⑴ γ辐射剂量率的测定
环境地表γ辐射剂量率是指田野、道路、森林、草地、广场以及建筑物内,地表上方一定高度处(通常为1m)由周围物质中的天然核素和人工核素发出的γ射线产生的空气吸收剂量率。吸收剂量表示单位质量物质所接受或吸收的平均辐射能量。吸收剂量的定义用公式表示为:吸收剂量 单位为Gy。 是质量为dm的物质吸收的电离辐射的平均能量。
γ辐射空气吸收剂量率仪主要有电离室型环境γ辐射空气吸收剂量率仪、塑料闪烁探测器的环境γ辐射空气吸收剂量率仪、具有能量补偿的计数管型环境γ辐射空气吸收剂量率仪以及具有能量补偿的热释光剂量计。
(1)技术要求
本法主要使用专用γ辐射剂量率仪器进行测量,要求测量环境地表γ辐射剂量率的仪表应具备以下主要性能和条件:
a.量程范围。低量程1×10-8~1×10-5Gy·h-1;高量程1×10-5~l×10-2Gy·h-1。
b.相对固有误差:<15%。
c.能量响应:50keV~3MeV相对响应之差<30%(相对137Cs参考γ辐射源)。
d.角响应:0°~180°R/R≥0.8(137Csγ辐射源)(R,角响应平均值;R,刻度方向上的响应值)。
e.温度:-10~+40℃(即时测量仪表),-25~+50℃(连续测量仪表)。
f.相对湿度:95%(+35℃)。
仪器使用前要到校准实验室进行校准。
(2)仪器类型
用于环境γ辐射剂量率测定的仪器按探测器分类主要有电离室、闪烁探测器和计数管3种类型。
A.电离室。电离室是灵敏体积内充有适当气体的电离辐射探测器。探测器一般有高压极、收集极和保护极。高压极、收集极间加有高压电场。此电场不足以引起气体放大,但能够把电离辐射在灵敏体积内产生的离子电荷收集到电极上,供测量系统进行测量。环境γ放射性测量使用的电离室一般采用球形或圆柱形,见图66.23。电离室环境γ辐射空气吸收剂量仪的系统组成如图66.24所示。为提高灵敏度并缩小电离室体积,一般在灵敏体积内充有25~35kPa的高压气体,成为高气压电离室。
技术特点与存在问题。
a.常压电离室用于环境γ辐射剂量测查的优点是结构简单、能量响应好,缺点是灵敏度较低。在使用中,为提高灵敏度需要将灵敏体积做大,使仪器较为笨重,不便携带;常压电离室的灵敏度随温度气压的变化较大。测量时必须携带气压计,随时进行温度、气压修正。
图66.23 球形电离室示意图
图66.24 高气压电离室典型测量电路
b.高气压电离室用于环境γ辐射剂量测量的优点是由于充气压力高,测量灵敏度高于常压电离室;由于其密封特性好,不需要进行温度、气压修正,使用方便。存在的问题是在100keV以下电离室壁吸收会使读数偏低,增加壁厚可加强对低能放射性的吸收,改善电离室的低能响应,但缩小了电离室能量响应的范围。80keV以下的低能射线份额需要进行修正。
B.闪烁探测器。闪烁探测器主要有塑料闪烁体探测器和NaI晶体探测器
闪烁探测器是一种对于电离辐射灵敏的探测器。当电离辐射与闪烁体物质相互作用时,闪烁体物质的原子、分子被电离或激发,被电离或激发的原子、分子退激时,一部分电离、激发能量以光放射性形式释放,形成闪烁光。闪烁光被收集到光电转换器件上,发出光电子,产生输出信号。闪烁体发出的闪烁光与电离辐射的能量和空气比释动能有关。闪烁探测器的原理结构示意如图66.25。闪烁体探测器一般由闪烁体和光电转换器件组成。通常闪烁体通过光导与光电倍增管组成一体装入避光的暗盒中。
图66.25 闪烁探测器原理结构示意图
塑料闪烁体是有机闪烁物质在塑料中的固熔体,属于有机闪烁体。环境γ辐射空气吸收剂量仪采用的闪烁体主要是能量响应较好的塑料闪烁体或在塑料闪烁体中加一定量的锡或在闪烁体外表面涂上一层ZnS(Ag),使探测器的能量响应得到改善。
NaI(Tl)闪烁探测器具有灵敏度高的优点,由于其能量响应较差,所测量的数值偏差较大,在环境测量中已很少使用。也有经过技术改造后将其用于环境测量的。
