‘壹’ 现场X荧光测量方法
随着X荧光仪器、设备及工作方法的不断改进和完善,野外X荧光测量已经成为一种在现场快速评价及查证异常的有效方法。表4-5列出了部分化学元素在各类岩石中的平均含量及野外X荧光测量的分析检出限,对于大多数元素,检出限值已经低于其丰度值。因而,应用X荧光测量,可以在野外测定单个元素含量或测定某一个地球化学元素组的元素总量来解决找矿问题,也可以仅仅测量某能量范围的X射线照射量率来圈定地球化学偏高的场,从而研究含矿构造、含矿有利层位等。总之,该方法已经受到地质工作者,尤其是地球化学工作者的重视,正在成为他们的一种有力的工具。
表4-5 部分化学元素的丰度值及野外X荧光测量的分析检出限
*右列数据为存在干扰元素时的检出限。 (据周蓉生等,1994)
(一)野外仪器
野外仪器是一种便携式的,表4-6列出了几种市面上可购的仪器以及它们的性能指标。
表4-6 几种便携式X荧光仪的型号和性能指标
续表
(二)野外工作方法
X荧光测量结果,可以用两种方式表示:单位时间的X射线计数率及目标元素含量。为求取含量,一般采用相对测量法。即用相同的仪器先测一组标样,获得工作曲线,如图4-12所示。它是待测元素含量与相应特征X射线照射量率(或特散比值)之间的关系曲线。在野外现场获得特征X射线强度后,即可从工作曲线上查出相应的元素含量。为避免基体效应的影响,标准样品应具有与待测样品相同或相近的物质成分。基本程序为:
图4-12 工作曲线示意图
1.测区基本地质情况的了解
在进行野外现场X射线荧光分析工作之前,首先要对测区的基本地质情况有一个基本的了解(包括基本岩石类型及其分布情况、地质构造的发育及分布、矿化蚀变类型、不同元素及元素组合分布特点等)。在此基础上,再根据地质学基础理论知识,并结合已经掌握的基本地质情况综合考虑,来确定野外现场X射线荧光分析元素及元素组合的种类。
2.仪器工作性能检查和工作状态的调节
仪器工作性能检查有:三性检查、仪器稳定性检查;它需要每天工作开始和工作结束都应进行,并在工作中亦应注意检查,一旦发现仪器性能有重大变化,要及时检查原因,排除故障,并重新制作标准曲线。一般根据测量条件,选择已知含量的单元素或岩矿露头作为检查标准。
工作状态调查包括测量时间、测量元素的能量、测量元素的道址确定。因为荧光仪工作性能的好坏,将直接决定最终工作的成败。所以开展工作前,必须保证所使用的X射线荧光仪工作性能稳定正常;并按仪器操作说明书完成测试参数的设置准备工作(完成各种目标元素微分谱的测量,并根据所测目标元素的微分谱来对目标元素的测量道址进行设置等)。
3.工作区测网的布置
与其他物化探方法一样,X射线荧光现场测量也按一定的网度进行工作。由于X射线荧光方法具有现场快速、低成本和X射线穿透深度和作用范围较小的特点,一般都要求加密测网。按常用的计算方法,以成图比例尺分母的1/100(单位:m)为线距的基础上再加密一倍。例如作1:10000的测量,一般线距为100m,而X射线荧光方法取线距为50m。点距在外围找矿时取5m,异常点加密到1m。详查工作取线距5~10m,点距0.2~0.5m。在需要作圈定矿化边界和元素定量(或近似定量)测定时,常采用加密测量,取点距5~10cm。必要时作多线测量,取线距10cm。类似于刻槽取样。
具体的测网密度布置,在不同的地质找矿、地质勘探阶段,在不同地区,不同的地质条件下可以不同。均可以按照放射性物探方法或在其他物化探方法测网布置要求的基础上进行必要的加密即可。
4.工作曲线的建立
刻槽取样时,标准曲线的建立是在原生露头上选择有矿化的地段,该地段的岩性对于该矿区具有代表性;选平均含量不同的5~10处,长度一般50~200cm,在每段上进行精确的X射线荧光剖面测量,求全长测点的平均荧光强度,然后按测线长度进行刻槽取样,取样深度1~1.5cm,进行化学分析,确定待测目标元素含量,作为工作曲线。
块状样品时,选择有代表性的块状矿石样品,含量从低到高,10块左右,有近似的测量平面,有足够的饱和厚度。对其进行待测目标元素特征X射线强度的精确测量,再对矿石进行化学分析,同样可以建立目标元素荧光与含量关系的标准曲线。
