Ⅰ 重心如何计算
重心是中线交点,内心是角平分线交点(或内切圆的圆心),
外心是中垂线交点(或外接圆的圆心),垂心是高线交点,
这称三角形的四心.
还有一个心叫傍心:外角平分线的交点(有3个),(或傍切圆的圆心)
只有正三角形才有中心,这时重心,内心.外心,垂心,四心合一.
用三个支持点把几何体支撑起来,分别测量三个支持力,能求出来,
建立坐标系,设在坐标中取任意三个点,把几何体支撑起来.原则上要把重心放在以三个点构成的三角形里
三个支点的坐标分别是A(X1,Y1) B(X2,Y2)
C(X3,Y3),三个支持力的大小分别是a,b,c
以坐标原点为支撑点建立杠杆模型,(其实以任意点为支持点都可以,用原点可以简化计算)
设重心坐标为P(Xp,Yp)
现在假设你把整个坐标系,连同几何体一起从桌面上立起来,让Y轴垂直于桌面,这时,三个支持力连同重力都在X轴上落下一个投影,四个投影离原点的距离分别是各自的X坐标值,这时,你假设X轴就是一根不记重力的杠杆,原点是支撑点,这样,就出现了第一个杠杆平衡公式,
aX1+bX2+cX3=(a+b+c)Xp
Xp=(aX1+bX2+cX3)/(a+b+c)
同样的道理,让X轴垂直与桌面,把所有的力头投射到Y轴上去,能得到另一个杠杆平衡公式
aY1+bY2+cY3=(a+b+c)Yp
Yp=(aY1+bY2+cY3)/(a+b+c)
Xp和Yp就是重心坐标
希望能帮助你!
Ⅱ 如何测量立体图形的重心
垂线法能测立体重心,你可以自己做一下实验,随便找个东西,分两点两次挂起来的垂线肯定是相交的。
Ⅲ 测重心有几种方法
均匀规则几何体,在其几何中心,如,圆圆心,球球心,环环心等。
非规则的平面图形,从两个不同方向用悬线悬吊,作出两次悬线的交点。这个交点就是重心
Ⅳ 重心怎么测
规则,均匀的物体,重心在它的几何中心;不规则的物体通过悬线法测定:在物体的不同位置连上细线悬挂,细线的延长线通过重心,只要2-3条即可找出交点,即为重心
Ⅳ 如何测定物体重心
有绳子先吊起一头沿绳子画一条直线,然后吊起不在直线上的一头仍然沿绳子画一条直线,这条直线与另一条直线的交叉点就是重心!
Ⅵ 测量重心的所有办法
可以将物体用绳子记起来,使他自然状态,然后重心就在绳子所在线上(绳子竖直的),这样两次就可以了
Ⅶ 重心的测量
密度均匀,几何中心就是重心
Ⅷ 重心的检测方法
三角形重心
重心是三角形三边中线的交点,三线交一点可用燕尾定理证明。
已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。
证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。
重心的几条性质:
1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3
5.重心是三角形内到三边距离之积最大的点。
6.(莱布尼兹公式)三角形ABC的重心为G,点P为其内部任意一点,则
3PG^2=(AP^2+BP^2+CP^2)-1/3(AB^2+BC^2+CA^2)
7.在三角形ABC中,过重心G的直线交AB、AC所在直线分别于P、Q,则 AB/AP+AC/AQ=3
8.从三角形ABC的三个顶点分别向以他们的对边为直径的圆作切线,所得的6个切点为Pi,则Pi均在以重心G为圆心,r=1/18(AB^2+BC^2+CA^2)为半径的圆周上
如果用塞瓦定理证,则极易证三条中线交于一点。
如图,在△ABC中,AD、BE、CF是中线
则AF=FB,BD=DC,CE=EA
∵(AF/FB)*(BD/DC)*(CE/EA)=1
∴AD、BE、CF交于一点
即三角形的三条中线交于一点
其它图形重心
注:下面的几何体都是均匀的,线段指细棒,平面图形指薄板。
三角形的重心就是三边中线的交点。线段的重心就是线段的中点。
平行四边形的重心就是其两条对角线的交点,也是两对对边中点连线的交点。
平行六面体的重心就是其四条对角线的交点,也是六对对棱中点连线的交点,也是四对对面重心连线的交点。
圆的重心就是圆心,球的重心就是球心。
锥体的重心是顶点与底面重心连线的四等分点上最接近底面的一个。
四面体的重心同时也是每个定点与对面重心连线的交点,也是每条棱与对棱中点确定平面的交点。
寻找重心方法
下面是一些寻找形状不规则或质量不均匀物体重心的方法。
a.悬挂法
只适用于薄板(不一定均匀)。首先找一根细绳,在物体上找一点,用绳悬挂,划出物体静止后的重力线,同理再找一点悬挂,两条重力线的交点就是物体重心。
b.支撑法
只适用于细棒(不一定均匀)。用一个支点支撑物体,不断变化位置,越稳定的位置,越接近重心。
一种可能的变通方式是用两个支点支撑,然后施加较小的力使两个支点靠近,因为离重心近的支点摩擦力会大,所以物体会随之移动,使另一个支点更接近重心,如此可以找到重心的近似位置。
c.针顶法同样只适用于薄板。用一根细针顶住板子的下面,当板子能够保持平衡,那么针顶的位置接近重心。
与支撑法同理,可用3根细针互相接近的方法,找到重心位置的范围,不过这就没有支撑法的变通方式那样方便了。
d.用铅垂线找重心(任意一图形,质地均匀)
用绳子找其一端点悬挂,后用铅垂线挂在此端点上(描下来)。而后用同样的方法作另一条线。两线交点即其重心。