技术特点与存在问题。
a.采用塑料闪烁体的仪器在25keV~1.3MeV范围内能量响应可达±10%,对于3MeV以上宇宙射线的高能量脉冲辐射易于出现饱和。其对于高能辐射的响应不好。
b.采用NaI(Tl)闪烁探测器的仪器对宇宙射线的响应小,而对低能量的γ射线响应过大。
c.由于光电倍增管的温度特性不好,使仪器随温度变化的特点十分明显。
C.高灵敏计数管。
图66.26 闪烁体探测器原理结构示意图
计数管是一种气体电离探测器,被探测的射线进入计数管灵敏体积内引起气体电离,生成正、负离子。后者在被电极收集过程中受电场加速获得足够能量,并再次使气体电离,即产生气体放大。放大终止后,在电场作用下正离子鞘向阴极漂移在阳极上感应出一
个电压脉冲。计数管在一定的工作电压下输出脉冲幅度相同,而与入射粒子能量、种类等无关。计数管输出的电压脉冲接入脉冲计数电路即可进行测量。若将脉冲计数率与计量率关系对应建立,就可以进行环境放射性空气吸收剂量测量。测量系统的原理电路如图66.26所示。
技术特点与存在问题。
a.计数管用于环境γ辐射空气吸收剂量测定具有系统简单、易于小型化的特点,可形成便携式现场测量仪器;同时其性能稳定,环境适应性好。它存在自身本底高、灵敏度较低、对低能响应大、需要进行能量平衡等缺点。
b.一般情况下,可用于环境水平测量的计数管自身本底大多在每分钟20~50个脉冲,约为40~100nGy/h。
(3)仪器的选择
由于高气压电离室对高能的宇宙射线响应好,由于其电离室壁是不锈钢材料,故对陆地辐射低于50keV的低能响应较差。塑料闪烁探测器低能区响应好,高能区响应差。所以,专业实验室常选择塑料闪烁体探测器和高气压电离室仪器共同进行环境测量,以实现互补。
各类环境γ辐射空气吸收剂量仪的对比见表66.14。
表66.14 各类环境γ辐射空气吸收剂量仪的对比
续表
(4)测量方法
环境地表γ辐射剂量率测量方式分两种。
a.即时测量。用各种γ剂量率仪直接测量出点位上的γ辐射空气吸收剂量率瞬时值。
b.连续测量。在核电厂等大型核设施的环境固定监测点上,测量从本底水平到事故的环境辐射场空气吸收剂量率的连续变化值。布设在固定监测点位上的热释光剂量计测出一定间隔时间内环境辐射场的累积剂量值。
(5)测量步骤
两种测量方法的测量程序都应按仪器校准、天然本底测量、测量点的确定、测点测量4个步骤进行。
A.仪器检查和校准。使用仪器前后,应认真检查,通常用监督源检查仪器的工作状态,确认其状态正常,方可使用。当仪器没有监督源时,可采用固定条件下的状态检查。
将仪器放置在一个固定地点上(室内、外均可)。由于雨雪天测量时本底值将明显降低,因此,室外测点应避免雨雪天测量。要求测点周围没有外来放射性干扰。长期测量该点的本底读数值,每次测量取10个读数,计算平均值Db,并绘出Db变化曲线。每次测量的10个读数的平均值与长期观测该点的平均值Db相对变化小于10%,则视为仪器正常,方可对仪器进行校准。
较好的办法是找一个空旷地带(距附近高大建筑物30m以上,高1.5m的地面上),放置一两个与测量对象核素和能量相似的标准源(Ra源即可),将仪器探测器与源处于同一水平线,按式(66.58)建立不同I与仪器读数的关系曲线(横坐标表示已知剂量率,纵坐标表示仪器读数)。减去仪器本底后,使曲线通过原点,横坐标与曲线的夹角为α,仪器读数与cotα的乘积即为校准后的某点剂量率。
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:R为源中心距探测器中心的距离;A为源的γ常数,1mg镭源距探测器1m处A为825×71.667fC/(kg·s);I为以γ单位表示的剂量率。
