导航:首页 > 安装方法 > 离子选择电级的测量方法

离子选择电级的测量方法

发布时间:2022-11-12 01:53:00

Ⅰ 氟离子选择电极法

引自
厦门市疾病预防控制中心
2007.5
讲义
对于氟离子选择电极,较佳的试剂酸度条件为pH
5
~
6。
pH<5时,溶液中会发生下述弱酸配位反应:2F-+H+=HF+F-=HF2-,使溶液中的F-减少,会影响电极的灵敏度,使分析结果偏低。这是由于氟电极只对F-响应对HF或HF2-无响应,而且氟电极的氟化镧电极膜会增大被溶解,影响测定。
当pH>8
时,OH-对电极的响应,将严重影响测定结果,使分析结果偏高。有研究表明,OH-对氟电极的干扰还由于OH-与膜表面发生化学反应,而引入试液额外的
F-。其反应式为:LaF3+3OH-=La(OH)3+3F-

Ⅱ 氟量的测定 离子选择电极法

1 范围

本方法规定了地球化学勘查试样中氟含量的测定方法。

本方法适用于水系沉积物及土壤试料中氟量的测定。

本方法检出限(3S):20μg/g氟。

本方法测定范围:60μg/g~3400μg/g氟。

2 规范性引用文件

下列文件中的条款通过本方法的本部分的引用而成为本部分的条款。

下列不注日期的引用文件,其最新版本适用于本方法。

GB/T 20001.4 标准编写规则 第4部分:化学分析方法

GB/T 14505 岩石和矿石化学分析方法总则及一般规定。

GB6379 测试方法的精密度通过实验室间试验确定标准测试方法的重复性和再现性。

GB/T 14496—93 地球化学勘查术语。

3 方法提要

试料用氢氧化钠熔融后,用水浸取熔块,使氟与部分元素的化学键解离而释放出氟离子。在pH6.8~7.2的柠檬酸-三乙醇胺溶液中,以氟离子选择电极为指示电极,饱和甘汞电极为参比电极,使与含氟离子的溶液组成自发电池。其电动势随溶液中氟离子活度而变化,且氟电极电位(E)与溶液中氟离子活度符合能斯特方程:E=59.1×pF(25℃),可用离子计测定试液中的电位(E)值。电位值与对应的氟离子浓度在半对数纸上绘出工作曲线,由工作曲线上查得试料溶液中的氟含量。

注:pF为氟离子摩尔浓度的负对数;59.1是在25℃时响应斜率的理论值。

4 试剂

除非另有说明,在分析中仅使用确认为分析纯的试剂和蒸馏水(去离子水)。

4.1 乙醇[φ(CH3CH2OH)=95%]

4.2 氢氧化钠

4.3 柠檬酸钠溶液[c()=1mol/L]

500g柠檬酸钠用水溶解后,并用水稀释至1700mL,搅匀,备用。

4.4 盐酸(1+1)

4.5 氢氧化钠溶液[ρ(NaOH)=5g/100mL]

称取5g氢氧化钠于200mL塑料烧杯中,加水溶解后,并用水稀释至100mL,贮存在塑料瓶中备用。

4.6 三乙醇胺缓冲溶液(pH=7.0)

量取200mL三乙醇胺,加入约215mL盐酸(4.4),使溶液pH在 6.8~7.1范围,再用水稀释至1L。

4.7氟标准溶液

4.7.1 氟标准溶液Ⅰ[ρ(F)=100μg/mL]称取0.2210g已经500℃烘焙15min后,并在干燥器中冷却后的优级纯氟化钠,置于150mL塑料烧杯中,加入100mL水溶解后,移入1000mL容量瓶中,用水稀释至刻度,摇匀。即刻移入净化的干燥塑料瓶中备用。

4.7.2 氟标准溶液Ⅱ[ρ(F)=10μg/mL]分取50.00mL氟标准溶液(4.7.1),移入500mL容量瓶中,用水稀释至刻度,摇匀。即刻移入净化的干燥塑料瓶中备用。

4.8 酚红指示剂[ρ(C19H14O5S)=1g/L]称取0.10g酚红置于100mL烧杯中,加入100mL水及数滴氢氧化钠溶液(4.5)使之溶解。

5 仪器及材料

5.1 离子计

精度0.1mV。

5.2 氟离子选择电极

要求氟含量在(10-1~10-5)mol/L浓度内,电极电位与浓度的负对数呈良好的线性关系。电极使用前在0.001mol/L氟化钠溶液中浸泡1h,使之活化,然后用水清洗至说明书上的规定值(一般在去离子水中的电位为-320mV)。

5.3 饱和甘汞电极

5.4 电磁搅拌器

5.5 石墨坩埚

规格:30 mL。

6 分析步骤

6.1 试料

试料粒径应小于0.097mm,经室温干燥后,装入磨口小玻璃瓶或小塑料瓶中备用。

试料量 称取0.5g~1.0g试料,精确至0.0002g。

6.2 空白试验

随同试料分析全过程做双份空白试验。

6.3 质量控制

选取同类型水系沉积物或土壤一级标准物质2个~4个样品,随同试料同时分析。

6.4 测定

6.4.1 称取试料(6.1)置于石墨(或镍)坩埚(5.5)中,放入高温炉内,升温至450℃焙烧1h(石墨坩埚宜低于400℃:若有机质较低,可不用焙烧),取出冷却。加入几滴乙醇(4.1)润湿试料,加入6g氢氧化钠(4.2),放入高温炉内,慢慢升温至620℃,保温15min。取出,稍冷后,将坩埚放入盛有60mL沸水的150mL塑料烧杯中[若溶液中有锰离子的绿色,可加入几滴乙醇(4.1)还原]。待融熔物完全脱落后,用水洗出坩埚,冷至室温,移入100mL容量瓶中,用水稀释至刻度,摇匀。放置澄清或干过滤。

