Ⅰ 催化剂比表面积测试,国内测试比表面积的方法有没有统一的标准
建议使用静态法多点BET ,不推荐使用动态法多点BET
有一下几点原因:1、气体定量使用浓度测算法不合理;不同环境温度下气体的浓度会产生变化
2、测试时间长,多点BET需要至少4个点;动态法需要重复四次,如果在重 复测试过程中,如一组操作有问题,那么整个实验将宣告失败
3、基础数据中的饱和蒸汽压P0不能测算,基础数据就有问题测试数据很难准确
大家可以看看《流动法比表面积分析仪如何选择》这篇文章很有意思
Ⅱ 水泥比表面积测定法实验步骤
一、 水泥的密度:
1、 所需仪器和材料: ① 李氏瓶 ② 恒温水槽 ③ 煤油
2、测定步骤:
① 将无水煤油注入李氏瓶中至0到1mL刻度线后(以弯月面下部为准),盖上瓶塞放入恒温水槽内,使刻度部分侵入水中(水温应控制在李氏瓶刻度时的温度),恒温30min,记下初始(第一次)读数。
② 从恒温水槽中取出李氏瓶,用过滤纸将李氏瓶细长颈内没有煤油的部分内仔细擦
干净。
③ 水泥试样应预先通过0.90mm方孔筛,在110±50C温度下干燥1h,并在干燥器内冷
却至室温。称取水泥60g,称准至0.01g。
④ 用小匙将水泥样品一点点的装入①条的李氏瓶中,反复摇动(亦可用超声波震动),
至没有气泡排出,再次将李氏瓶静置于恒温水槽中,恒温30min,记下第二次读数。 ⑤第一次读数和第二次读数时,恒温水槽的温度差不大于0.20C。
3、结果计算
① 水泥体积应为第二次读数减去初始(第一次)读数,即水泥所排开的无水煤油的体
积(mL)。
②水泥密度ρ(g/cm3)按下式计算:
水泥密度ρ=水泥密度(g)/排开的体积(cm3)
试试验结果取两次测定结果的算术平均值,两次测定结果之差不得超过0.02g/cm3.
二、比表面积的测定:
1、 所需仪器及条件: ① 透气仪 ② 烘干箱 ③ 分析天平 ④ 秒表 ⑤ 水泥样品 ⑥ 基准材料 ⑦ 压力计液体 ⑧ 滤纸 ⑨ 分析纯汞
测定试料层体积:
①、先测出水银的质量,就是把水银装满料筒用玻璃板抹平,然后倒入清零的容器里称取质量,记下数据。
②、称取3.3k左右的水泥,在料筒里先放一个35孔的垫片,再加一个滤纸再将称取的3.3k左右的水泥倒入料筒里,最后再加一个滤纸,将其捣实,再加入水银直至倒满,用玻璃板抹平。然后倒入清零的容器里称取质量,记下数据。
试料层体积=(水银①里的质量-水银②里的质量)/水银在X度得密度
3、计算所做试验用的水泥质量:
所用水泥质量=试料层体积*所做水泥的密度*(1-孔隙率)孔隙率为0.53。
4、比表面积的测定:
①、如何装试料筒:先将35孔的铜垫片放入料筒最底部→再放入一个滤纸 →再将所算出的试验所需的水泥质量倒入料筒镇平→再放入一个滤纸→再用捣器压平。
②、如何测定:打开仪器→先将装好的试料筒的外表面抹一层凡士林是为 了更好的和仪器接触没有空隙→放在仪器上转动两圈和仪器充分连接没有空隙→先测K值:(在仪器上先按K值测定键→选择→“上面有两个显示电子数字的方框„左面那个输入标定粉的比表面积‟„右边那个输入标定粉的密度‟标定粉的比表面积和密度都在装标定粉的盒上面”→再按测量键→仪器会自动计算出K值。)→再测S值:(在仪器上先按S值测定键→选择→“还是上面的那两个显示电子数字的方框„左边的那个会自动保留刚才做出的K值‟„右边的输入所做试样水泥的密度‟→再按测量键→仪器会自动计算出S值;S值即为水泥的比表面积)。
Ⅲ 催化裂化催化剂分析
催化裂化催化剂的主要理化指标及其意义 一、化学指标 催化剂的化学组成表示催化剂中的主要成分及杂质的含量,通常包括:al2o3、na2o、fe2o3、、灼烧减量五个主要指标,有时还包括re2o3。 1、al2o3含量: 催化剂中al2o3含量表示催化剂中al2o3的总含量,是催化剂的主要化学成分。 2、na2o含量: na2o含量表示催化剂中含有的na2o杂质含量。在催化裂化过程中,特别是在掺炼钒含量较高的渣油情况下, 3、fe2o3含量: fe2o3含量表示催化剂中含有的fe2o3杂质含量。fe2o3在高温下会分解并沉积在催化剂上,积累到一定程度就会引起催化剂中毒, 其结果一是使催化剂活性降低。 4、so42-含量: so42-含量表示催化剂中含有的so42-杂质含量。so42-可与具有捕钒作用的金属氧化物(如氧化铝等)反应生成稳定的硫酸盐, 从而使其失去捕钒能力。所以,在掺炼渣油的情况下,so42-的危害性较大。 5、灼烧减量: 灼烧减量是指催化剂中所含水份、铵盐及炭粒等挥发组份的含量。生产中控制其减量≤13%。 6、re2o3含量: re2o3含量是表示催化剂性能的指标之一。