❶ 急求圆度误差的的测量实验报告
以传感器为测头,用多次定位法或多测头法的误差分离技术解决了不适宜在圆度仪上进行测量的大型精密零件的圆度误差测量问题〔1〕。该方法利用计算机进行实时处理,实现临床测量;对采样数据(即输入信号)在时、频域内变换和处理,抑制干扰信号,提高信噪比,达到分离误差、提高测量精度和稳定性的目的。其中使用较为广泛的有三测头法,三个传感器布置在被测零件同一径向截面上,成某一角度相交于坐标系的中心。测量装置的系统结构框图如图6。
可见,误差分离是提高圆度误差测量精度的关键技术。而分离误差的方法已发展成传感技术、数字技术、控制技术、计算计技术、电子技术等的综合应用。
3 圆度误差的评定
3.1常见评定方法
常见圆度误差的评定方法有下表所列几种:
(见表2)
上述方法符合GB7235-87的规定。
3.2 计算机数据处理
3.2.1 基本思路
由上表可见:不管是何种评定方法,虽然评定时取的基准圆不同,但评定圆度误差的关键技术是确定基准圆的圆心,即确定评定基准中心的坐标位置,完成检测数据由测量中心至评定中心的基准转换。这样就得出了以评定基准圆圆心为坐标原点的实际被测轮廓上各点的向径,其最大值与最小值之差即为所求的圆度误差值。各种计算机解法基本上是依据这一思路来编制程序,进行数据处理的。这方面有不少研究实例〔2〕〔3〕〔4〕。
在这些解法中,有的是基于直角坐标的,有的是基于极坐标的;有直接应用数学公式
求解的,有在图解基础上结合计算的;有应用逐次逼近法的,有应用优化法的等等。
3.2.2 程序流程图
我们设计了采用各种评定方法的数据处理子程序,而且对上述程序进行了扩展,将各子程序汇入总的程序中;设计了较为友好的人机交互界面,对同一套测量数据可通过选择开关任意选取各种评定方法;结果可分别以数据和图形输出。
本文介绍、分析了圆度误差的各种测量方法和评定方法,指出了测量和评定圆度误差的关键技术;结合工作实践,探讨了在三坐标测量机上测量圆度误差的精度和适用性;给出了一种评定圆度误差的计算机处理方法。
用计算机辅助公差设计和几何量测量(CAT)是当前国际国内学术界研究的热门技术,是公差理论与实践的必然发展趋势,沿这个方向研究和探索圆度误差的测量和评定方法既有它的理论价值,也有实用价值。
参考文献:
[1]崔绍良,等. 圆度测量的误差分离及数据处理. 全国高校互换性与测量技术研究会94年论文集
[2]田社平,等. 再论圆度误差评价的“通用算法”.计量技术,2001
[3]杨雪等. 最小条件求圆度误差值的快速电算法. 计量技术,2001
[4]田社平. 一种用于圆度误差评价的简化算法. 计量技术,2001.4
❷ 什么叫做测量误差有什么方法可以减少误差
简单说:
测量误差就是测量值与真值的差异。
减少误差的方法很多:
1、提高技能,减少人为造成的误差
2、使用新设备,减少仪表内部元器件老化过程引起的误差
3、多次测量,取平均值
❸ 测量误差的误差处理
随机误差处理的基本方法是概率统计方法。处理的前提是系统误差可以忽略不计,或者其影响事先已被排除或事后肯定可予排除。一般认为,随机误差是无数未知因素对测量产生影响的结果,所以是正态分布的,这是概率论的中心极限定理的必然结果。
减小误差的方法
1、选用精密的测量仪器;
2、 多次测量取平均值.