注:也可将试料加入4g过氧化钠搅匀,面上再覆盖1g,在镍坩埚中于700℃的高温炉中熔融后,取出。以下手续同6.4.1进行。

6.4.2 分取10.00mL澄清溶液(6.4.1)于50mL塑料烧杯中,加入7.5mL柠檬酸钠溶液(4.3),摇匀。加2滴酚红指示剂(4.8),用盐酸(4.4)和氢氧化钠溶液(4.5)调至溶液呈橙红色pH(6.8~7.1);加入 2.5mL三乙醇胺缓冲溶液(4.6),将溶液移入25mL容量瓶中,用水稀释至刻度,摇匀。倒回原塑料杯中。

6.4.3 往试液(6.4.2)中放入1根转子,将塑料杯放在电磁搅拌器(5.4)上,插入氟离子选择电极(5.2)和饱和甘汞电极(5.3),使转子在不断搅拌下,在离子计(5.1)上测量并读取平衡后稳定的电位值。同时进行工作曲线的测量。从工作曲线上查得相应的氟量。

6.4.4 工作曲线的绘制 于一组25mL容量瓶中,分取0.0mL、0.5mL、1.0mL、2.0mL、4.0mL氟标准溶液Ⅱ(4.7.2);继续分取0.8mL、1.6mL、2.4mL、3.2mL氟标准溶液Ⅰ(4.7.1)。分别加入5 mL空白试验(6.2)溶液[为了便于控制体积,可将两份空白试验(6.2)溶液合并在同一个100mL容量瓶中,这样就可以加入分取试料溶液体积的一半]。再加入7.5mL柠檬酸钠溶液(4.3),摇匀。以下同(6.4.2)条步骤进行。以氟量(1gC)为横坐标,氟离子选择电极电位值为纵坐标,在半对数纸上绘制工作曲线。

7 分析结果的计算

按下式计算氟的含量:

区域地球化学勘查样品分析方法

式中:m1——从工作曲线上查得试料溶液中氟的量,μg;m0——从工作曲线上查得空白试验溶液中氟的量,μg;V1——分取制备溶液的体积,mL;V0——制备溶液的总体积,mL;m——试料质量g。

8 精密度

氟量的精密度见表1。

表1 精密度[w(F),10-6

附 录 A

(资料性附录)

A.1 从实验室间试验结果得到的统计数据和其他数据

如表A.1。

本方法精密度协作试验数据是由多个实验室进行方法合作研究所提供的结果进行统计分析得到的。

表A.1中不需要将各浓度的数据全部列出,但至少列出了3个或3个以上浓度所统计的参数。

A.1.1 列出了试验结果可接受的实验室个数(即除了经平均值及方差检验后,属界外值而被舍弃的实验室数据)。

A.1.2 列出了方法的相对误差参数,计算公式为,公式中为多个实验室测量平均值;x0为一级标准物质的标准值。

A.1.3 列出了方法的精密度参数,计算公式为,公式中Sr为重复性标准差、SR为再现性标准差。为了与GB/T20001.4所列参数的命名一致,本方法精密度表列称谓为“重复性变异系数”及“再现性变异系数”。

A.1.4 列出了方法的相对准确度参数。相对准确度是指测定值(平均值)占真值的百分比。

表A.1 F统计结果表

续表

附加说明

本方法由中国地质调查局提出。

本方法由武汉综合岩矿测试中心技术归口。

本方法由广东省物料实验检测中心负责起草。

本方法主要起草人:李展强、张汉萍、潘孝林、李锡坤。

本方法精密度协作试验由武汉综合岩矿测试中心江宝林、叶家瑜组织实施。

Ⅲ 离子选择电极法

方法提要

硫离子选择电极以硫化银为敏感膜,它对银离子和硫离子均有响应,其电极电势与被测溶液中银离子活度呈正相关。

银离子活度和硫离子活度由硫化银溶度积决定,即电极对S2-的响应是通过Ag2S的溶质积Ksp间接实现的,因而测定的电极电势值与硫离子活度的负对数呈线性关系。当标准系列溶液与被测液离子强度相近,两者电极电势相等时其S2-浓度也相等。

加入抗坏血酸作抗氧化剂,防止S2-被溶解氧所氧化。海水中硫含量大于160μg/L时可直接取样测定。小于160μg/L时,可加入乙酸锌溶液使硫离子形成硫化锌随氢氧化锌共沉淀,再将沉淀溶于碱性EDTA-抗坏血酸抗氧配位溶液后进行测定。

适用于大洋近岸海水中硫化物的测定

检出限(S2-)为3.3μg/L。

仪器和装置

离子计或精密pH计。

硫离子选择电极。

双液界饱和甘汞电极[外充液为硝酸钾溶液]。

电动离心机。

滴定管(50mL),棕色。

铁芯磁转子(被覆聚乙烯膜)。

试剂

盐酸。

抗氧配位储备溶液分别称取40gNaOH、40g乙二胺四乙酸二钠至200mL聚乙烯烧杯中,加60mL水(已煮沸并放冷或已通氮气除氧),溶解及冷却后稀释至200mL,转入聚乙烯试剂瓶中,于阴凉处保存。

抗氧配位使用液

a.取100mL抗氧配位储备溶液,加5g抗坏血酸,加水稀释至500mL,盛于聚乙烯试剂瓶中(用时现配)。

b.取100mL抗氧配位储备溶液,加5g抗坏血酸,溶解。盛于聚乙烯试剂瓶中(用时现配)。

氢氧化钠溶液(400g/L)。

乙酸锌溶液(1.0mol/L)称取22g乙酸锌溶于水中,并稀释至100mL。

饱和氯化钾溶液称取80gKCl溶于100mL水中,须保持有KCl结晶。

硝酸钾溶液(0.1mol/L)称取1.02gKNO3溶于水中,并稀释至100mL。

硫代硫酸钠标准溶液c(Na2S2O3·5H2O)≈0.1mol/L称取25g硫代硫酸钠(Na2S2O3·5H2O),用新煮沸并冷却的水溶解,稀释至1000mL,加入1g无水Na2CO3或数粒HgI2以防止分解,混匀。保存于棕色瓶中。

硫代硫酸钠标准溶液标定于250mL碘容量瓶中加入1gKI及50mL水,加15.00mL重铬酸钾标准溶液 及5mL(1+1)HCl,于暗处静置5min后用滴定管滴加Na2S2O3标准溶液至呈黄绿色,加入1mL淀粉溶液(10g/L),继续滴定至蓝色刚刚褪去(同时呈现亮绿色)为终点。由滴定耗硫代硫酸钠溶液的体积和移取重铬酸钾标准溶液体积及其浓度,计算硫代硫酸钠溶液的浓度(mol/L)。