一般情况下一个矿区,矿石类型区别不大,建立一条标准曲线即可。如果出现不同类型,应当另外建立标准曲线,保证曲线与测量对象岩性和基体成分相一致。
5.测点上X射线荧光的测量工作
为了保证测量数据的可靠性,所选测点应具有一定的代表性,在测点上除了完成必须的地质工作和其他的测量方法所需的工作外,还应进行一定精度要求的现场X荧光测量。这种X射线荧光测量方法有两种:一是直接在所选测点上将探测器放置平稳后进行直接测量,但测量前必须对测量位置的岩石表面进行必要的清理,使测点表面是新鲜的和较为平整的,以保证整个测量过程中探测器、激发源和样品之间距离的一致性。二是用随仪器配置的碎样加工工具,采集有代表性的测点样品进行粉碎到一定粒度后,将样品放在样品杯中放置于探测器的探测窗口上进行测量。这种方法可以提高被测样品的测量精度和数据的可信度。
6.测量数据的整理和相应图件的编制
为了保证测量数据的精确度和准确度,减少统计误差带来的影响,必须对测量所获取数据资料进行审核以减少测量误差,保证数据的可信度,提高地质异常解释评价的质量。
根据不同的工作目的,X射线荧光测量数据可以编绘成各种相应的地质图件,如X射线荧光测量等值线图、X射线荧光强度频率分布直方图、各种勘探工程的X射线荧光测量剖面图等。
(三)影响因素及修正
1.矿化不均匀
无论是原生矿床或是次生矿床,矿石和脉石之间是不可能呈均匀分布,矿化不均匀总是存在的,也是一种随机过程。在岩矿露头沿一条测线逐点进行待测目标元素含量测量,探测器所放置的位置,对于每个测点来讲可能正好在矿石上,完全是随机的,一条测线的平均含量,对于整个矿床来讲,也是随机量,所以测线平均含量,应当服从统计规律。整个矿床只要测线按一定的格式均匀布置,每条测线上的测点按照一定点距进行测量,矿化不均匀影响可以降低到最小。
2.岩石矿表面不平度
岩矿石表面高低不平对含量测量影响明显,下列方法可克服不平度影响(葛良全等,1997):
(a)以元素特征X射线强度与散射强度的比值代替特征X射线强度计算含量,散射射线能量尽可能靠近特征荧光能量。
(b)采用最佳激发源与样品之间的距离。
(c)在探测器照射立体角内应尽量平整,即在测量前对测线上的岩矿石适当修理平整。
(d)测点距不要太大,有利于减小不平度的影响。
3.湿度
岩矿石受潮,主要孔隙中充水,会使吸收系数和散射系数增大,造成的影响基本呈线性变化。一般讲,只要测量岩矿石的湿度与标准样品相接近,湿度影响可以忽略不计,但其对低能量影响明显。
‘贰’ 样品测量方法
(一)样品制备
厚样品制备比较简单。对于固体的岩矿样品、土壤样品等,一般粉碎到200目以下,混合均匀装入底上蒙有一层6~10μm聚酯膜的样品杯中压平(应为饱和层厚度),即可测量。或者加入适量黏合剂,在压机下压成圆片。如果是液体样品,可以直接装入样品杯中进行测量。
薄样品制备要复杂得多,提出的制作方法也很多。主要可分为湿式和干式两类,现简要介绍如下。
1)将矿样磨成小于200目,放入含有5/105火棉胶的乙醚(85%)和乙醇(15%)混合溶液中,倒入拉平的聚酯镀铝薄膜上,并放在已仔细调平的水平台上,等乙醚挥发后即成。
2)由2份聚甲基丙烯酸甲酯,3份聚丁烯丙烯酸甲酯,7.5份甲苯和少量添加剂混合制成一种聚合物溶液,可以保存多年待用。使用时一般每次取25mL,加入粉末样品(约1.5~2.5 g),在0.5L左右的金属容器中同时放入1/8in(1in=2.54 cm)直径的钢球盖好,放在振动器上振动20min,使其均匀分散,然后在聚酯膜上制成薄约50μm厚层。再烘干1min即成小于25μm的薄膜;再制成1/4in(1in=2.54cm)直径圆片进行测量;要注意的是样品与标准样品均要仔细称量。
3)溶解成膜方法。例如铁粉(或铜矿粉),先用HCl溶解成溶液,再加入聚乙烯醇,混合后取该溶液1mL,放在直径47mm的滤纸上(Toyo-Roshi,No5),安装在一个聚四氟乙烯片上,用红外灯干燥后测量。
