❶ 如何利用多普勒效应测量汽车行驶的速度
根据您的问题,您想要利用多普勒效应测量汽车行驶的速度,你可以通过以下方法来进行:
1、首先从测速仪里射出一束射线,射到汽车上再返回测速仪。测速仪里面的微型信息处理机把返回的波长与原波长进行比较。返回波长越紧密,前进的汽车速度也越快。
2、然后分别用2次测速仪发出和测速仪接收到的脉冲波之间的时间除以2,再做差,乘以声速。就是车子连续2次接收到脉冲波的距离。
3、最后用这个距离除以车子接收到脉冲波的时间差就是车子的速度。
❷ 超声波雷达测速仪的测速原理
适合作流动物质中含有较多杂质的流体的流速测量,超声多普勒法只是其中一种 ,还有频差法和时差法等等。
时差法测量沿流体流动的正反两个不同方向发射的超声播到达接收端的时差。需要突出解决的难题是这种情况下,由于声速参加运算(作为分母,公式不好写,我积分不够没法贴图),而声速收温度的影响变化较大,所以不适合用在工业环境下等温度变化范围大的地方。
频差法是时差法的改进,可以把分母上的声速转换到分子上,然后在求差过程中约掉,这就可以避开声速随温度变化的影响,但测频由于存在正负1误差,对于精度高的地方,需要高速计数器。
还有就是回鸣法了,可以有效改进由于计数器正负1误差带来的测量误差。
以上这些东东都是关于流体的流速的超声测量方法。对于移动物体的速度测量多采用超声多谱勒法。
根据声学多普勒效应,当向移动物体发射频率为F的连续超声波时,被移动物体反射的超声波频率为f,f与F服从多普勒关系。如果超声发射方向和移动物体的夹角已知,就可以通过多普勒关系的v,f,F,c表达式得出物体移动速度v。
❸ 怎样用超声多普勒测量血流速度
用PW测血流频谱,然后按下测量键,放在最尖处,就可以测出峰值流速
❹ 超声测速仪基本原理
根据声学多普勒效应,当向移动物体发射频率为F的连续超声波时,被移动物体反射的超声波频率为f,f与F服从多普勒关系。如果超声发射方向和移动物体的夹角已知,就可以通过多普勒关系的v,f,F,c表达式得出物体移动速度v。
超声波测速适合作流动物质中含有较多杂质的流体的流速测量,超声多谱勒法只是其中一种 ,还有频差法和时差法等等。
(4)超声多普勒测量方法扩展阅读:
测量方法
1、对于移动物体的速度测量多采用超声多普勒法。
2、时差法测量沿流体流动的正反两个不同方向发射的超声播到达接收端的时差。需要突出解决的难题是这种情况下,由于声速参加运算,而声速受温度的影响变化较大,所以不适合用在工业环境下等温度变化范围大的地方。
3、频差法是时差法的改进,可以把分母上的声速转换到分子上,然后在求差过程中约掉,这就可以避开声速随温度变化的影响,但测频由于存在正负1误差,对于精度高的地方,需要高速计数器。
4、还有就是回鸣法了,可以有效改进由于计数器正负1误差带来的测量误差。
❺ 超声波多普勒流速仪如何在海上测量流速
超声波入射到水中,会产生多普勒频移。水中存在着不均体(如悬浮物等)将对声波产生不规则散射,接收到的反射信号频率有一定偏高。超声波发射频率F0为常数,换能器夹角安装后固定不变,即K为常数。所以只要检测出多普勒频移和水的声速(由温度值换算来),即可计算出流速。
延伸
如果是测量单层流速的超声波多普勒流速仪:
常规测量是在0.05米/秒~5.00米/秒;有厂家硬件做得好,低流速可以到0.02米/秒。
要把流速上限做到10.00米/秒也是可以的,就是测量精度会下降。
超声多普勒流速仪是应用声学多普勒效应原理制成的测流仪,采用超声换能器,用超声波探测流速。测量点在探头的前方,不破坏流场,具有测量精度高,量程宽;可测弱流也可测强流;分辨率高,响应速度快;可测瞬时流速也可测平均流速;测量线性,流速检定曲线不易变化;无机械转动部件,不存在泥沙堵塞和水草缠绕问题;探头坚固耐用,不易损坏,操作简便等优点。
超声波多普勒流速仪是在管道、渠道或者河流内测量水的流速的设备,主要应用于以下范围:洪涝灾害监测、污水排放、天然的河溪、市政给排水、水量流失/渗入监测、灌溉流程监测、河口&潮汐的研究、渔业/水利、海岸侵蚀研究、暗渠流程监测、道路排水监测、江河流程监测等环境中,可以根据需要提供电池盒,以便在供电不方便的地区提供电源。
❻ 超声波流量计的测量方法有哪些
一般就是时差法 :管道的流量计都用时差法
多普勒法 :非标准渠道用多普勒法。
测距法:标准渠道用测距的方法。
❼ 如何计算或测量超声波在不同固体中的波长
.基本工作原理
超声波多普勒流量计的测量原别是以物理学中的多普勒效应为基础的。根据声学多普勒效应,当声源和观察者之间有相对运动时,观察者所感受到的声频率将不同于声源所发出的频率。这个因相对运动而产生的频率变化与两物体的相对速度成正比.