重铬酸钾标准溶液 称取4.904g重铬酸钾(K2Cr2O7),加水溶解,全量转入1000mL容量瓶,加水至标线,混匀。

淀粉溶液(10g/L)称取1g可溶性淀粉,置于200mL烧杯中,加少许水调成糊状后,再加入100mL沸水并煮至无色透明。若浑浊则冷却后过滤。加入少许苯甲酸可防腐。

碘标准溶液c(1/2I2)=0.1000mol/L称取15g碘化钾(KI)溶于50mL水中,加入6.345g碘(I2),溶解后全量转入500mL容量瓶中,加水至标线,混匀。贮存于标色瓶放阴凉处保存。

硫化物标准溶液c(1/2Na2S)≈0.200mol/L称取5g硫化钠(Na2S·9H2O)溶于新煮沸经冷却的100mL水中,加入1gNaOH,定容至200mL。

硫化物标准溶液标定移取2.00mL硫化钠标准溶液置碘容量瓶中,依次加入50mL水/20.00mL碘标准溶液[c(1/2I2)=0.1000mol/L]、2mL(1+1)HCl,用已标定的Na2S2O3标准溶液滴定呈淡黄色,加入1mL淀粉溶液(10g/L),继续滴定至蓝色刚消失为终点。重复标定,两次读数差应小于0.03mL。

按下式计算硫化钠标准溶液的浓度:

岩石矿物分析第四分册资源与环境调查分析技术

式中:c(1/2Na2S)为硫化钠标准溶液浓度,mol/L;c1为碘标准溶液浓度,mol/L;V1为碘标准溶液体积,mL;c2为硫代硫酸钠标准溶液浓度,mol/L;V2为硫代硫酸钠标准溶液体积,mL;V3为硫化钠标准溶液体积,mL。

硫化物标准使用溶液c(1/2Na2S)=0.200mol/L准确移取一定量(V,mL)的硫化物标准储备溶液,置于50mL容量瓶中,加水至标线,混匀。

岩石矿物分析第四分册资源与环境调查分析技术

式中:ca为硫化物标准储备溶液标定浓度,mol/L。

校准曲线

移取5.00mL硫化物标准使用溶液[c(1/2Na2S)=0.200mol/L]置于50mL容量瓶中,加抗氧配位使用液至标线,混匀。

用抗氧配位使用液(a)逐级稀释配制标准系列各浓度:0mol/L、2.00×10-7mol/L、2.00×10-6mol/L、2.00×10-5mol/L,2.00×10-4mol/L、2.00×10-3mol/L、2.00×10-2mol/L。分别倒入50mL烧杯中,加入铁芯磁子,以硫离子选择电极为指示电极,甘汞电极为参比电极,在电磁搅拌下从低浓度至高浓度测定标准系列的电势值Ei。其中零浓度的电势值为E0。以(Ei-E0)为纵坐标,相应浓度为横坐标,在半对数坐标纸上绘制校准曲线。

分析步骤

准确量取20~40mL水样(根据硫含量而定)至50mL容量瓶,加入10mL抗氧配位使用液(b),加水至标线,混匀。按上述步骤测定其电势值(Ex)。

若水样中硫含量小于160μg/L。可改为:

量取200mL水样至200mL聚乙烯烧杯中,加1mL1.0mol/L乙酸锌溶液,用400g/LNaOH溶液调pH为12左右,再搅拌片刻,静置沉淀。离心分离,弃去清液。以少量水洗淀淀2次。沉淀用10mL抗氧配位使用液(b)溶解后,转移至50mL容量瓶中,加水至标线,混匀。按上述步骤测定其电势值(Ex)。

同时在50mL容量瓶中加入10mL抗氧配位使用液(b),加水至标线,混匀。按上述步骤测定其分析空白电势值Eb

上述测定均需平行6次,取平均值。

据(Ex-Eb)值从校准曲线上查出相应的浓度,按下式计算水样中硫化物的浓度:

岩石矿物分析第四分册资源与环境调查分析技术

式中:ρS2-为水样中硫化物(S2-)浓度,mg/L;cx为查标准曲线得的硫(S2-)的浓度,mol/L;V为水样体积,mL;16.04为1/2硫的摩尔质量数值,单位用g/mol。

注意事项

1)电极性能的好坏是决定测试结果的关键,为此对电极的使用要注意保护。

2)当pH>13时,电极膜受腐蚀。由于在强碱性溶液中操作,所以要注意控制溶液的pH值,电极用后要用去离子水洗净到空白值,擦干避光保存。

3)CN-会使电极中毒干扰测定。可加入甲醛掩蔽,加入量视CN-浓度大小而定。

Ⅳ 氯离子选择电极的操作方法

(1)氯离子选择电极首先活化---在蒸馏水浸泡24时!
(2)与测量条件相同的环境下测绘标准曲线!
(3)测量被测液!
(4)比对标准曲线求结果!

Ⅳ 离子选择性电极测定自来水中微量溴或者碘或者氯可行的实验方案。 谢谢!