4)使粉末样品沉积在微孔滤纸上制成薄样品。这个方法是先制成一个如图10-4-1所示的薄样品收集器,将样品研磨到325目放入真空瓶;同时在过滤器上放置一个直径2.5 cm的0.8μm的微孔滤纸;盖好橡皮塞,开动真空泵;进入的空气由快速活塞控制,成脉冲式进气,吹动样品成粉尘,使之在滤纸上沉积,即可获得需要薄样品。
(二)样品测量方法
使用平衡滤片的NaI(Tl)单道谱仪(或多道谱仪),分析样品时,干扰能量峰由使用平衡滤片两次测量求取差值(ΔI)得到解决。较宽范围的能量峰干扰主要靠选择测量道宽解决。这种方法在样品分析中已经很少应用,但在野外找矿中仍然有用。
使用高能量分辨率的半导体探测器多道X射线能谱仪分析样品,主要测量样品中受激发元素发射的X射线特征能量峰,与标准样品比较按(10-4-1)式,计算元素含量。
特征X射线能量峰,可以用高斯分布表示,即
核辐射场与放射性勘查
式中:A为特征 X射线能量峰的最大值;α=1.3862/R,R为特征X射线能量峰半最大值全宽度(FWHM)。特征能量峰面积为(10-4-8)式的积分,即
图10-4-1 粉末薄样品收集器
核辐射场与放射性勘查
可见,能量峰面积S与R、A成正比关系。因此,从理论上讲,R或A均可以用来计算待分析元素含量。用一个或几个测点的数据,涨落误差比较大;不如能量峰面积计算含量精度高。
(三)仪器刻度
多道X射线能量谱仪的刻度与γ能谱仪刻度的要求和做法是一样的,包括能量刻度和效率刻度。
能量刻度,主要是检查仪器的线性程度;线性好,定性确定元素比较准确。X射线多道谱仪能量刻度的单能辐射源比较容易得到。因为只要选用低能γ放射源激发纯元素的特征X射线,即可用来刻度仪器。容易做到能量峰分布均匀。
效率刻度是能量色散定量准确分析的基础。与所有γ射线能谱分析一样,必须受到重视。长期以来只重视增强、吸收基体效应校正,对效率刻度重视不够。
(四)标准样品与标准(工作)曲线
标准样品是用来与待测样品进行比较分析用的已知元素含量样品,(10-4-1)式表明了这个关系,无论是薄样品或者厚样品都是如此。(10-4-7)式表明薄样品荧光峰计数与样品中待测元素含量成线性关系,与样品中的物质成分无关。因此,一个标准样品可以适用于任何成分的待测样品,只要测量几何条件一致,称量准确、没有其他谱线干扰,就可以获得满意的分析结果。
对于厚样品,(10-4-4)式和(10-4-6)式表明荧光计数与物质成分关系密切。
1.自吸收
由于样品中待测元素含量增高(假定为轻脉石中重元素)自吸收增大,也就是(10-4-5)式中(μ+μf)不能看作常数,例如:使用SiO2+Fe2O3配制的样品,以238Pu为激发源,测得的FeKX射线强度与铁含量之间的变化关系如图10-4-2(a)所示。随Fe含量增高,自吸收增大,FeKX射线强度降低。
2.基质成分的吸收或增强
下一节将详细讨论,这里仅举一例予以说明。如图10-4-2(b)所示,在Fe矿石中含有Cu、Zn和Mo时,FeKX射线由于存在二次激发,得到增强,曲线向上弯曲。
图10-4-2 FeKX射线强度与Fe2O3含量关系
对于流体样品,例如钻孔泥浆中元素含量分析,石油中硫、锌元素分析等,都需要相应地制作标准曲线。
需要标准样品多,是X射线荧光谱分析的主要特点。这些标准的含量分析都需要依赖于其他分析方法,因而受到限制。
上述两点清楚地表明,厚样品分析需要标准样品的元素组成及含量(%)与之相近似。因此,在岩矿样品分析中所用的标准样品常常就采用已知含量的与待测样品同类的岩石、矿石样品作为标准样品;而且是含量由低到高的一套标准系列,在与样品测量相同条件下进行测量。因此,同一批量(基体相同)样品分析往往先由标准样品做成校正曲线,之后就可以根据相同条件下样品测量的荧光计数率,在标准曲线上求得相应的待测元素含量。岩矿露头或其他现场原位测量,也要类似这样选择标准。
‘叁’ 射线检测是怎样的检测方法
射线检测视力用X射线和伽马射线,这种能量比较高的射线,它的特性是穿透性好,可以穿透很多工件。如果工件局部区域存在缺陷,它将改变物体对射线的衰减,引起透射射线强度的变化