B.天然本底的测量。在进行γ辐射剂量率测量时需扣除仪表对宇宙射线的响应部分。不同仪表对宇宙射线的响应不同,可根据理论计算,或在水深大于3m,距岸边大于1000m的淡水面上测量或与对宇宙射线响应已知的仪表比较得出。环境γ辐射空气吸收剂量本底测量一般在室外选点,测量点应距离附近高大建筑物30m以上的空旷地带(最好在土地上),距地面100cm处进行测量。测量10个读数,计算平均值和平均值的标准偏差。
C.测量点的确定。测量的目的决定于测量点位置的布设。在一般建筑材料和建筑物内进行环境检测时,应按照测量目的和源项的照射途径,以及人群活动情况分别确定测量点位的布设。建筑材料测量应按照检测模型情况,将测量点设置在模型中央。探测器距模型表面50~100cm。
全国性或一定区域内的环境γ辐射本底调查,对同一网格点的建筑物、道路和原野(城市中的草坪和广场),γ辐射剂量率的测量可同时进行。
D.测量。
a.室内测量。要考虑建筑物的类型和层次。测量点一般选择在室内中央,距地面100cm处进行测量。若出现测量值异常时,则应按照100cm间距进行网格划分测量,以确定异常点的位置。距离墙壁应大于100cm。
b.室外测量。在城市中的道路、草坪和广场测量时,测点距附近高大建筑物的距离需大于30m,并选择在道路和广场的中间地面上1m处。
测量点应距离附近高大建筑物30m以上,距地面100cm处进行测量。室外环境地表测量时应考虑到降雨、降雪,以及氡、钍射气的析出与扩散、地面植被情况等因素的影响。所在山地丘陵地区还应注意到岩石露头的影响。
(6)剂量估算
环境γ辐射对居民产生的有效剂量当量可用下式进行估算:
岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析
式中:He为有效剂量当量,Sv;Dγ为环境地表γ辐射空气吸收剂量率,Gy·h-1;K为有效剂量当量率与空气吸收剂量率比值,本方法采用0.7Sv·Gy-1;t为环境中停留时间,h。
⑵ 个人剂量计的原理
个人剂量计一种用来测量每个受核辐射照射的工作人员在工作时所受辐射剂量的仪器。常用的有个人剂量笔、胶片剂量计和热释光剂量计等。剂量笔是一个灵敏的笔形验电器,充电后,其中涂有金属的石英丝达最大偏转。当受到辐射作用时,验电器中气体产生电离,使石英丝偏转角度减小,通过以伦琴刻度的标尺可以直接读出所受的剂量,使用方便,但环境湿度影响较大。
个人剂量报警仪智能型袖珍仪器。它采用最新的功能较强的单片机技术制作而成。主要用来监测X射线和γ射线。在测量范围内,可任意设置各种阈值报警值,并发生声光报警及时提醒工作人员注意安全。该仪器内存大,可存贮约一周的数据。利用工作人员个人佩戴的个人剂量计进行的测量,或对其体内或排泄物中的放射性核素的种类和活度进行的测量,以及对测量结果的解释。

⑶ 您好,看到您的回答我受益非浅,但还有几个问题特向您请教,谢谢。
1、放射卫生方面需要用到计量认证的,大部分是指使用到的计量器具,探测仪器如报警式剂量计,因为所使用到的探头的种类和材质不同、所测辐射种类的不同会用到不同的计量方法,网上搜搜还是很多的,例如:GB16348-1996X线诊断中受检者放射卫生防护标准;GB16351-1996医用γ射线远距治疗设备放射卫生防护标准;GB16353-1996含放射性物质消费品的放射卫生防护标准........挺多的,就不列举了;CT(计算机X射线断层扫描)诊断过程中使用到X射线,肯定要对该射线的能量范围、强度进行严格计量,以保证仪器本身是安全的,可能用到:GB18464-2001医用X射线治疗放射卫生防护要求、GB8279-2001医用X射线诊断放射卫生防护要求。
2、GR200A型个人剂量片个以用来监测中子对人体造成的吸收剂量;中子个人剂量监测用热释光剂量计,主要材质是LiF,另外还会掺杂一些元素,如Mg、Cu、P、Ti等等,型号也就多了;不好说全;