稀土通常来自催化剂中的分子筛,有时在催化剂制造 工艺 中也引入稀土离子达到改 善性能的目的。通常re2o3含量越高,催化剂活性越高,但焦炭产率也偏高。 对于平衡催化剂,有时还需知道其中的金属含量,如ni、v、na等,以便了解催化剂的污染程度。 二、物理性质 物理性质表示催化剂的外形、结构、密度、粒度等性能。通常包括:比表面积、孔体积、表观松密度、磨损指数、筛分组成五个主要项目。下 面分别加以简述: 1、 比表面积 催化剂的比表面积是内表面积和外表面积的总和。内表面积是指催化剂微孔内部的表面积,外表面积是指催化剂微孔外部的表面积,通常比表 面积远远大于外表面积。单位重量的催化剂具有的表面积叫比表面积。 比表面积是衡量催化剂性能好坏的一个重要指标。不同的产品,因载体和制备工艺不同,比表面积与活性没有直接的对应关系。 测定比表面积采用的方法是氮吸附容量法。 2、孔体积 孔体积是描述催化剂孔结构的一个物理量。孔结构不仅影响催化剂的活性、选择性,而且还能影响催化剂的机械强度、寿命及耐热性能等。 孔体积是多孔性催化剂颗粒内微孔的体积总和,单位是毫升/克。孔体积的大小主要与催化剂中的载体密切相关。对同一类催化剂而言,在使用 过程中孔体积会减小,而孔直径会变大。 孔体积测量采用的方法是水滴法。 3、磨损指数 一个优良的催化裂化催化剂,除了要具有活性高、选择性好等特点以外,还要具有一定的耐磨损机械强度。机械强度不好的催化剂,不但操作过 程中跑损多、增大催化剂用量、污染环境,严重时会破坏催化剂在稀、密相的合理分布,甚至使生产装置无法运转。 催化剂耐磨损强度的大小是由制备过程中粘结剂品种类型决定的,通常以铝溶胶为粘结剂的催化剂强度最好,磨损指数最小;以全合成硅铝溶胶 为粘结剂的催化剂强度最差,磨损指数大。 目前采用“磨损指数”来评价微球催化剂的耐磨损强度。测定方法是:将一定量催化剂放入磨损指数测定装置中,在恒定的气速下吹磨5小时, 第一小时吹出的<15μ的试样弃去不计,收集后4小时吹出的试样,计算出每小时平均磨损百分数(每小时吹出的<15μ的试样占原有试样中>15μ部 分的重量百分数),此即为该催化剂的磨损指数,其单位是%h-1。 目前采用的催化剂磨损指数分析方法是直管法。 4、粒度分布(筛分) 催化裂化催化剂应具有良好的颗粒分布,以保证良好的流化状态。一般要求催化剂颗粒<40μm的不大于25%,40μm~80μm不小于50%,>80μm的 不大于30%。 在流化状态下,催化剂经磨损、冲击所产生的<20μm的细粉很容易从旋风分离器中跑掉。一般地讲,催化剂耐磨性越差,跑损越严重。在 催化裂化操作中,为了平衡生产就需要不断地补充这部分跑损掉的催化剂。如果催化剂细粉多、强度差、跑损多,那么所需补充的新鲜催化剂的量也大, 生产成本就会增加。越细的催化剂颗粒,在装置中的停留时间越短;而较粗的催化剂颗粒在装置中的停留时间长,活性衰减。因此,为了维持装置的平 衡活性水平,除了补充正常跑损的催化剂以外,适当卸剂也是十分必要的。 目前测定催化剂筛分采用的仪器是激光粒度仪。 5、表观松密度 催化剂密度的大小,对流化性能、流化床的测量、设备的大小和催化剂的计量都有影响。通常,催化剂的密度用表观松密度来表示,俗称堆积比 重。 正常生产中,分析催化剂表观松密度所用的仪器为一内径为20毫米的25毫升量筒,并恰好在25毫升刻度处割断磨平。测量时将量筒放在漏斗下, 把样品倒在漏斗上,使样品在30秒内连续装满量筒并溢出,用刮刀将多余的催化剂刮平,擦净量筒外催化剂并称重。由此计算出催化剂的表观松密度。 单位为克/毫升。 博科
Ⅳ .什么叫催化剂的比表面积
单位质量催化剂内外表面积之和,叫做催化剂的比表面积。 概述学科:固体矿产工业要求词目:比表面积英文:specific surface area释文:比表面积是指单位质量物料所具有的总面积。分外表面积、内表面积两类。国标单位㎡/g.理想的非孔性物料只具有外表面积,如硅酸盐水泥、 一些粘土矿物粉粒等;有孔和多孔物料具有外表面积和内表面积,如石棉纤维、岩(矿)棉、硅藻土等。测定方法有容积吸附法、重量吸附法、流动吸附法、透气 法、气体附着法等。比表面积是评价催化剂、吸附剂及其他多孔物质如石棉、矿棉、硅藻土及粘土类矿物工业利用的重要指标之一。石棉比表面积的大小,对它的热 学性质、吸附能力、化学稳定性、开棉程度等均有明显的影响。测量:固体有一定的几何外形,借通常的仪器和计算可求得其表面积。但粉末或多孔性物质表面积的测定较 困难,它们不仅具有不规则的外表面,还有复杂的内表面。