在超声波多普勒流量测量方法中,超声波发射器为一固定声源,随流体一起运动的固体颗粒起了与声源有相对运动的“观察者”的作用,当然它仅仅是把入射到固体颗粒上的超声波反射回接收据.发射声波与接收声波之间的频率差,就是由于流体中固体颗粒运动而产少的声波多普勒频移.由于这个频率差正比于流体流速,所以测量频差可以求得流速.进而可以得到流体的流量.
因此,超声波多普勒流量测量的一个必要的条件是:被测流体介质应是含有一定数量能反射声波的固体粒子或气泡等的两相介质.这个工作条件实际上也是它的一大优点,即这种流量测量方法适宜于对两相流的测量,这是其它流量计难以解决的问题.因此,作为一种极有前途的两相流测量方法和流量计,超声波多普勒流量测量方法目前正日益得到应用.
2.流量方程
假设,超声波波束与流体运动速度的夹角为 ,超声波传播速度为c,流体中悬浮粒子运动速度与流体流速相同,均为u.现以超声波束在一颗固体粒子上的反射为例,导出声波多普勒频差与流速的关系式.
如图3—39所示,当超声波束在管轴线上遇到一粒固体颗粒,该粒子以速度u沿营轴线运动.对超声波发射器而言,该粒子以u cos a的速度离去,所以粒子收到的超声波频率f2应低于发射的超声波频率f1,降低的数值为
f2-f1=- f1 (3-73)
即粒子收到的超声波频率为
f2=f1- f1 (3-74)
式中 f1――发射超声波的频率;
a――超声波束与管轴线夹角;
c――流体中声速。
固体粒子又将超声波束散射给接收器,由于它以u cos a 的速度离开接收器,所以接收器收到的超声波频率f3又一次降低,类似于f2的计算,f3可表示为
f3=f2- f2 (3-75)
将f2的表达式代入上式,可得:
f3=f1(1- )2
=f1(1-2 + ) (3-76)
由于声速c远大于流体速度u,故上式中平方项可以略去,由此可得:
f3=f1(1-2 ) (3-77)
接收器收到的超声波频率与发射超声波频率之差,即多普勒频移 f1,可由下式计算:
f=f1-f3=f1-f1(1-2 )
=f1 (3-78)
由上式可得流体速度为
u= f (3-79)
体积流量qv可以写成:
qv=uA= f (3-80)
式中,A为被测管道流通截面积.
出以上流量方程可知,当流量计、管道条件及被测介质确定以后,多普勒频移与体积流量成正比,测量频移 f就可以得到流体流量qv。
5.关于流量方程的几点讨论
(1)流体介质温度对测量的影响
由流量方程可见,流虽测量结果受流体中的声速c的影响.一般来说,流体中声速与介质的温度、组分等有关,很难保持为常数.为了避免测量结果受介质温度、组分变化的影响,超声波多普勒流量计一般采用管外声楔结构,使超声波束先通过声楔及管壁再进入流体。设声楔材料中的声速为c1;流体中声速为c;声波由声楔进入流体的入射角为 ;在流体中的折射角为 ;超声波束与流体流速夹角为a;见图3-40所示,根据折射定理,有:
= =
代入流量关系式,可得:
qv= f (3-81)
由此式可见,采用声楔结构以后,流量与频移关系式中仅含有声楔材料中的声速c1而与流体介质中的声速c无关.而声速c1温度变化要比流体中声速c随温度变化小一个数量极,且与流体组分无关.所以,采用适当材料制造声楔,可以大幅度提高流量测量的准确度.
(2)信息窗与平均多普勒频移
为有效地接收多普勒频移信号,超声波多普勒流量计的换能器通常采用收发一体结构,见图3—41所示.由图中可见,换能器接收到的反射信号只能是发射晶片和接收晶片的两个指向性波束重叠区域内的粒子的反射波,这个重叠区域称为多普勒信号的信息窗
图3-40 声楔与声波的折射
流量计接收换能器所收到的信号就是由信息窗中所有流动悬浮粒子的反射波叠加,即其信息窗内多普勒频移为叠加的平均值.平均的多普勒频移 f可以表示为
f= (I=1,2,3…) (3-82)
式中 f——信息窗内所有反射粒子的多普勒频移的平均值;
Ni——产生多普勒频移 fi的粒子数;
fi-一任一个悬浮粒子产生的多普勒频移.