3、RGD-3B与LM-3是通用型热释光剂量读出器,他们是不直接“测”贝塔粒子或者X、r射线的,“测”粒子及射线的电离效应要靠LiF剂量片,它能将接收到的粒子或射线转化成能量的形式储存起来,当剂量片受热(一定温度)时再将能量以可见光的形式发射出来,(光强整体比较弱,人眼很难分辨)要由探头收集并度量;所以说,能不能测贝塔粒子,关键还是看是哪种剂量片以及该剂量片的外壳结构,因为,贝塔粒子的穿透性不太好(比阿尔法粒子是好那么一点点),但是想穿透剂量片的塑料质外壳还是有一定难度的(除非能量足够强),加上贝塔粒子在空气中射程极短(一般不超过1米),所以实际中我们都是用专用探头紧贴着桌面或者地面测的。简单说:用剂量片测贝塔粒子不现实

⑷ FWT-60-00, 辐射变色薄膜剂量计, 怎样操作它
FWT-60-00,辐射变色薄膜剂量计,长宽均为1cm,非常小、薄,一般用镊子操作。操作时,不要夹中间,夹周边角就要以。中间部分要吸收辐射的。
波长范围,510 nm 10-200 kGy, 600 nm or 605 nm: 1-30 kGy。更多情况,可以咨询:深圳市湾边贸易有限公司,Tel: 0755-86216601. 湾边贸易专门从事加速器、辐照配件及相关工具仪器。
⑸ LD50的测定
1 LD50的测定方法很多,如:目测机率单位法、加权机率单位法(Bliss氏法)、寇氏法(Karber氏法)及序贯法等,其中Bliss法是比较推荐使用的方法。此法对剂量分组无严格要求,不需要剂量组有0%和100%死亡率,是目前公认最准确的测定方法。但本法计算繁琐,故现多采用计算机程序计算。
2 我国卫生部规定,Bliss法是作为新药LD50测定评定必须采用的方法。
3 LD50【半数致死量】是评价化学物质急性毒性大小最重要的参数,也是对不同化学物质进行急性毒性分级的基础标准。化学物质的急性毒性越大,其LD50的数值越小。
4 常与ED50【半最大效应浓度】配合计算治疗指数LD50/ED50,用以评价药物的安全性,治疗指数大的药物相对安全。
5 LD50 越大越好, 就是说浓度要很高很高才会导致半数死亡
6 ED50就越小越好,意思是很少的剂量就能发挥作用
7 单就以上某一项来说是没有意义的,LD50大 ED50也大,同样是危险性大
8 所以用其比值 描述药物的安全性,而单独的LD50 就只能描述药物的毒性了。

(5)不同剂量计测量方法扩展阅读:
LD50的表达方式通常为有毒物质的质量和试验生物体重之比,例如"毫克/千克体重"。虽然毒性不一定和体重成正比,但这种表达方式仍有助比较不同物质的相对毒性,以及估计同一物质在不同大小动物之间的毒性剂量。
应用半数致死这量度方法有助减少量度极端情况所带来的问题,以及减少所需试验次数;然而这亦代表LD50并对所有试验生物的致死量:有些可能死于远低于LD50的剂量,有些却能在远高于LD50的剂量下生存。在特殊需要下,研究人员亦可能会量度LD1或LD99等指标(即杀死1%或99%试验总体之剂量)。
物质的毒性往往受给予方式影响。一般而言,口服毒性会低于静脉注射的毒性。故此在表达LD50时经常会附带给予方式,例如“LD50 i.v.”表示静脉注射下的LD50。
和LD50相关的两种指标,LD50/30和LD50/60,是分别指在没有治疗的情况下,导致受试总体在30天或60天后半数死亡的剂量。这些指标通常用于描述辐射毒性。
⑹ 辐照杀菌技术的剂量测量
1、放射性强度
又称放射性活度,是度量放射性强弱的物理量。
曾采用的单位有:
(1) 居里(Curie简写Ci)
若放射性同位素每秒有3.7×1010次核衰变,则它的放射性强度为1居里(Ci)。
(2) 贝可勒尔(Becqurel,简称贝可Bq)
1贝可表示放射性同位素每秒有一个原子核衰变。
(3) 克镭当量
放射γ射线的放射性同位素(即γ辐射源)和1克镭(密封在0.5mm厚铂滤片内)在同样条件下所起的电离作用相等时,其放射性强度就称为1克镭当量。