❹ 求文档: 测量误差按其性质可以分几类各有和特征实际测量中对各类误差的处理原则是什么
一.测量误差分为系统误差和随机误差两类。
在相同的条件下进行多次重复测量,即所谓进行一列等精度测量,若每次测量的误差是恒定的,或者是按照一定规律而变化的,这类误差称为确定性误差或系统误差。
若在一列等精度测量中,每次测量的误差是无规律的,其值或大或小,或正或负,那么,这类误差就称为随机误差或偶然误差。
二.系统误差具有明显的规律性和累积性,对测量结果的影响很大。
偶然误差具有如下四个特征:
① 在一定的观测条件下,偶然误差的绝对值不会超过一定的限值;
② 绝对值小的误差比绝对值大的误差出现的机会多(或概率大);
③ 绝对值相等的正、负误差出现的机会相等;
④ 在相同条件下,同一量的等精度观测,其偶然误差的算术平均值,随着观测次数的无限增大而趋于零。
三.随机误差处理的基本方法是概率统计方法。处理的前提是系统误差可以忽略不计,或者其影响事先已被排除或事后肯定可予排除。一般认为,随机误差是无数未知因素对测量产生影响的结果,所以是正态分布的,这是概率论的中心极限定理的必然结果。通常是对被测之量进行一列N次等精度测量,然后取各次测量结果xi的算术平均值(数学期望的估值)作为被测之量的无偏估值。用这列测量的标准偏差σ(统计方差的平方根)作为随机误差大小的表征。一般用贝塞尔公式作为σ的估值。σ值越小,表明绝对值大的误差出现的概率越小,测量结果的弥散程度不大,亦即表明测量的精密度甚高。当测量次数N有限时,估值和仍是随机量。当误差为正态分布时,对于一列等精度测量中的每一单次测量结果,可根据误差函数(或拉普拉斯函数)来估计其不确定度。这列等精度测量所得的值的不确定度,则按学生氏t分布来估计。至于非正态分布的误差,对其估计则困难得多。
系统误差的处理尚无统一的方法可循。但是,一般首先应尽可能预见到各种误差来源而采取技术措施予以消除或削弱其影响。其次,应选择适当的测量方法,以便尽可能削弱系统误差对最终测量结果的影响。平衡法(零差法)、微差法、比较法(替代法)、补偿法、对照法和交叉读数法等,都是有助于削弱系统误差影响的经典方法。再则通过对误差模型的分析,采用各种校准或定标方法对测量结果进行修正,这在智能仪器和自动测试系统中较为常用。最后,对无法消除的残余系统误差,则设法通过理论分析(或再辅以适当的试验和测量)作出恰当的估计,其大小表征测量结果的正确度。
具体内容参看:
http://ke..com/view/521341.htm#3
http://www.hudong.com/wiki/%E6%B5%8B%E9%87%8F%E8%AF%AF%E5%B7%AE
动动手更健康
❺ 技术测量:什么是系统误差系统误差的处理方式有哪些
系统误差是与分析过程中某些固定的原因引起的一类误差,它具有重复性、单向性、可测性。即在相同的条件下,重复测定时会重复出现,使测定结果系统偏高或系统偏低,其数值大小也有一定的规律。例如,测定的结果虽然精密度不错,但由于系统误差的存在,导致测定数据的平均值显着偏离其真值。如果能找出产生误差的原因,并设法测定出其大小,那么系统误差可以通过校正的方法予以减少或者消除,系统误差是定量分析中误差主要来源。
在对同一被测量进行多次测量过程中,出现某种保持恒定或按确定的方法变化的误差,就是系统误差。
减小系统误差的方法:
1、在测量结果中进行修正。对于已知的恒指系统误差,可以用修正值对测量结果进行修正;对于变值系统误差,设法找出误差的变化规律,用修正公式或修正曲线对测量结果进行修正;对于未知系统误差,则按随机误差进行处理。
2、消除系统误差的根源。在测量之前,仔细检查仪表,正确调整和安装;防止外界干扰;选好观测位置消除视差;选择环境条件比较稳定时读数等。
3、在测量系统中采用补偿措施。找出系统误差规律在测量过程中 自动消除系统误差。
4、实时反馈修正。由于自动化测量技术及计算机的应用,可用实时反馈修正的办法来消除复杂的变化的系统误差。在测量过程中,用传感器将这些误差因素的变化,转换成某种物理量形式(一般为电量),及时按照其函数关系,通过计算机算出影响测量结果的误差值,并对测量结果作实时的自动修正。
❻ 误差按性质分哪几类 在工作中遇到这几种误差我们该怎么处理
系统误差
能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由,于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。
随机误差
随机误差又称偶然误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的,精密度,偶然误差越小,精密度就越高,反之则精密度越低。
系统误差和随机误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现,的以然性:而偶然则反映在一定条件下误差出现的可能性。