‘肆’ x射线是什么
X射线是具有极短波长和高能量的电磁波。 X射线的波长短于可见光的波长(大约在0.001至100 nm之间,而医学中使用的X射线的波长在0.001至0.1 nm之间),其光子能量为数万至数十万倍大于可见光。
由于其短波长和大能量,X射线在撞击物质时仅被该物质部分吸收,并且大部分通过原子之间的间隙透射,显示出强大的穿透能力。它的穿透能力与X射线的波长以及所穿透物质的密度和厚度有关。X射线波长越短,穿透率越大;密度越低,厚度越薄,X射线越容易穿透。
X射线的应用:
它通常用于医学上的荧光检查和工业中的探伤。如果工件的局部区域存在缺陷,则可以使用某种检测方法来确定工件中是否存在缺陷以及缺陷的位置和大小。
当该物质受到X射线照射时,会导致核外电子偏离原子轨道而产生电离。电离电荷的量可用于确定X射线曝光量。根据该原理,制造了X射线测量仪。 X射线检查设备用于实现零件的缺陷检测。
目前,市场上的X射线检查设备广泛用于电子工业的X射线检查,半导体X射线检查,锂电池X射线检查等各个行业。它在产品检查,异物扫描中起着至关重要的作用。 以及安全检查。
‘伍’ x射线有哪些特点各种衍射方法有何不同
物理特性
1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开来。
2、电离作用。物质受X射线照射时,可使核外电子脱离原子轨道产生电离。利用电离电荷的多少可测定X射线的照射量,根据这个原理制成了X射线测量仪器。在电离作用下,气体能够导电;某些物质可以发生化学反应;在有机体内可以诱发各种生物效应。
3、荧光作用。X射线波长很短不可见,但它照射到某些化合物如磷、铂氰化钡、硫化锌镉、钨酸钙等时,可使物质发生荧光(可见光或紫外线),荧光的强弱与X射线量成正比。这种作用是X射线应用于透视的基础,利用这种荧光作用可制成荧光屏,用作透视时观察X射线通过人体组织的影像,也可制成增感屏,用作摄影时增强胶片的感光量。
4、热作用。物质所吸收的X射线能大部分被转变成热能,使物体温度升高。
5、干涉、衍射、反射、折射作用。这些作用在X射线显微镜、波长测定和物质结构分析中都得到应用。
化学特性
1、感光作用。X射线同可见光一样能使胶片感光。胶片感光的强弱与X射线量成正比,当X射线通过人体时,因人体各组织的密度不同,对X射线量的吸收不同,胶片上所获得的感光度不同,从而获得X射线的影像。
2、着色作用。X射线长期照射某些物质如铂氰化钡、铅玻璃、水晶等,可使其结晶体脱水而改变颜色。
生物特性
X射线照射到生物机体时,可使生物细胞受到抑制、破坏甚至坏死,致使机体发生不同程度的生理、病理和生化等方面的改变。不同的生物细胞,对X射线有不同的敏感度,可用于治疗人体的某些疾病,特别是肿瘤的治疗。在利用X射线的同时,人们发现了导致病人脱发、皮肤烧伤、工作人员视力障碍,白血病等射线伤害的问题,在应用X射线的同时,也应注意其对正常机体的伤害,注意采取防护措施。
‘陆’ 射线探伤的射线探伤(x、γ)方法介绍
工业上常用的射线探伤方法为X射线探伤和γ射线探伤。指使用电磁波对金属工件进行检测,同X线透视类似。射线穿过材料到达底片,会使底片均匀感光;如果遇到裂缝、洞孔以及夹渣等缺陷,一般将会在底片上显示出暗影区来。这种方法能检测出缺陷的大小和形状,还能测定材料的厚度。
X 射线是在高真空状态下用高速电子冲击阳极靶而产生的。γ射线是放射性同位素在原子蜕变过程中放射出来的。两者都是具有高穿透力、波长很短的电磁波。不同厚度的物体需要用不同能量的射线来穿透,因此要分别采用不同的射线源。例如由X射线管发出的X射线(当电子的加速电压为400千伏时),放射性同位素60Co所产生的γ射线和由 20兆电子伏直线加速器所产生的X射线,能穿透的最大钢材厚度分别约为90毫米、230毫米和600毫米。 工业射线照相探伤中使用的低能X射线机,简单地说是由四部分组成:射线发生器(X射线管)、高压发生器、冷却系统、控制系统。当各部分独立时,高压发生器与射线发生器之间应采用高压电缆连接。