离子选择性电极法测定水中氟离子

一、实验目的

1、 掌握直接电位法的测定原理及实验方法。
2、 学会正确使用氟离子选择性电极和酸度计。
3、 了解氟离子选择性电极的基本性能及其测定方法。

二、实验原理
氟离子选择电极是一种以氟化镧(LaF3)单晶片为敏感膜的传感器。由于单晶结构对能进入晶格交换的离子有严格地限制,故有良好的选择性。将氟化镧单晶(掺入微量氟化铕(ⅱ)以增加导电性)封在塑料管的一端,管内装有0.1mol•L-1NaF和0.1mol•L-1NaCl溶液,以Ag-AgCl电极为参比电极,构成氟离子选择性电极。用氟离子选择性电极测定水样时,以氟离子选择电极作指示电极,以饱和甘汞电极作参比电极,组成的测量电池为
Ag |AgCl(s) | NaF, NaCl(0.1mol/L) | LaF3膜| 待测液| | 饱和KCl | Hg2Cl2 | Hg
电池的电动势(E)随溶液中氟离子的浓度的变化而改变,即
E(电池) = E(SEC)- E(F)
= E(SCE)- k + RT/F lnα(F,外)
= K + RT/F lnα(F,外)
= K +0.059 lna(F,外)
式中,0.059为常温下电极的理论响应斜率,,K与内外参比电极,内参比溶液中F-活度有关,当实验条件一定时为常数。
用氟离子选择电极测量F- 时,最适宜PH值范围为5.5~6.5。PH值过低,易形成HF,影响F-的活度;PH值过高,易引起单晶膜中La3+的水解,形成La(OH)3,影响电极的响应,故通常用PH值约为6的柠檬酸盐缓冲溶液来控制溶液的PH值。某些高价阳离子(如Al3+、Fe3+)及氢离子能与氟离子络合而干扰测定,而柠檬酸盐可以消除Al3+、Fe3+的干扰。在碱性溶液中,氢氧根离子浓度大于氟离子浓度的1/10时也有干扰,而柠檬酸盐可作为总离子强度调节剂,消除标准溶液与被测溶液的离子强度差异,使离子活度系数保持一致。
氟离子选择电极法具有测定简便、快速、灵敏、选择性好、可测定浑浊、有色水样等优点。最低检出浓度为0.05mg/L(以F-计);测定上限可达1900mg/L(以F-计)。适用于地表水、地下水和工业废水中氟化物的测定。

三、仪器和试剂
1.仪器:PHS-3C pH计,85-2型恒温电磁搅拌器,氟离子选择性电极,饱和甘汞电极,1mL,5mL,10mL吸量管,25mL移液管,100mL,50mL烧杯各一个,50mL容量瓶7个,胶头滴管,洗耳球,滤纸,镊子。
2. 试剂:氟离子标准溶液:1.0*10-3mol/L;柠檬酸钠缓冲溶液:0.5mol/L(用1:1盐酸中和至PH值约为6),去离子水。

四、实验步骤

1、 预热及电极安装
将氟离子标准溶液和甘汞电极分别与pH/mV计相接,开启仪器开关,预热仪器。
2、 清洗电极
取去离子水50~60mL置于100mL烧杯中,放入搅拌磁子,插入氟电极和饱和甘汞电极。开启搅拌器,2min后,若读数大于-300V,则更换去离子水,继续清洗,直至读数小于-300V。
3、工作曲线法
(1)标准溶液的配制及测定
分别准确移取氟离子(1.0*10-3mol/L)标准溶液0.20,0.40,1.00,2.00,4.00,10.00mL于6个50mL容量瓶中,各加入5.00mL柠檬酸盐缓冲溶液,用去离子水稀释至刻度,摇匀。得到系列标准溶液。
用待测的标准溶液润洗塑料烧杯和搅拌磁子2遍。用干净的滤纸轻轻吸附粘在电极上的水珠。将剩余的氟水样全部倒进塑料烧杯中,放入搅拌磁子,插入洗净的电极进行测定。待读数不变稳定后,读取电位值。按顺序从低至高浓度依次测量,每测量一份试样,无需清洗电极,只需用滤纸轻轻沾去电极上的水珠。测量结果列表记录。
(2)水样的测定
取氟水样25.00mL于50mL容量瓶中,加入5.00mL柠檬酸盐缓冲溶液,用去离子水稀释至刻度,摇匀。待测。用少许氟水样润洗塑料烧杯和搅拌磁子2遍。用干净的滤纸轻轻吸附粘在电极上的水珠。将剩余的氟水样全部倒进塑料烧杯中,放入搅拌磁子,插入洗净的电极进行测定。待读数不变稳定后,读取电位值。

五、结果处理
数据记录如下:
CF(mol/L) 待测水样
Ei(mV)

1、用系列标准溶液的数据,在坐标纸上绘制E—lgCF-曲线。

2、根据水样测得的电位值E1,从标准曲线上查到其氟离子浓度,计算水样中氟离子的含量(以mol/L 计)。
由计算机处理得标准曲线方程为
相关系数R =
由水样测得的电位值Ei = 100 mV,代入标准曲线方程可得,氟离子的lgC(F-)= ,故氟离子的浓度为C(F-)= ,则水样中的氟离子的含量为C(F-)=

这是刚带完本科生做完的一个实验,实验结果发现氟标准系列偏大,您可以把标准再进行稀释测定即可。

Ⅵ 离子选择性电极如何使用

将离子选择性电极(指示电极)和参比电极插入试液可以组成测定各种离子活度的电池.
具体有1.标准曲线法
2.标准加入法

Ⅶ 如何测离子选择电极性能的线性范围

有关电极的概念

离子选择性电极(ISE):对某种特定的离子,具有选择性响应。它能将溶液中特定的离子含量转换成相应的电位,从而实现化学量→电学量的转换,而对溶液中的离子浓度进行测量。

指示电极:电极电位与溶液中待测离子活度(或浓度)呈Nernst响应的电极称为指示电极。在氟化物测定的离子选择电极法中氟电极为指示电极。

参比电极:是指在温度一定的条件下,电极电位已知,且不随待测溶液的组成改变而改变。在氟化物测定的离子选择电极法中甘汞电极为参比电极

测定氟化物的有关技术

氟电极的膜电位是随试液中氟离子活度的变化而变化,这种响应在一定的活度区间内电位和活度之间符合Nernst方程。其方程式为:

T= 273.15 + t(被测液温度) ,ni=

aF = r ·ρF , r 为活度系数,当在稀电解质溶液中r≈1, ρF为被测离子浓度。

所以,在稀溶液中活度与浓度接近,由式(1)可见,电位E与 -log aF 或 -log ρF成直线关系,因此可以通过测定E值,可求出aF或ρF 。

离子选择电极的特征参数

电极的选择性事实上,所有的离子电极在不同程度上受到干扰离子的影响。只有那些对待测离子具有选择性响应的电极才具有实际应用价值。因此,选择性是离子电极最重要的性能指标之一。电极的选择性用选择性系数来描述。