疏忽误差
疏忽误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏忽误差的测量结果都是应该接弃的。
解决方法:
仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。
消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。
系统误差的消除方法:
对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。
消除产生误差的根源 即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使,用条件下工作,消除各种外界因素造成的影响。
采用特殊的测量方法 如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑至外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。
随机的消除方法:
消除随机误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几平相同,因此随机误差的平均值几平为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。
❼ 结构试验误差的种类、区别和处理方法
根据误差产生的原因和性质,可以将误差分为系统误差、随机误差和过失误差三类。
系统误差通常是由于仪器的缺陷,外界因素的影响或观察者的感官不完善等固定的原因所照成的,它在整个测量过程中始终有规律的存在着,其绝对值和符号保持不变或按某一规律变化。系统误差的大小可以用准确度表示,查明系统误差的原因,找出其变化规律,就可以在测量中采取措施,如改进测量方法,采用更精确的仪器等以减小误差,或在数据处理时对测量结果进行修正。
随机误差是测量结果减去在重复条件下对同一辈测量进行无限多次测量结果的平均值。系统误差不可能完全消除或避免。随机误差也不可能朱雀的得出,只能得到堆积误差估计。产生随机误差有测量仪器、测量方法和环境条件等方面的原因。随机误差的大小可以用精密度表示,精密度高表示测量的随机误差小。对随机误差进行统计分析,或增加测量次数,找出其统计特征值,就可以在数据处理时对测量结果进行修正。
过失误差是由于试验人员粗心大意,不按操作规程操作等原因造成的误差。若试验数据出现很大的误差,且与事实明显不符时,应分析其产生的原因。若确定属过失误差,则必须把过失误差从试验数据中剔除。
❽ 根据出现的规律,测量误差分为哪几类在进行数据处理时分别怎样进行处理
误差分为系统误差、偶然误差和粗差三大类,但是,通常我们把粗差称为错误,在测量中是不允许出现的,所以只考虑如何处理系统误差和偶然误差。
根据系统误差的特性,我们可以采用特殊的观测方法、经验模型改正法来消除系统误差。比如水准测量中,前后视距相等,来消除水准仪视准轴与水准管轴不平行产生的i角误差影响。三角高程测量中,使用对向往返观测,两个高差观测值取中的方法,来消除球差和气差的影响。
根据偶然误差的特性,我们可以采用多余观测、回避偶然误差产生的观测条件、相关观测值求差、测量平差等方法来削弱偶然误差的影响,提高观测的精度。
❾ 测试误差产生原因与处理方法
任伟 张广玉 赵桂君
(国土资源部实物地质资料中心,北京 101149)
摘要 误差在测定过程中是很难避免的。本文提出了误差的分类,分析了误差的产生原因和消除方法。在实际工作中,要认清误差,熟练掌握操作技术,精确校准仪器,认真细心地操作,针对产生误差的原因,正确地运用数理统计和误差理论,予以纠正,把误差减小到最低限度。
关键词 分析结果;误差
在化验过程中,由试验人员使用仪器、试剂,按照既定的分析方法,经过一定的操作步骤,如称量、熔样、溶解、分离和检测等,最后获得样品分析的各项测试结果。上述过程中,即使是最熟练的化验人员,使用最精密的分析仪器和纯度最高的试剂,也会由于仪器灵敏度的限制,人为操作因素,以及试剂纯度的相对性等原因,而无法获得最准确的试验结果。也就是说,测定的结果和被测样品实际值之间会产生一定的误差,那么,误差是如何产生,又如何处理呢? 下面就误差的分类、误差的产生原因以及消除的方法和如何统计做一简单介绍。
一、误差的分类及产生原因
一个物理量总有一个客观存在的准确数值,通常称为真值。由于种种原因,实际测定的结果不能恰好等于真值,而有一定的差距,这个差距就是检测值的误差。根据造成误差的原因不同,一般将误差分为系统误差、偶然误差和过失误差三类。
1.系统误差
系统误差的产生是由于仪器刻度不准、仪器构造的缺陷、实验方法的不可靠或个人的习惯和偏向等原因,使检测结果偏高或偏低,形成正误差或负误差。
2.偶然误差