按照X射线机的结构,X射线机通常分为三类,便携式X射线机、移动式X射线机、固定式X射线机。
便携式X射线机采用组合式射线发生器,其X射线管、高压发生器、冷却系统共同安装在一个机壳中,也简单地称为射线发生器,在射线发生器中充满绝缘介质。整机由两个单元构成,即控制器和射线发生器,它们之间由低压电缆连接。在射线发生器中所充的绝缘介质,较早时为高抗电强度的变压器油,其抗电强度应不小于30~50kV/2.5mm。现在多数充填的绝缘介质是六氟化硫(SF6),以减轻射线发生器的重量。
X射线机的核心器件是X射线管,普通X射线管主要由阳极、阴极和管壳构成。
x射线是由x射线管加高压电激发而成,可以通过所加电压,电流来调节x射线的强度。
对低压X射线机,输入X射线管的能量只有很少部分转换为X射线,大部分转换成热,所以对于X射线机来说要保证良好的散热。
X射线机的主要技术性能可归纳为五个:工作负载特性、辐射强度、焦点尺寸、辐射角、漏泄辐射剂量。在选取X射线机时应考虑上述性能是否适应所进行的工作。 γ射线机用放射性同位素作为γ射线源辐射γ射线,它与X射线机的一个重要不同是γ射线源始终都在不断地辐射γ射线,而X射线机仅仅在开机并加上高压后才产生X射线,这就使γ射线机的结构具有了不同于X射线机的特点。γ射线是由放射性元素激发,能量不变。强度不能调节,只随时间成指数倍减小。
将γ射线探伤机分为三种类型:手提式、移动式、固定式。手提式γ射线机轻便,体积小、重量小,便于携带,使用方便。但从辐射防护的角度,其不能装备能量高的γ射线源。
γ射线机主要由五部分构成:源组件(密封γ射线源)、源容器(主机体)、输源(导)管、驱动机构和附件。
γ射线机与X射线机比较具有设备简单、便于操作、不用水电等特点,但γ射线机操作错误所引起的后果将是十分严重,因此,必须注意γ射线机的操作和使用。按照国家的有关规定,使用γ射线机的单位涉及到放射性同位素,因此,单位必须申领放射性同位素使用许可证,操作人员,应经过专门的培训,并应取得放射工作人员证。
射线探伤要用放射源发出射线,对人的伤害极大,操作不慎会导致人员受到辐射,患白血病的概率增加。操作人员应穿好防护服,并注意放射源的妥善保存。
‘柒’ 请问什么是XRF测试
XRF:X射线荧光光谱分析(X Ray Fluorescence)。人们通常把X射线照射在物质上而产生的次级X射线叫X射线荧光(X—Ray Fluorescence),而把用来照射的X射线叫原级X射线。所以X射线荧光仍是X射线。
一台典型的X射线荧光(XRF)仪器由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。
探测系统测量这些放射出来的二次X射线的能量及数量。仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。X射线照在物质上而产生的次级X射线被称为X射线荧光。
利用X射线荧光原理,理论上可以测量元素周期表中的每一种元素。在实际应用中,有效的元素测量范围为11号元素(Na)到92号元素(U)。
‘捌’ 射线检测原理是什么
射线探伤是利用射线可穿透物质和在物质中有衰减的特性来发现缺陷的一种探伤方法。按探伤所使用的射线不同,可分为X射线探伤、γ射线探伤、高能射线探伤三种。由于其显示缺陷的方法不同,每种射线探伤又分电离法、荧光屏观察法、照相法和工业电视法。射线检验主要用于检验焊缝内部的裂纹、未焊透、气孔、夹渣等缺陷。
‘玖’ x射线镀层测厚仪的使用原理有辐射吗
若一个电子由轨道游离,则其他能阶的电子会自然的跳至他的位置,以达到稳定的状态,此种不同能阶转换的过程可释放出能量,即X-射线。因为各元素的每一个原子的能阶均不同,所以每一元素轨道间的能阶差也不同相同。