在考虑共存离子干扰影响时,可以由修正的Nernst方程式来表示电极电位。

线性范围和检测下限

⑴ 线性范围:各种离子电极在一定的条件下,其电极电位与待测离子活度间符合Nernst关系。所得到的E -log(ai)曲线中直线部分所对应的浓度范围称为ISE的线性范围。

⑵ 检测下限:表明离子选择电极可进行有效测量待测离子的最低浓度。目前大多数商品电极的检测下限为1×10-7~1×10-5mol/L。

影响检测下限的因素

①主要因素是电极膜活性物质在溶液中的溶解度,即测定下限不能低于电极膜活性物质的溶解度。

②测试方法和溶液的组成。

③电极的预处理及搅拌速度等。

电极斜率s

在线性范围内,当待测离子的活度变化一个数量级时所引起的电极电位变化值(mV)称为该电极对所给定离子的斜率,即为E-logai曲线的斜率 。

理论值:表示为s = 2.303RT/(niF)。反映了被测离子的活度变化10倍时,膜电极将其转换为电位的能力,25℃时一价离子为59.16mV。在实际应用时由于电极性能变化,电极的斜率会偏离理论值。若电极的斜率过低,将增大测量的误差。

判断:一般认为电极的实测s达到理论值的90%以上可认为质量较好,小于70%则认为电极不合格

响应时间及稳定性

响应时间:指电极浸入试液后达到稳定电位(±1mv )所需时间。一般几秒至几分钟不等。电极响应时间及稳定性的影响因素:

①与电极膜本身结构、性质、溶解度、厚度、光洁度等有关。

②与待测液的浓度有关。

③与被测离子到达电极表面的速度有关:搅拌溶液可加速被测离子到达电极表面的速率,从而加快电极达到平衡的时间。所以在测量为未知溶液时,应该与标准品在同一搅拌速度下进行。

④与共存离子的种类和浓度有关:当共存于被测液中的离子为不干扰离子时,它的存在能缩短响应时间,当共存离子为干扰离子时,将增加响应时间。

温度:温度升高时,将缩短电极的响应时间。加快离子交换速度,降低内阻,加快电荷在膜内传导。

稳定性:是指电极保持在恒温条件下,E值可在多长时间内保持恒定。用漂移程度和重现性来衡量。

漂移:是指在恒定组成和温度的溶液中,膜电极与参比电极构成的电池的电位随时间而缓慢有序变化程度。

重现性:电极的重现性则是指多次测量之间电极电位重现程度。

电极的寿命

电极的寿命:是指电极保持其符合能斯特方程功能的时间。

电极寿命的影响因素:

①机械损伤。

②敏感膜受到化学腐蚀。

③连续使用在热或者腐蚀性溶液中使用,寿命可能只有几天甚至更短。正常使用通常可能达到1~2年。

电极的老化和中毒

电极的老化:是指电极使用一段时间后内阻增加,灵敏度下降的现象。表现为响应时间长,响应斜率降低,线性范围变窄等,敏感膜失去活性现象。

原因 :① 敏感膜中离子逐渐地溶解到溶液中,引起载体减少,交换电流变小。

②“晶格缺陷”的逐渐减少。溶液和敏感膜的离子交换使结晶中的“缺陷“趋向消失。

电极中毒:是指电极表面活性材料与试液中离子发生化学反应,导致电极对被测离子活度不再具有能斯特响应功能的现象。

对大多数的固膜电极可采用机械布轮抛光的办法更新电极表面。即可恢复电极的正常功能。

参比电极性能及使用

参比电极(甘汞电极)性能

(1)装置简单,电极电位重现性好,在测量电势时,即使有微量电流通过,电极电位保持恒定。

(2)在甘汞电极使用过程中,为了形成良好的恒定的液接电势,要求氯化钾溶液以一定的速度通过液接部位进行渗漏。以多孔陶瓷为液接部的甘汞电极,其渗漏速度每6h小时约为1滴。渗漏过快将引起甘汞电极电位漂移,过慢不能保证在液接部有良好的离子接触,甚至增大甘汞电极的内阻。

当甘汞电极与待测液接触时,若存在会浸蚀汞和甘汞,或能与KCl液起反应的物质,都将影响甘汞电极的电位。因此要防止待测液成分的回扩散,回扩散现象将使测定电位值漂移偏差。

防止回扩散方法

A、加置盐桥,使回扩散的有害离子只能扩散到盐桥溶液,而不能进入甘汞电极的内充液中。

B、甘汞电极的内参液要高出待测液面2cm 以上。

使用甘汞电极注意事项:

(1) 使用前,应注意观察参比电极外观,有无裂痕、接线是否良好?内充液是否灌满至注入孔?有无气泡?管内为饱和KCl溶液(GR级,杂质少,否则引起漂移),并KCl溶液液面高于管内汞球体,管内有少量KCl结晶物。

(2) 使用前,应将电极注入孔的小橡皮塞取下,以维持一定的流速,并保持KCl 液面与待测液面的高度差。

(3) 用后立即清洗干净液接部位,以防止堵塞。不用时在加液口和液接部套上橡胶帽。长期不用,应充满内参液。在电极盒中或氯化钾溶液中静置保存。

氟电极法测定结果的影响因素

及其消除方法

1、影响因素

⑴ 温度:因温度对电极斜率有影响,

s =2.303RT/(niF) ,

并影响甘汞电极的电位。

所以要在恒温下进行(被测溶液的温度要一致)。

离子强度

离子选择电极是根据能斯特方程测定溶液中离子的活度。而离子的活度等于活度系数与浓度的乘积。因此,电极电位与活度的校正曲线和电位与浓度的校正曲线是有差异的,这种差异性在高浓度范围内尤其明显。

溶液中某种离子的活度主要决定于溶液的离子强度。显然,在温度一定,离子强度一定时,离子的活度系数是一定的。

在实际工作中,采用在标准溶液和未知溶液中加入等量的高浓度惰性电解质,使标准溶液和试液的总离子强度相等,求得待测物质浓度。如在F-的测定中采用加入总离子强度调节缓冲液(TISAB)的方法。在加入TISAB后,可使电极在低浓度时响应时间缩短。

(total ion strength adjustment buffer , TISAB)