偶然误差是由一些来源不十分清楚的偶然因素产生的。所谓偶然,就是它们对试验结果的影响不定,有时使结果偏高,有时使结果偏低,偏离的幅度也变化不定,有大有小。因此,对偶然误差无法控制,也无法校正。实践证明,多次检测值的偶然误差服从一定的分布规律,其分布是正态分布,平均值为零。
3.过失误差
过失误差是由试验过程中人为的差错引起的,人为差错主要有仪器的不正当使用,违反操作规程,以及由粗心大意引起的差错,如液体溅失、异物污染、错误读数、记录和计算错误等,此类误差无规律可循。
二、误差的避免和消除
首先我们应该认识到,误差是测定过程中很难避免和消除的,是客观存在的。但是随着科学技术的发展,测量条件的提高,误差可以越来越小。在实际操作中,我们也可以利用一些方法来减小误差。
1)对试验仪器方法进行严格检查和校对。使用未经校正的仪器或玻璃器皿,如砝码、天平、滴定管、移液管等,都会有同符号、同值的系统误差出现;在实验方法方面,也会因为不同的样品处理方法而产生误差。因此在检测之前应该对所用仪器和试验方法做必要的校准和严格的检查。
2)细心操作。操作间环境的变化、天平的变动性、仪器的示值偏移、读数的估计值等会使检测结果产生不可预见的误差。这更要求我们应该熟练掌握实验技术,认真细心地操作,纠正操作中的个人不良习惯和偏向,消除主观上的粗心大意。
3)在每一批检测样品中加测一定数量的平行双样、密码样和标准样品,以增加检测结果的准确度。
4)利用数理统计方法处理误差问题。我们在日常工作中发现,大多数误差集中在零左右,越大的误差出现的频率越低。多次测定的正误差和负误差能互相抵消。因此,根据这种情况,可利用正态分布的特性对误差进行统计推断。判断测试结果的正确性,查找产生误差的原因,予以纠正,使误差减小到最低限度。
另外,我们还应该理解测量不确定度的概念,它是表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。从词义上理解,测量不确定度意味着对测量结果的可信性、有效性的怀疑程度或不肯定程度,是定量说明测量结果质量的一个参数。
“合理”是指应考虑到各种因素对测量的影响所做的修正,特别是测量应处于统计控制的状态下,即处于随机控制过程中。“相联系”指测量不确定度是一个与测量结果在一起的参数,在测量结果的完整表示中应包括测量不确定度。实际上由于测量不完善和人们认识不足,所得的测量值具有分散性,即每次测得的结果不是同一个值,而是以一定的概率分散在某个区域内的许多个值。虽然系统误差是一个不变值,但由于我们不能完全认知或掌握,只能认为它是以某种概率分布在某个区域内的,而这种概率分布本身也有分散性。测量不确定度就是说明被测量之值分散性的参数,它不说明测量结果是否接近真值,为了表征这种分散性,测量不确定度用标准偏差来表示。实践中测量不确定度主要来源于以下几个方面:①测量的方法不理想;②取样的代表性不够;③对测量过程中受环境影响的认识不全;④对仪器的读数存在人为偏移;⑤测量仪器的分辨力和鉴别力不够;⑥用于数据计算的常量和其他参量不准;⑦近似完全相同的条件下,重复观测值的变化。
由此可见,测量不确定度一般来源于随机性和模糊性,前者是因为条件不充分,后者是因为概念不明确。另外,我们还需要正确认识误差和测量不确定度的区别。简单地说,误差表明测量结果偏离真值,是一个差值,非正即负;测量不确定度表明被测量之值的分散性,是一个区间,为正值。
在化学分析中,每种分析方法都有规定的允许差,即一个既定的分析试验方法的标准差是固定的,要想提高分析结果的准确度,需要降低标准差。同一化验室的允许差又叫重复性限(常以r表示),是指同一化验室内在相同条件下对同一试样所做重复测定结果极差的允许界限;在不同化验室间的允许差又叫再现性临界差(常以R表示),是指两个化验室测试同一样品所得结果差值的允许界限。r的确切含义是:多次重复测定所得结果的极差不超过r的概率为95%。如极差超过r,就认为可疑,需要增做测定。R的含义与r相似。由此看出,r和R的确定不能过严或过宽。过严则造成过多的返工,从而浪费人力和物力;过宽则容易放过意外差错,从而降低实验结果的可靠性。
三、误差的统计
日常工作中,我们经常需要借助数理统计方法来处理和解决一些问题,例如,确定各种实验方法的允许误差,寻找两种指标的相互关系,判断两种实验方法能否相互代替等有关试验误差和数据处理的问题,都需要用数理统计方法来得出科学可靠的结论。数理统计是以概率为主要理论基础,运用统计方法,对数据进行整理分析并做出判断和推理的一门科学。它的应用范围很广,例如实际生产、科学实验、社会调查等等。对于不确定性事件,就每一次观测或试验结果来看都是可疑的,但在大量观测或试验下却呈现某种规律性(统计规律性)。数理统计就是从一个侧面,来研究这类不确定性事件的规律性。
数理统计所处理的是少量的、部分的、不完全的标本或材料。为了对总体进行了解和预测,就需要做出推理和判断,这就是数理统计的主要任务。例如在找矿过程中,要勘查一个新矿区的级别和储量,我们不可能取出全部矿体进行检测,因此就需要在矿区内进行定点钻孔,采取岩心样品(标本),然后对取到的样品(标本)进行分析检测,得出数据,并计算出一些必要的“统计量”,如总和、平均值等;再运用数理统计的定律或公式对实验结果做出判断、解释或推理。从而推断出矿区的级别和储量,依此来评价矿种的利用价值和开采价值。