通常称1g固体所占有的总表面积为该物质的比表面积S (specific surface area,㎡/g)。多孔物比表面积的测量,无论在科研还是工业生产中都具有十分重要的意义。一般比表面积大、活性大的多孔物,吸附能力强。测定比表面积 方法有气体吸附法和溶液吸附法两类。编辑本段测试方法方法提要:比表面积测试方法主要分连续流动法(即动态法)和静态容量法。动态法 动 态法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附 量;静态法根据确定吸附吸附量方法的不同分为重量法和容量法;重量法是根据吸附前后样品重量变化来确定被测样品对吸附质分子(N2)的吸附量,由于分辨率 低、准确度差、对设备要求很高等缺陷已很少使用;容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体, 根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量; 动态法和静态法的目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。 由吸附量来计算比表面的理论很多,如朗格缪尔吸附理论、BET吸附理论、统计吸附层厚度法吸附理论等。其中BET理 论在比表面计算方面在大多数情况下与实际值吻合较好,被比较广泛的应用于比表面测试,通过BET理论计算得到的比表面又叫BET比表面。统计吸附层厚度法 主要用于计算外比表面; 动态法仪器中有种常用的原理有直接对比法和多点BET法;直接对比法 直 接对比法,国外此种方法的仪器叫做直读比表面仪。该方法测试的原理是用已知比表面的标准样品作为参照,来确定未知待测样品相对标准样品的吸附量,从而通过 比例运算求得待测样品比表面积。
Ⅳ 分析比表面积的分析方法
比表面积测定分析有专用的比表面积测试仪,国内比较成熟的是动态氮吸附法,比表面积研究和相关数据报告中,只有采用BET方法检测出来的结果才是真实可靠的,国内目前有很多仪器只能做直接对比法的检测,现在国内也被淘汰了。
目前国内外比表面积测试统一采用多点BET(Brunauer-Emmett-Teller)法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看我国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。
比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。所以完全自动化的仪器是市场需求,也是众多厂家不断进步的动力。完全的自动化仪器标准应该是仪器外观只有一个开关按钮,除此之外的所有操作均需电脑完成即可。并且配有开始分析时间预设功能可以更高的提高使用者的工作效率。
Ⅵ BET法计算比表面积
BET测试法是BET比表面积测试法的简称,该方法由于是依据着名的BET理论为基础而得名。BET是三位科学家(Brunauer、Emmett和Teller)的首字母缩写,三位科学家从经典统计理论推导出的多分子层吸附公式基础上,即着名的BET方程,成为了颗粒表面吸附科学的理论基础,并被广泛应用于颗粒表面吸附性能研究及相关检测仪器的数据处理中。
BET测试理论是根据希朗诺尔、埃米特和泰勒三人提出的多分子层吸附模型,并推导出单层吸附量Vm与多层吸附量V间的关系方程,即着名的BET方程。BET方程是建立在多层吸附的理论基础之上,与物质实际吸附过程更接近,因此测试结果更准确。通过实测3-5组被测样品在不同氮气分压下多层吸附量,以P/P0为X轴,P/V(P0-P)为Y轴,由BET方程做图进行线性拟合,得到直线的斜率和截距,从而求得Vm值计算出被测样品比表面积。理论和实践表明,当P/P0取点在0.05~0.35范围内时,BET方程与实际吸附过程相吻合,图形线性也很好,因此实际测试过程中选点在此范围内。
BET方程如下:
P/V(Pо-P)=[1/Vm×C ]﹢[﹙C-1/Vm×C﹚×﹙P/Pо﹚]
式中: P: 氮气分压
P0: 液氮温度下,氮气的饱和蒸汽压
V: 样品表面氮气的实际吸附量
Vm: 氮气单层饱和吸附量
C : 与样品吸附能力相关的常数
BET实验操作程序与直接对比法相近似,不同的是BET法需标定样品实际吸附氮气量的体积大小,理论计算方法也不同。BET法测定比表面积适用范围广,目前国际上普遍采用,测试结果准确性和可信度高,特别适合科研单位使用。当被测样品吸附氮气能力较强时,可采用单点BET方法,测试速度与直接对比法相同,测试结果与多点BET法相比误差略大一点.