从上述讨论可知,该流量计测得的多普勒频移信号仅反映了信息窗区域内的流体速度,所以要求信息窗应位于管内接近平均流速的区域上,才能使其测量值能反映管内流体的
平均流速.但是管内平均流速区域的位置是一与雷诺救有关的函数,当管内流动的雷诺数Re发生变化时,其平均流速区域位置也将改变.而一旦流量计安装完毕,其多普勒信息窗位置就固定了,为使测得的多普勒频移信号 f能在不同雷诺数Re条件下均能正确地反映流量值,在流量计算公式中引入流速修正系数K.流速修正系数K是雷诺数Re和信息窗位置的函数,用它来对因上述原因引起的测量误差进行修正.因此,超声波多普勒流量计的实际流量计算式可以写成:
图3-41 多普勒信息窗
qv= (3-83)
式中,符号意义同前。
❽ 多普勒效应 超声波测速的公式有哪些
第一步,多普勒测速仪发射声波,运动物体接收到其所发射的声波.在这个过程中,多普勒测速仪作为波源是静止的,而运动物体作为波接收器以速度v运动.设多普勒测速仪所发射的声波频率为f,运动物体所接收到的声波频率为f′,声波的传播速度为v0,观测者相对于介质的运动速度vr.可得:f'=f*(v0-v)/v0
第二步,运动物体反射或散射声波,多普勒测速仪接收到其所反射或散射的声波.在这个过程中,运动物体作为波源以速度v运动,而多普勒测速仪作为波接收器静止.设多普勒测速仪接收到的声波频率为f″,由第一步我们知道,运动物体所反射或散射的声波频率为f′,于是可得:f"=f'*vo/(vo+v)
代入可得:v=vo*(f-f")/(f+f")
即为被测物体的运动速度v与多普勒测速仪所发射的声波频率f、多普勒测速仪所接
收到的由于存在多普勒效应而频移的声波频率f″以及声波的传播速度v0之间的关系
❾ 超声波检查的方法有哪几种
超声检查即利用超声波原理作用于人体,来判断人体组织的生理特性、形态结构与功能状态的一种非创伤性检查方法。超声检查的特点是:操作简便、可多次重复、切面灵活多样,且无放射损伤,同时具价廉、安全、无痛、定位可靠报告及时等。超声波检查宜做近期跟踪复查,以掌握病情的动态,同时也可作为产期健康检查项目之一,以便早期发现病变。超声波检查的方法有4种,即A型(示波)法、B型(成象)法、M型(超声心动图)法、扇型(两维超声心图)法(多普勒超声法)。
B型法,即B超检查在腹部应用最广,能显示肝、胆、脾、胰、肾及肾上腺的正常解剖,判断有无病变,病变是囊性或实性、良性或恶性。
B超腹部检查必须在空腹状态下进行,尤其是对胆囊的观察。妇产科病变,如子宫及附件肿瘤,也应首选B超检查。妊娠时做B超检查,可确定胎儿的数目、发育情况、胎盘的位置等。膀胱检查时,受检者处憋尿状态,对病变的显示更清楚。乳腺病变也可用B超检查。但是B超也有其局限性,不适宜检查含气的结构(如肺),也不适宜检查骨及被骨遮蔽的结构。
扇型法可得到心脏各种切面图象,并可观察到心脏收缩和舒张时的真实表现,检测心脏和血管的血流动力学状态,尤其对先天性心脏病和瓣膜病的分流及返流情况,有较大的诊断价值。多普勒彩色血流显象,以实时彩色编码显示血流的方法,即在显示屏上以不同彩色显示不同血流方向和流速,从而增强对血流的直流感。心腔中存在的小血块以及瓣膜上的裂口等改变也可被发现。此外,经颅超声多普勒对脑血管病的诊断,及腹部血管检查对肾功能狭窄、胎儿脐带绕颈等的诊断均有很高价值。
M型法可根据体内心脏等结构活动,记录其与胸壁(探头)间的回声距离变化曲线,从记录的曲线图上,可清晰认出心壁、室间隔、心腔、瓣膜等特征。可用来诊断多种心脏病。对心房内粘液瘤检出率极高。
A型法主要从示波上的波幅、波数、波的先后次序等,来判断有无异常病变。可诊断脑血肿、脑瘤、囊肿及胸腹水、早孕、葡萄胎等。但由于此法过分粗略,现已基本淘汰。
❿ 心排血量的超声多普勒法
超声多普勒测CO主要有两种方式即经食管超声多普勒(EDM)和经气管超声多普勒(TTD)。目前主要用EDM。经食管超声多普勒由Arrow公司生产的HemoSonicTM100 EDM监测仪已在国外得到广泛的应用,研究结果表明:其操作简单、准确性高。
1、原理和方法 HemoSonicTM100的超声多普勒探头通过测定红细胞移动的速度来推算降主动脉的血流量,其配有的M型超声探头,还可直接测量降主动脉直径的大小,而不需要根据年龄、身高等参数来间接推算主动脉直径,这样就提高了测量结果的准确性。由于降主动脉的血流量是CO的70%(降主动脉血流与CO的相关系数是0.92), 故其计算公式为:CO=降主动脉血流量×降主动脉的横截面积÷70%。
具体操作方法为将一带有多普勒探头及M型超声探头的经食道导管经口插入食道(相当于第三肋间水平,此点的食管与降主动脉相平衡。),根据显示屏上的主动脉壁,血流波形及多普勒声音上下旋转调整探头位置直至获得满意的信号质量,然后使监测仪进入测定状态后即能显示降主动脉血流、主动脉直径、CO、左室收缩性、MAP、外周血管阻力等血流动力学参数。结合CO2图谱分析还能及时提示组织的灌流状态。