这种推断显然会有一定的误差,因此需要运用数理统计方法来估计这种误差的大小,提高推断的可靠程度。在数理统计中,最能表征一组检测值的尺度被称为中心趋势和离散度。中心趋势表示多个检测值的集中点。离散度表示多个检测值的差异或分散程度。用这两个尺度再加上检测值的数目,就可以量化地表达一组检测值的特征。表示中心趋势的统计量主要有算术平均值和中位数,表示离散度的统计量有极差、算术平均偏差和标准偏差。
1.算术平均值
算术平均值是最常用的一种平均值。如对一件样品进行n次检测,得到一组检测结果分别为X1、X2……Xn,则算术平均值X由下式计算:
国土资源部实物地质资料中心文集(17)
在一般试验中,都取多次测定的算术平均值作为最终结果。
2.中位数
按大小排列的一组检测值中居于中央的检测值称为中位数,用Me表示。如果观测值的数目为偶数,则居中的检测值有两个,这时以两者的平均值作为中位数。
3.限误差(极差)
极差是指一组检测值中最大值和最小值之差,用R表示。它是一个最简单的表示离散度的统计量,但极差只取决于两个极端值,同测定次数及其余所有中间值都无关,因而不能全面地反映观测值的离散情况。
4.算术平均偏差
算术平均偏差是表示各检测值偏离平均值的一种尺度,用δ表示。它的定义是:各检测值同平均值之差的绝对值的平均值,其数学表达式为:
国土资源部实物地质资料中心文集(17)
同极差相比,算术平均偏差对离散度显然有更好的表现能力,它既考虑了检测值的次数n,又考虑了所有的检测值。
5.标准偏差(标准差、均方根偏差)
它的定义是:各检测值同平均值之差,取平方,求平方的总和,然后平均,再开平方根,取其正值,用σ表示。其数学表达式为:
国土资源部实物地质资料中心文集(17)
用标准偏差表示离散度的优点是对最大偏差和最小偏差更为敏感,因此具有较强的区别各检测值的离散度的能力。
在化学分析试验中,尤其在我们的日常工作中,每天都要面对大量的分析数据,正确地理解和掌握,并合理地运用数理统计方法和误差理论,有着十分重要的意义。岩矿测试部除了对实物中心所藏样品标本进行分析化验外,还要对外单位的岩矿样品进行分析测试。在数据的补充和完善过程中,正确地运用所掌握的理论和方法,对数据进行分析整理,总结出真实、客观、可靠的测试结果,增强实物地质资料中心的可信度和竞争力,使所提供给客户的资料更具说服力,从而也将提升实物资料中心在社会中的地位。
Reason of Deviation of Test and Assay Result andsolvingmethods
Wei Ren,Guangyu Zhang,Guijun Zhao
(National Geologicalsample Center,ministry of Land and Resources,Beijing 101149)
Abstract It is difficult to avoid deviation in test and assay.The papersets forth the deviation classification,analyzes the reasons and resolutions of deviation.In practice,it is necessary to understand the deviation,professionallymaster operation techniques,precise calibrate apparatus,carefully carry operation,seek out the reasons resulting the deviation andmaking appropriate use ofmathematicalstatistics and deviation theory to correct the deviation,so as tominimize the deviation finally.
Key words analysis result;deviation
❿ 测量误差的分类以及各种误差的特点和减少的方法
分类分为系统误差、偶然误差和粗差,其中偶然误差包括外界条件因素和人为观测误差。
系统误差的特点是:由测量方法或系统本身造成的误差,无可避免和降低,但是由于具有系统性,可以由一些方法消除(比如经纬仪盘左盘右相减来消除系统误差);
偶然误差的特点:对称性(正负差不多),峰值性(误差小的比误差大的要多),抵偿性(相加接近0),有限性(误差保持在一定范围)。减少的方法就是正确观测时间、避免观测人的疲劳,考虑天气等因素,并在观测方法上改进(如往返测)。
粗差的特点:没有确定性。是由于人为错误产生。