溶液的pH值

对于氟离子选择电极,较佳的试剂酸度条件为pH 5 ~ 6。

pH<5时,溶液中会发生下述弱酸配位反应:2F-+H+=HF+F-=HF2-,使溶液中的F-减少,会影响电极的灵敏度,使分析结果偏低。这是由于氟电极只对F-响应对HF或HF2-无响应,而且氟电极的氟化镧电极膜会增大被溶解,影响测定。

当pH>8 时,OH-对电极的响应,将严重影响测定结果,使分析结果偏高。有研究表明,OH-对氟电极的干扰还由于OH-与膜表面发生化学反应,而引入试液额外的 F-。其反应式为:LaF3+3OH-=La(OH)3+3F-

干扰物质

干扰物质有两种表现形式:

待测液中所含成分与LaF3单晶作用,与La3+或F- 形成络合物或某种结合物,影响电位测定。如前面所述的OH-,使测得结果偏高。

待测液中存在与F-络合的离子,如Fe3+ 、 Al3+ Be2+ 、 Th4+等,使测得结果偏低。

干扰消除方法

消除这些影响因素的方法是在标准溶液和试样溶液中加相同体积的总离子强度调节缓冲液(TISAB)。

⑴ TISAB 的主要成分及作用:

络合剂(惰性电解质):如柠檬酸盐、CDTA等。这些离子是一些比F-更强的络合剂,优先与上述干扰离子相结合,从而使氟离子从络合物中游离出来。

离子强度调节剂:NaCl等,高浓度电解质用以维持溶液具有相同的活度系数,消除溶液间离子强度差异对电位的影响。

pH调节剂:醋酸、盐酸、氢氧化钠等,形成柠檬酸盐、醋酸盐的pH缓冲体系。

使用TISAB应注意问题:

作为TISAB的试剂应达到所要求的纯度,否则能引入干扰杂质,增加空白的本底。

配制TISAB的试剂刚混合时会明显放热使溶液温度升高,此时不宜用pH计直接边测边调最终所需的pH。

在测定液中柠檬酸盐的浓度不能大于0.5mol/L,浓度过高时柠檬酸盐可能会与电极的膜材料发生反应。

LaF(固)+Cit3-(水)=LaCit(水)+3F-(水)

使膜相中的氟离子转移到溶液中造成测量误差。

例:尿氟测定的TISAB液:称取58g氯化钠,4g柠檬酸三钠溶于500mL水中,加入57ml冰乙酸,用5mol/L氢氧化钠调节pH为5.0~5.5后,用水稀至1000mL。

氟电极法的误差来源

⑴ 离子选择电极误差:主要是电极响应特性引起的误差,来自膜电位随时间与温度变化引起的漂移及斜率变化,电极老化及电极绝缘性能不良或静电感应对膜电位的影响,以及干扰离子及离子强度变化影响膜电位的数值。

(2)参比电极误差:主要来自参比电极电位漂移,温度波动及液接电位漂移引起的误差。

(3)离子计的误差:主要来自输入阻抗,输入电流,电子元器件的质量以及这些元器件随温度变化和电磁干扰等引起的漂移。

(4) 标准溶液误差:来自配置过程中的试剂 、天平、容量器皿或试剂放置过久储存不当等。

(5) 操作误差:包括电极的洗涤和预处理,电极校正的方法或使用不当,搅拌速率过快,平衡电位的读数不准,数据记录作图与计算上的不当以及取样和预处理等。

测试装置的正确使用

⑴ 离子计或酸度计的精度要求±0.1mV。在进行测试之前,先要检查一下使用的仪器和电极对是否处于使用状态,仪器开机预热。

⑵ 电极活化:氟离子选择性电极使用前应置于相应的标液中浸泡活化一段时间(尿氟、水氟测定时的电极活化可用~10μg/mL氟标液),1~2h或几十分钟。新的长久未用的时间长些,经常使用的活化时间短或不活化。(较长时间不用的氟电极宜采用干存放,不要泡在纯水中)

(3) 根据前述参比电极使用注意事项检查甘汞电极,临用前预先竖插在纯水中,使液接电位达到稳定。

(4) 检查氟电极,若发现其内充液中有气泡附于氟电极内膜表面,应采取措施排除否则也会造成电极内导体接触不良而影响电位正确测量。

(5) 测量过程中应注意:搅拌的速率稳定;电极对置入试液的深度基本相同;固膜电极测量时,一般搅拌速度为中慢速为佳,可在搅拌中读取数值。

(6)在测量过程中如何判断电极是否达到平衡电位是极其重要的,根据IUPAC推荐响应时间定义,电位变化≤1mV/min可认为响应达到平衡。重要的是,在标准液与样液测量中,应按完全一样的方式进行。尿氟测定方法中的规定是电位读数稳定后读取(即30s内电极电位变动小于0.1mV),同时记录测定时的温度。

(7) 磁力搅拌器长时间运转后,可能造成搅拌器机体温度升高并传入测量杯,给测定带来误差,故测量杯下常加绝热垫,并在测量间隔中替换绝热垫。

(8) 注意仪器的屏蔽与接地及避免电磁干扰。如果开机后仪器电位读数不停变动(抖动),可能原因之一是仪器接地不良。

(9) 由于电极有“记忆”效应,在测含较高氟的样品后,一定要将氟电极洗至要求的空白电位。

(10) 标准加入法计算所用的电极斜率(s),要用被测液加标前、后所测得的E1和E2所对应的氟标准液浓度范围内的电极实测斜率。即电极的实测斜率s取与被测液相接近的浓度范围的标准液的测定值,而不能以理论斜率或实测的标准系列的平均斜率(指全区间)的s值计算。

计算回归方程:

以氟化物标准系列测得的mV值为 x,

以标准液氟质量浓度的对数(logCF-)为 y,

建立 y = a + bx 方程,或 x = a’ +b’ y 方程

输入电子计算机器内,求a、b值;