下述可描述X-射线荧光的特性:若产生X-射线荧光是由于转移一个电子进入K 轨道,一个K轨道上的电子已事先被游离,另一个电子即代替他的地位,此称之为K 辐射。不同的能阶转换出不同的能量,如Kα辐射是电子由L轨道跳至K轨道的一种辐射,而Kβ辐射是电子从M 轨道跳至K轨道的一种辐射,其间是有区别的。若X-射线荧光是一个电子跳入L的空轨域,此种辐射称为L辐射。同样的L 辐射可划分为Lα 辐射,此是由M轨道之电子跳入L轨道及Lβ 辐射,此是由N 轨道之电子跳入L 轨道中 。由于Kβ辐射能量约为Kα的11%,而Lβ辐射能量较Lα大约20%,所以以能量的观点Lα及Lβ是很容易区分的。
原子的特性由原子序来决定,亦即质子的数目或轨道中电子的数目,即如图所示特定的X-射线能量与原子序间的关系。K辐射较L辐射能量高很多,而不同的原子序也会造成不同的能量差。
特定的X-射线可由比例计数器来侦测。当辐射撞击在比例器后,即转换为近几年的脉波。电路输出脉冲高度与能量撞击大小成正比。由特殊物质所发出的X-射线可由其后的鉴别电路记录。
使用X-射线荧光原理测厚,将被测物置于仪器中,使待测部位受到X-射线的照射。此时,特定X-射线将由镀膜、素材及任何中间层膜产生,而检测系统将其转换为成比例的电信号,且由仪器记录下来,测量X-射线的强度可得到镀膜的厚度。
在有些情况,如:印刷线路板上的IC导线,接触针及导体的零件等测量要求较高 ,一般而言,测量镀膜厚度基本上需符合下述的要求:
1.不破坏的测量下具高精密度。
2.极小的测定面积。
3.中间镀膜及素材的成份对测量值不产生影响。
4.同时且互不干扰的测量上层及中间镀膜 。
5.同时测量双合金的镀膜厚及成份。
而X-射线荧光法就可在不受素材及不同中间膜的影响下得到高精密度的测量。
二.主要特点
1.无损、精确、快速测量各种电镀层的厚度.
2.电镀层可以是单层/双层/三层
3.镀金/镀银/镀镍/镀铜等都可以测量
4.有电镀液成份分析以及金属成份分析等软件
5.易操作/易维护
6.准直器程控交换系统 最多可同时装配6种规格的准直器,程序交换控制 。
‘拾’ 放射性测量方法
放射性测量方法按放射源不同可分为两大类:一类是天然放射性方法,主要有γ测量法、α测量法等;另一类是人工放射性方法,主要有X射线荧光法、中子法等。表7.1给出了几种放射性测量方法的简单对比。
7.1.2.1 γ测量
γ测量法是利用辐射仪或能谱仪测量地表岩石或覆盖层中放射性核素产生的γ射线,根据射线能量的不同判别不同的放射性元素,而根据活度的不同确定元素的含量。γ测量可分为航空γ测量、汽车γ测量、地面(步行)γ测量和γ测井,其物理基础都是相同的。
根据所记录的γ射线能量范围的不同,γ测量可分为γ总量测量和γ能谱测量。
(1)γ总量测量
γ总量测量简称γ测量,它探测的是超过某一能量阈值的铀、钍、钾等的γ射线的总活度。γ总量测量常用的仪器是γ闪烁辐射仪,它的主要部分是闪烁计数器。闪烁体被入射的γ射线照射时会产生光子,光子经光电倍增管转换后,成为电信号输出,由此可记录γ射线的活度。γ辐射仪测到的γ射线是测点附近岩石、土壤的γ辐射、宇宙射线的贡献以及仪器本身的辐射及其他因素的贡献三项之和,其中后两项为γ辐射仪自然底数(或称本底)。要定期测定仪器的自然底数,以便求出与岩石、土壤有关的γ辐射。岩石中正常含量的放射性核素所产生的γ射线活度称为正常底数或背景值,各种岩石有不同的正常底数,可以按统计方法求取,作为正常场值。
表7.1 几种放射性法的简单对比
续表
(2)γ能谱测量
γ能谱测量记录的是特征谱段的γ射线,可区分出铀、钍、钾等天然放射性元素和铯-137、铯-134、钴-60等人工放射性同位素的γ辐射。其基本原理是不同放射性核素辐射出的γ射线能量是不同的,铀系、钍系、钾-40和人工放射性同位素的γ射线能谱存在着一定的差异,利用这种差异选择几个合适的谱段作能谱测量,能推算出介质中的铀、钍、钾和其他放射性同位素的含量。
为了推算出岩石中铀、钍、钾的含量,通常选择三个能谱段,即第一道:1.3~1.6MeV;第二道:1.6~2.0MeV;第三道:2.0~2.9MeV。每一测量道的谱段范围称为道宽。由于第一道对应40K的γ射线能谱,第二道、第三道则分别主要反映铀系中的214Bi和钍系中的208Tl的贡献,故常把第一、二、三道分别称为钾道、铀道和钍道。但是,钾道既记录了40K的贡献,又包含有铀、钍的贡献。同样,铀道中也包含钍的贡献。当进行环境测量时往往增设137Cs,134Cs,60Co等道。