2、放射性比度
将一个化合物或元素中的放射性同位素的浓度称为放射性比度,也用以表示单位数量的物质的放射性强度。 照射量(Exposure)是用来度量X射线或γ射线在空气中电离能力的物理量。
使用的单位有:
(1) 伦琴(Roentgen,简写R)
(2) SI库仑/千克(C·kg-1) 1、吸收剂量单位
(1) 吸收剂量
被照射物质所吸收的射线的能量称为吸收剂量,其单位有:
(1) 拉德(rad)
(2) 戈瑞(Gray,简称Gy)。
(2)剂量率
是指单位质量被照射物质在单位时间内所吸收的能量。
(3)剂量当量
是用来度量不同类型的辐照所引起的不同的生物学效应,其单位为希(沃特)(Sv)。
(4)剂量当量率
是指单位时间内的剂量当量,单位为Sv·s-1或Sv·h-1。
2、吸收剂量测量
(1) 国家基准--采用Frickle剂量计(硫酸亚铁剂量计)
(2) 国家传递标准剂量测量体系--丙氨酸/ESR剂量计(属自由基型固体剂量计),硫酸铈-亚铈剂量计,重铬酸钾(银)-高氯酸剂量计,重铬酸银剂量计等
(3)常规剂量计--无色透明或红色有机玻璃片(聚甲基丙烯酸甲酯),三醋酸纤维素,基质为尼龙或PVC的含有隐色染料的辐照显色薄膜等

⑺ 剂量测量的仪器及原理
目前测量环境辐射外照射剂量,从测量方法上大体可分为三种:①瞬时剂量率测量;②累积剂量测量;③γ谱仪分析。
测量瞬时剂量率的仪器常采用电离室,GM计数管,闪烁剂量率仪等。测量累积剂量的仪器常采用热释光剂量计,近年国外发展使用驻极体电离室型探测器。γ谱分析仪器采用NaI(Tl),HP(Ge)为探测器的便携式就地测量γ谱仪。本节主要介绍瞬时测量及就地γ谱测量仪器及原理。
10.2.3.1 闪烁体型仪器测量剂量率
闪烁探测器是在环境外照射剂量测量中使用较广泛的一种仪器,主要由闪烁体和光电倍增管组成。所用的闪烁体主要有两类:塑料闪烁体和无机闪烁体。
用塑料闪烁体作为探测元件的闪烁型仪器,如德国产的PTB-7201,国产的FT620型和SG102型仪器,它的主要优点是:灵敏度高,能量响应好,质量轻,携带使用方便等。缺点是易受温度影响,自身本底较高,对宇宙射线响应存在问题。
塑料闪烁体型仪器的探测元件为圆柱型塑料闪烁体(φ75 mm×75 mm),其表面涂以ZnS(Ag)薄层。塑料闪烁体的能量响应曲线在很宽的光子能量范围(10 keV~3 MeV)内较为平坦。对于能量低于100 keV的光子,ZnS(Ag)的发光率约为塑料闪烁体的9~10倍,能够补偿塑料闪烁体对低能光子响应的降低。光电倍增管采用高增益低噪声的GDB-52LD型,以获得好的信噪比。光电倍增管外有一层磁屏蔽材料,使其不受外界磁场(包括地磁感应场)的影响。闪烁体外有一层蔽光套和一层保护套。整个探头要蔽光和密封。
仪器对宇宙射线的响应必须予以注意。其对宇宙射线的测量值与高压电离室测量值一般可在±10%之内相符合。对宇宙射线响应的仪器,在测量时,必须对测量值进行修正。当仪器在地面测量吸收剂量率为D测,则有下述关系
环境地球物理学概论
式中:Dγ为地面上辐射空气吸收剂量率;D宇响为仪器对宇宙射线的响应值。
环境地球物理学概论
式中:D总为地面辐射和宇宙射线的总空气吸收剂量率;D宇为测量点上宇宙射线实际空气吸收剂量率值。
10.2.3.2 高压电离室测量剂量率
在测量环境γ剂量率的各种仪器中,目前人们普遍认为高压电离室是一种灵敏度高,性能可靠,测量精确度高的仪器。高压电离室环境辐射剂量率仪由球形(或圆柱型)高压电离室、弱电流放大器和数据显示部分组成。
球形高压电离室是一个直径为200~250 mm,室壁厚度为1.5~3 mm的不锈钢球,内充高纯氩气体,收集极是置于球形电离室中心的小空心不锈钢球,用细不锈钢管支持于外球中心,经三轴金属-陶瓷绝缘子引出。