氟化物浓度(F-mg/L)= y 的反对数值。

Ⅷ 如何确定氟离子电极的测量范围

有关电极的概念
离子选择性电极(ISE):对某种特定的离子,具有选择性响应.它能将溶液中特定的离子含量转换成相应的电位,从而实现化学量→电学量的转换,而对溶液中的离子浓度进行测量.
指示电极:电极电位与溶液中待测离子活度(或浓度)呈Nernst响应的电极称为指示电极.在氟化物测定的离子选择电极法中氟电极为指示电极.
参比电极:是指在温度一定的条件下,电极电位已知,且不随待测溶液的组成改变而改变.在氟化物测定的离子选择电极法中甘汞电极为参比电极
测定氟化物的有关技术
氟电极的膜电位是随试液中氟离子活度的变化而变化,这种响应在一定的活度区间内电位和活度之间符合Nernst方程.其方程式为:
T= 273.15 + t(被测液温度) ,ni=
aF = r ·ρF , r 为活度系数,当在稀电解质溶液中r≈1, ρF为被测离子浓度.
所以,在稀溶液中活度与浓度接近,由式(1)可见,电位E与 -log aF 或 -log ρF成直线关系,因此可以通过测定E值,可求出aF或ρF .
离子选择电极的特征参数
电极的选择性事实上,所有的离子电极在不同程度上受到干扰离子的影响.只有那些对待测离子具有选择性响应的电极才具有实际应用价值.因此,选择性是离子电极最重要的性能指标之一.电极的选择性用选择性系数来描述.
在考虑共存离子干扰影响时,可以由修正的Nernst方程式来表示电极电位.
线性范围和检测下限
⑴ 线性范围:各种离子电极在一定的条件下,其电极电位与待测离子活度间符合Nernst关系.所得到的E -log(ai)曲线中直线部分所对应的浓度范围称为ISE的线性范围.
⑵ 检测下限:表明离子选择电极可进行有效测量待测离子的最低浓度.目前大多数商品电极的检测下限为1×10-7~1×10-5mol/L.
影响检测下限的因素
①主要因素是电极膜活性物质在溶液中的溶解度,即测定下限不能低于电极膜活性物质的溶解度.
②测试方法和溶液的组成.
③电极的预处理及搅拌速度等.
电极斜率s
在线性范围内,当待测离子的活度变化一个数量级时所引起的电极电位变化值(mV)称为该电极对所给定离子的斜率,即为E-logai曲线的斜率 .
理论值:表示为s = 2.303RT/(niF).反映了被测离子的活度变化10倍时,膜电极将其转换为电位的能力,25℃时一价离子为59.16mV.在实际应用时由于电极性能变化,电极的斜率会偏离理论值.若电极的斜率过低,将增大测量的误差.
判断:一般认为电极的实测s达到理论值的90%以上可认为质量较好,小于70%则认为电极不合格
响应时间及稳定性
响应时间:指电极浸入试液后达到稳定电位(±1mv )所需时间.一般几秒至几分钟不等.电极响应时间及稳定性的影响因素:
①与电极膜本身结构、性质、溶解度、厚度、光洁度等有关.
②与待测液的浓度有关.
③与被测离子到达电极表面的速度有关:搅拌溶液可加速被测离子到达电极表面的速率,从而加快电极达到平衡的时间.所以在测量为未知溶液时,应该与标准品在同一搅拌速度下进行.
④与共存离子的种类和浓度有关:当共存于被测液中的离子为不干扰离子时,它的存在能缩短响应时间,当共存离子为干扰离子时,将增加响应时间.
温度:温度升高时,将缩短电极的响应时间.加快离子交换速度,降低内阻,加快电荷在膜内传导.
稳定性:是指电极保持在恒温条件下,E值可在多长时间内保持恒定.用漂移程度和重现性来衡量.
漂移:是指在恒定组成和温度的溶液中,膜电极与参比电极构成的电池的电位随时间而缓慢有序变化程度.
重现性:电极的重现性则是指多次测量之间电极电位重现程度.
电极的寿命
电极的寿命:是指电极保持其符合能斯特方程功能的时间.
电极寿命的影响因素:
①机械损伤.
②敏感膜受到化学腐蚀.
③连续使用在热或者腐蚀性溶液中使用,寿命可能只有几天甚至更短.正常使用通常可能达到1~2年.
电极的老化和中毒
电极的老化:是指电极使用一段时间后内阻增加,灵敏度下降的现象.表现为响应时间长,响应斜率降低,线性范围变窄等,敏感膜失去活性现象.
原因 :① 敏感膜中离子逐渐地溶解到溶液中,引起载体减少,交换电流变小.
②“晶格缺陷”的逐渐减少.溶液和敏感膜的离子交换使结晶中的“缺陷“趋向消失.
电极中毒:是指电极表面活性材料与试液中离子发生化学反应,导致电极对被测离子活度不再具有能斯特响应功能的现象.
对大多数的固膜电极可采用机械布轮抛光的办法更新电极表面.即可恢复电极的正常功能.
参比电极性能及使用
参比电极(甘汞电极)性能
(1)装置简单,电极电位重现性好,在测量电势时,即使有微量电流通过,电极电位保持恒定.
(2)在甘汞电极使用过程中,为了形成良好的恒定的液接电势,要求氯化钾溶液以一定的速度通过液接部位进行渗漏.以多孔陶瓷为液接部的甘汞电极,其渗漏速度每6h小时约为1滴.渗漏过快将引起甘汞电极电位漂移,过慢不能保证在液接部有良好的离子接触,甚至增大甘汞电极的内阻.
当甘汞电极与待测液接触时,若存在会浸蚀汞和甘汞,或能与KCl液起反应的物质,都将影响甘汞电极的电位.因此要防止待测液成分的回扩散,回扩散现象将使测定电位值漂移偏差.
防止回扩散方法
A、加置盐桥,使回扩散的有害离子只能扩散到盐桥溶液,而不能进入甘汞电极的内充液中.
B、甘汞电极的内参液要高出待测液面2cm 以上.
使用甘汞电极注意事项:
(1) 使用前,应注意观察参比电极外观,有无裂痕、接线是否良好?内充液是否灌满至注入孔?有无气泡?管内为饱和KCl溶液(GR级,杂质少,否则引起漂移),并KCl溶液液面高于管内汞球体,管内有少量KCl结晶物.
(2) 使用前,应将电极注入孔的小橡皮塞取下,以维持一定的流速,并保持KCl 液面与待测液面的高度差.
(3) 用后立即清洗干净液接部位,以防止堵塞.不用时在加液口和液接部套上橡胶帽.长期不用,应充满内参液.在电极盒中或氯化钾溶液中静置保存.
氟电极法测定结果的影响因素
及其消除方法
1、影响因素
⑴ 温度:因温度对电极斜率有影响,
s =2.303RT/(niF) ,
并影响甘汞电极的电位.
所以要在恒温下进行(被测溶液的温度要一致).
离子强度
离子选择电极是根据能斯特方程测定溶液中离子的活度.而离子的活度等于活度系数与浓度的乘积.因此,电极电位与活度的校正曲线和电位与浓度的校正曲线是有差异的,这种差异性在高浓度范围内尤其明显.
溶液中某种离子的活度主要决定于溶液的离子强度.显然,在温度一定,离子强度一定时,离子的活度系数是一定的.
在实际工作中,采用在标准溶液和未知溶液中加入等量的高浓度惰性电解质,使标准溶液和试液的总离子强度相等,求得待测物质浓度.如在F-的测定中采用加入总离子强度调节缓冲液(TISAB)的方法.在加入TISAB后,可使电极在低浓度时响应时间缩短.
(total ion strength adjustment buffer , TISAB)
溶液的pH值
对于氟离子选择电极,较佳的试剂酸度条件为pH 5 ~ 6.
pH