γ能谱测量可以得到γ射线的总计数,铀、钍、钾含量和它们的比值(U/Th,U/K,Th/K)等数据,是一种多参数、高效率的放射性测量方法。
7.1.2.2 射气测量
射气测量是用射气仪测量土壤中放射性气体浓度的一种瞬时测氡的放射性方法。目的是发现浮土覆盖下的铀、钍矿体,圈定构造带或破碎带,划分岩层的接触界限。
射气测量的对象是222Rn,220Rn,219Rn。氡放出的α射线穿透能力虽然很弱(一张纸即可挡住),但它的运移能力却很强。氡所到之处能有α辐射,用α辐射仪可方便测定。222Rn,220Rn的半衰期分别为3.8d和56s,前者衰变较后者慢得多,以此可加以区分。
工作时,先在测点位置打取气孔,深约0.5~1m,再将取气器埋入孔中,用气筒把土壤中的氡吸入到仪器里,进行测量。测量完毕,应将仪器中的气体排掉,以免氡气污染仪器。
7.1.2.3 Po-210测量
Po-210法,也写作210Po法或钋法,它是一种累积法测氡技术。210Po法是在野外采取土样或岩样。用电化学处理的方法把样品中的放射性核素210Po置换到铜、银、镍等金属片上,再用α辐射仪测量置换在金属片上的210Po放出来的α射线,确定210Po的异常,用来发现深部铀矿,寻找构造破碎带,或解决环境与工程地质问题。
直接测氡,易受种种因素的影响,结果变化较大。测量210Pb能较好地反映当地222Rn的平均情况。210Po是一弱辐射体,不易测量,但其后210Bi(半衰期5d)的子体210Po却有辐射较强的α辐射,半衰期长(138.4d)。因此,测210Po即可了解210Pb的情况,并较好地反映222Rn的分布规律。210Po是222Rn的子体,沿有钍的贡献。这是和γ测量、射气测量、α径迹测量的不同之处。只测量210Po的α射线,而测不到Po的其他同位素放出的α射线,是因为它们的半衰期不同的缘故。
7.1.2.4 活性炭测量
活性炭法也是一种累积法测氡技术,灵敏度高,效率亦高,而技术简单且成本低,能区分222Rn和220Rn,适用于覆盖较厚,气候干旱,贮气条件差的荒漠地区。探测深部铀矿或解决其他有关地质问题。
活性炭测量的原理是在静态条件下,干燥的活性炭对氡有极强的吸附能力,并在一定情况下保持正比关系。因此,把装有活性炭的取样器埋在土壤里,活性炭中丰富的孔隙便能强烈地吸附土壤中的氡。一定时间后取出活性炭,测定其放射性,便可以了解该测点氡的情况,以此发现异常。
埋置活性炭之前,先在室内把活性炭装在取样器里,并稍加密封,以免吸附大气中的氡。活性炭颗粒直径约为0.4~3mm。每个取样器里的活性炭重约数克至数十克,理置时间约为数小时至数十小时,一般为5d。时间可由实验确定最佳值,埋置时间短,类似射气测量;埋置时间长,类似径迹测量,但径迹测量除有氡的作用外,其他α辐射体也会有贡献。活性炭测量只有氡的效果。也有把活性炭放在地面上来吸附氡的测量方法。
为了测量活性炭吸附的氡,可采取不同方法:①测量氡子体放出的γ射线;②测量氡及其子体放出的α射线。
7.1.2.5 热释光法
工作时,把热释光探测器埋在地下,使其接受α,β,γ射线的照射,热释光探测器将吸收它们的能量。一定时间后,取出探测器,送到实验室,用专门的热释光测量仪器加热热释光探测器,记录下相应的温度和光强。探测器所受辐射越多,其发光强度愈强。测定有关结果即可了解测点的辐射水平及放射性元素的分布情况,进而解决不同的地质问题。
自然界的矿物3/4以上有热释光现象。常温条件下,矿物接受辐射获得的能量,是能长期积累并保存下来的。只有当矿物受热到一定程度,贮存的能量才能以光的形式释放出来。根据矿物样品的发光曲线,可以推算该矿物过去接受辐射的情况、温度的情况等。
7.1.2.6 α测量法
α测量法是指通过测量氡及其衰变子体产生的α粒子的数量来寻找放射性目标体,以解决环境与工程问题的一类放射性测量方法。氡同位素及其衰变产物的α辐射是氡气测量的主要物理基础。