当射线在电离室的室壁和气体中产生电离时,气体中离子在电场作用下运动,被收集极收集产生输出电流讯号。在电子平衡的条件下,γ射线在电离室中产生的电流讯号与自由空气中的吸收剂量率有关。
充氩-钢壁电离室对γ辐射响应为
环境地球物理学概论
式中:(μen/ρ)Ar和(μen/ρ)Air分别是氩气和空气的质量吸收系数,该比值是γ辐射能量E的函数;WAir和WAr是在空气和氩气中形成一个离子对所需要的平均能量;p是在0℃时所充压力;V是电离室的体积;Bγ和Be分别是γ吸收剂量累积因子和电子吸收剂量累积因子,Bγ和Be与有效壁厚度、源能量和充氩量pV有关。而且,除了在低能与低气压之外,其依赖关系较小;(μ/ρ)是钢壁对γ射线的质量减弱系数;x是室壁有效厚度。
高压电离室对宇宙射线响应,可用下式表示
环境地球物理学概论
式中:S为气体对于宇宙射线带电粒子的碰撞阻止本领,氩气与空气对于宇宙射线μ介子和电子阻止本领比为0.85;ρ为气体密度,ρAr/ρAir=1.38;W为气体介质中产生一个离子对所消耗的平均能量,WAir/WAr=33.85/26.4。于是由式(10.2.40)得到
环境地球物理学概论
上式推导中,假设对于宇宙射线高能带电粒子,钢壁充氩电离室系统被视为在空气介质中的氩空腔,根据空腔电离理论原理推导得出。但是,实际上,在空气介质中围绕氩空腔的是钢壁。因此,由宇宙射线中高能电子在钢壁中产生的电磁簇射强于在空气介质中,从而发生过渡效应。从有关文献的理论计算和实际测量得到不同壁厚的过渡因子(或称“t”因子,原文为“Transitior Effect”),引入过渡因子后式(10.2.41)有
环境地球物理学概论
式中:T为电离室室壁的过渡因子。
在一般本底环境辐射场中电离室输出总电流可表示为
环境地球物理学概论
式中:Iγ为地球γ辐射产生的电离电流;Ic为宇宙射线产生的电离电流;Ib为绝缘子电压、漏电电流和电离室内壁放出的α粒子所产生的电离电流之和。
在天然环境辐射场中测量的吸收剂量率,可用下式表示:
环境地球物理学概论
式中忽略了Ib,因为国产的电离室自身本底一般不大于1×10-16A。
⑻ 辐射单位krad与GY换算
1krad=10Gy。拉德(rad)和戈瑞(Gy)都是辐射吸收剂量的单位,以前习惯使用的单位是拉德(rad),现在国际单位制单位是戈瑞(Gy),1Gy=1J/Kg。
吸收剂量是电离辐射给予单位质量物质的能量。严格的定义是电离辐射给予质量为dm的物质的平均授予能量dE被dm除所得的商,用D表示。

(8)不同剂量计测量方法扩展阅读:
辐射作用于物质引起的物理、化学或生物变化首先决定于物质单位质量吸收的辐射能量。因此吸收剂量是一个重要的物理量。但是研究表明,辐射类型不同时,即使同一物质吸收相同剂量,引起的变化也不相同,特别表现在对生物损伤的程度方面。
例如0.01戈瑞快中子的剂量引起的损伤和 0.1戈瑞γ辐射的剂量引起的损伤相当,即快中子的损伤因子为γ辐射的10倍。因此在辐射剂量学中建立了剂量当量这种物理量。吸收剂量的测量方法有空腔电离室法、量热法和化学剂量计。
⑼ 个人剂量仪的剂量仪与剂量计的区别
1、个人剂量仪和个人剂量报警仪是同一种仪器;只是称呼上不同而已。他们一般测量累积剂量和剂量率;图片如下:
2、个人剂量计:是不同于个人剂量仪和个人剂量报警仪的设备;一般只用来测量累积剂量;而且都是采用热释光剂量计来做;国家规定只有具有卫生部颁发的资质的机构才能对外提供个人剂量计的数据读取服务。图片如下:

⑽ 个人剂量计的介绍
个人剂量计通常有几种叫法,个人剂量笔,个人剂量片,个人剂量仪,个人剂量报警仪,个人辐射剂量仪,放射性个人剂量报警仪等。用于检测个人所照射的剂量检测。个人剂量计一种用来测量每个受核辐射照射的工作人员在工作时所受辐射剂量的仪器。常用的有个人剂量笔、胶片剂量计和热释光剂量计等。
