)说明基本实验步骤;(3)进行实际实验测量;(4)说明数据处理方法,给出滑块运动所受的阻力与运动速度的关系;(5)分析和讨论实验结果。
五、实验数据
1.
2.根据气垫导轨水平调节数据,判断导轨是否水平,分析原因。
3.每一合外力和每一总质量情况下,分别计算加速度的理论值、实验值和相对百分误差,分析实验结果,判断是否验证了式(8)和式(10)。
4.作图法判断理论与实验是否相符。用直角坐标纸或计算机分别作和关系图线,判断实验是否验证了理论。通过求斜率分别计算出总质量和合外力的实验值,与实际值(理论值)比较,分别计算相对百分误差和。
5.直接计算法判断理论与实验是否相符。任选其中一种合外力和一种总质量情况下,分别计算实验值的不确定度和理论值的不确定度,判断是否成立,分析实验是否能够验证理论。
6.分析讨论实验结果,说明实验是否验证了牛顿第二定律。
六、结论
1、验证了牛顿第二定律。
2、关于滑块所受的气体阻力与滑块运动速度的关系成立
备注:该报告纳入考核,占总评成绩的10%。
希望可以帮到您谢谢
❾ 怎么测量重力加速度,方法有哪些
测量重力加速度的方法常用的有以下几种:
一、用弹簧秤和已知质量的钩码测量
将已知质量为m的钩码挂在弹簧秤下,平衡后,读数为G.利用公式G=mg得g=G/m。
二、用滴水法测重力加速度
调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.
三、用圆锥摆测量.所用仪器为:米尺、秒表、单摆.
如图所示.用天平测出整套装置的质量M,测力计质量不计,用测力计拉着小车在光滑的水平面上作匀加速运动时,测力计读数为F,重锤线与竖直方向夹角为α,整套装置的加速度为a=F/M,摆球受重力mg和绳子张力T,其合力产生加速度a.即mgtgα=ma,因为g=a/tgα=F/Mtgα,将所测F、M、α代入即可求得g。
❿ 单臂测量重力加速度的方法
单臂测重力加速度需要多次重复单摆实验。
具体操作方法如下。
1、在细线一段打上一个比小球上的孔径稍大的结,将细线穿过球上的小孔做成一个单臂摆件。
2、将铁夹固定在铁架台上方,铁架台放在桌边,使铁夹伸到桌面以外,使摆球自由下垂。
3、测量摆长:用游标卡测出直径2r,再用米尺测出从悬点到小球上端的距离,相加。
4、把小球拉开一个角度(小于5度)使在竖直平面内摆动,测量单摆完成全振动30到50次所用的平均时间,求出周期T。
5、带入公式求出g。
6、多次测量求平均值。