工程和环境调查中用得较多有α径迹测量和α卡测量方法。
(1)α径迹测量法
当α粒子射入绝缘体时,在其路径上因辐射损伤会产生细微的痕迹,称为潜迹(仅几纳米)。潜迹只有用电子显微镜才能看到。若把这种受过辐射损伤的材料浸泡在强酸或强碱里,潜迹便会蚀刻扩大,当其直径为微米量级时,用一般光学显微镜即可观察到辐射粒子的径迹。能产生径迹的绝缘固体材料称为固体径迹探测器。α径迹测量就是利用固体径迹探测器探测径迹的氡气测量方法。
在工作地区取得大量α径迹数据后,可利用统计方法确定该地区的径迹底数,并据此划分出正常场、偏高场、高场和异常场。径迹密度大于底数加一倍均方差者为偏高场,加二倍均方差者为高场、加三倍均方差者为异常场。
(2)α卡法
α卡法是一种短期累积测氡的方法。α卡是用对氡的衰变子体(21884Po和21484Po等)具有强吸附力的材料(聚酯镀铝薄膜或自身带静电的过氯乙烯细纤维)制成的卡片,埋于土壤中,使其聚集氡子体的沉淀物,一定时间后取出卡片,立即用α辐射仪测量卡片上的α辐射,借此测定氡的浓度。由于测量的是卡片上收集的放射性核素辐射出的α射线,所以把卡片称作α卡,有关的方法就称为α卡法。如果把卡片做成杯状,则称为α杯法,其工作原理与α卡法相同。
7.1.2.7 γ-γ法
γ-γ法是一种人工放射性法,它是利用γ射线与物质作用产生的一些效应来解决有关地质问题,常用来测定岩石、土壤的密度或岩性。
γ-γ法测定密度的原理是当γ射线通过介质时会发生康普顿效应、光电效应等过程。若γ射线的照射量率I0;γ射线穿过物质后,探测器接受到的数值为I,则I和I0之间有一复杂的关系。即I=I0·f(ρ,d,Z,E0),其中ρ为介质的密度,d为γ源与探测器间的距离,Z为介质的原子序数,E0为入射γ射线能量。
在已知条件下做好量板,给出I/I0与ρ,d的关系曲线。在野外测出I/I0后,即可根据量板查出相应的密度值ρ。
7.1.2.8 X荧光测量
X射线荧光测量,也称X荧光测量,是一种人工放射性方法,用来测定介质所含元素的种类和含量。其工作原理是利用人工放射性同位素放出的X射线去激活岩石矿物或土壤中的待测元素,使之产生特征X射线(荧光)。测量这些特征X射线的能量便可以确定样品中元素的种类,根据特征X射线的照射量率可测定该元素之含量。由于不同原子序数的元素放出的特征X射线能量不同,因而可以根据其能量峰来区分不同的元素,根据其强度来确定元素含量,且可实现一次多元素测量。
根据激发源的不同,X荧光测量可分为电子激发X荧光分析、带电粒子激发X荧光分析、电磁辐射激发X荧光分析。
X荧光测量可在现场测量,具有快速、工效高、成本低的特点。
7.1.2.9活化法
活化分析是指用中子、带电粒子、γ射线等与样品中所含核素发生核反应,使后者成为放射性核素(即将样品活化),然后测量此放射性核素的衰变特性(半衰期、射线能量、射线的强弱等),用以确定待测样品所含核素的种类及含量的分析技术。
若被分析样品中某元素的一种稳定同位素X射线作用后转化成放射性核素Y,则称X核素被活化。活化分析就是通过测量标识射线能量、核素衰变常数、标识射线的放射性活度等数据来判断X的存在并确定其含量。
能否进行活化分析以确定X核素存在与否,并作定量测量,关键在于:①X核素经某种射线照射后能否被活化,并具有足够的放射性活度;②生成的Y核素是否具有适于测量的衰变特性,以利精确的放射性测量。
活化分析可分为中子活化分析、带电粒子活化分析、光子活化分析等。
(1)中子活化分析
根据能量不同,中于可分为热中子、快中子等。热中子同原子核相互作用主要是俘获反应,反应截面比快中子大几个量级。反应堆的热中子注量率一般比快中子的大几个量级,因此热中子活化分析更适应于痕量元素的分析。
(2)带电粒子活化分析
常用的带电粒子有质子、α粒子、氘核、氚核等,也有重粒子。
带电粒子活化分析常用于轻元素,如硅、锗、硼、碳、氮、氧等的分析。
(3)光子活化分析
常用电子直线加速器产生的高能轫致辐射来活化样品。