Ⅸ 氟离子选择电极法测尿氟

1.性质氟是淡黄色、有刺激性的气体。原子量19.0,比重1.69,熔点-219.6℃,沸点-188.2℃。氟的性质极其活泼,遇水剧烈地分解成氟化氢和氧,在空气中迅速变成氟化氢,氟可与许多单质相作用。自然界中只以氟化物形态存在,如荧石(CaF2)、冰晶石(Na3AlF6)、磷灰石[Ca5(PO4)2F]等。氟化氢的熔点为-92℃,沸点19.5℃,可以任意比例溶解于水。氟化钠的沸点为1695℃。 2.接触机会制造冷冻剂(氟里昂,即二氟二氯甲烷)、氟塑料、氟橡胶、聚四氟乙烯、聚三氟氯乙烯、农业杀虫剂等。二、离子选择电极法测定尿氟 1.原理氟离子选择电极与含氟离子的待测液和甘汞电极组成电池,电池的电动势可用下式表示: E=[EAgCl/Ag + E膜] - EHgCl2 + E液接 + E不对称由于膜电位 E膜=(E0 - 0.0591gaFx) - (E0 - 0.0591gaF) E=EAgCl/Ag + 0.0591gaF - EHgCl2 + E液接 + E不对称 - 0.0591gaFx 在—定条件下,前五项恒定不变,可合并成新的常数K。即E=K - 0.0591gaF 即电池的电动势与溶液中氟离子活度的对数呈直线关系。在实际工作中,需要知道的是氟离子的浓度,根据a=gC可知,当离子强度一定时,活度系数g恒定,则有 E=K – 0.059lggCF =K - 0.0591gg - 0.0591gCF =K' - 0.0591gCF 即离子强度恒定时,电动势与溶液中氟离子浓度的对数成线性关系,据此,可以用标准曲线法或标准加入法定量。 2.尿样的采集和保存用聚乙烯瓶收集一次尿样。尽快测定比重,于4℃冰箱中可保存2周。 3.测定方法取10ml混匀尿样于小烧杯中,加10ml总离子强度调节缓冲液,混匀,测定mV数,在标准曲线上查出相应的氟浓度。 4.说明总离子强度调节缓冲液的作用: (1)控制各尿液与标准液的离子强度基本一致:通常尿液的离子强度在0.32mol/L左右,但不同的尿液其离子强度有差异。故在测定前,向尿液加入等体积的总离子强度调节缓冲液,使混合后溶液离子强度达到1mol/L左右,这样,不同尿液离子强度的差异被掩盖了。氟标准溶液是用纯水配制的,所以在标准溶液中,除了加总离子强度调节缓冲液外,还应加入模拟尿,使离子强度达到1mol/L左右。 (2)控制溶液的pH在5~5.5之间:由于氢氟酸是弱酸,在溶液中存在着电离平衡,当溶液的酸性较强时,氟离子与氢离子结合生成氟化氢,在氟电极上不响应,故需要将溶液的pH控制在5以上,使99%的氟以氟离子的形式存在;另一方面,OH-离子半径与F-接近,又都是负一价,氟电校对0H-有同样的响应,即0H-离子对F-离子的测定有明显的干扰,特别当溶液的pH高时,干扰尤其严重。因此,应控制溶液的pH不能太高。 (3)排除Al3+、Fe3+等离子的干扰,防止与F-离子形成配离子而干扰测定:A13+、Fe3+等离子能与F-离子形成配离子而干扰测定,所以在总离子强度调节缓冲液中加有柠檬酸盐。柠檬酸根离子能与A13+、Fe3+离子形成稳定的配合物,释放出氟离子,排除干扰。(4)可加快反应速度,缩短达到平衡所需时间。如10-6mol/L的F—在纯水中平衡时间约为1h,而加入离子强度缓冲液后,10min内即可达平衡。

阅读全文

与离子选择电级的测量方法相关的资料

热点内容
如何去痣最有效的方法 浏览:912
女用喷剂的使用方法 浏览:499
e63主题安装方法 浏览:849
超负荷工作计算方法 浏览:618
课文荷花教学方法 浏览:81
大明灯的正确使用方法 浏览:490
朱砂手串鉴别方法 浏览:646
吸烟污染的解决方法 浏览:659
家用贮水器安装方法 浏览:411
pp霜的正确使用方法 浏览:95
10岁脑瘫的治疗方法 浏览:712
小水泵施肥方法视频 浏览:567
白干山药片的食用方法 浏览:267
火棘盆栽结果后怎么浇水养殖方法 浏览:518
大华录像机安装方法 浏览:173
打卡第二天锻炼方法 浏览:968
应用文常见的照应方法有哪些 浏览:213
整流桥的电阻测量方法 浏览:527
干预性论文研究方法有哪几种 浏览:578
如何提高房价的方法 浏览:404