需要相关的测试也可直接和我联系。如果觉得满意给我红旗。
Ⅶ 实验三 比表面积测定实验
一、实验目的
1.掌握比表面积测定仪的基本原理和测定方法。
2.结合所学理论知识,进一步了解吸附理论。
二、实验仪器及用品
F-Sorb3400比表面积测定仪,氦氮气瓶及液氮杯,标准样品,感量为0.0001g天平,烘箱,玻璃容器若干。
三、实验原理
比表面积是颗粒的基本性质之一,比表面积的大小严重影响颗粒的活性和非金属矿的表面改性,比表面积的大小是非金属矿改性和利用的重要指标。
本实验的理论基础是BET吸附理论。在物理吸附过程中,吸附剂与吸附质之间的作用力是范德华力;吸附质分子之间的作用力也是范德华力。当气相中的吸附质分子被吸附在多孔固体表面之后,它们还可能从气相中吸附其他同类分子,吸附是多层的,达到一种动态的吸附平衡。物理吸附发生时,吸附质几乎完全覆盖固体表面,根据单分子层吸附量和一个吸附分子的占有面积能够求得固体比表面积。
实验用到的仪器根据BET理论和气相色谱原理研制而成的。测试比表面积用到两种气体He和N2,分装于不同的高压气瓶中(He用作载气,N2用作吸附)。使用时,按比例混合;当混合气通过样品管,装有样品的样品管浸入液氮中时,混合气中的N2被样品表面吸附;当样品表面吸附N2达到饱和时,撤去液氮,样品管由低温升至室温,样品吸附的N2受热脱附(解吸),随着载气流经热导检测器的测量室,电桥产生不平衡信号,利用热导池参比臂与测量臂电位差,在计算机屏幕上可产生一脱附峰,计算脱附峰的面积,就可算出被测样品的表面积值。
比表面积计算公式:
矿物加工工程专业实验教程
式中:As——比表面积,m2/g;
vm——单位吸附剂质量上单分子层吸附质质量,g;
N——阿伏伽德罗常数,6.022×1023mol-1;
am——一个氮分子的面积,0.162nm2
四、实验步骤
1.实验准备
(1)清洗并烘干试样管。
(2)将待测试样置于U形管中,在120℃,惰性气氛下,预处理2~4h。
(3)选择与被测样品表面积接近的标准样品。
2.比表面积测试
(1)将被测样品装入试样管,被测样品装入量不得超过试样管容积的2/3,且不得出现挂壁现象。
(2)检查仪器是否漏气,若两个流量计差值超过10mL/min,则表明出现漏气现象,需进行停机检查。
(3)开启通气阀门,将He和N2压力均设置为0.16MPa,保持通气超过5min;若仪器设备长期未使用,可适当延长通气时间。
(4)打开电源,调整电压调整旋钮,将电压调整在12~14V,确保电流表指示为100mA。
(5)打开计算机测试软件,在设置窗口输入样品名称、质量等信息。
(6)将液氮倒入保温杯中,并放入升降托盘上,按动上升按钮,使保温杯上升,到达指定位置后,开始吸附测量。
(7)点击软件端工具栏→吸附,显示器显示吸附波峰;当数显屏显示数字0或长时间停留在接近0的数字时,点击吸附完成。
(8)升温解吸:按动升降托盘的下降按钮,将盛有样品的保温杯放到最低;等待2s后,点击软件中脱附按钮;当数显屏显示为0时,解吸完成。依次进行其他样品测试,软件自动给出比表面积数据。
(9)关闭设备顺序:断电→关闭分压阀→关闭总阀。
五、数据处理
1.记录计算机软件端显示样品比表面积数据。
2.运用吸附理论分析比表面积大小对表面改性效果的影响。
Ⅷ 什么是比表面积
比表面积是指单位质量物料所具有的总面积。分外表面积、内表面积两类。理想的非孔性物料只具有外表面积,如硅酸盐水泥、一些粘土矿物粉粒等;
有孔和多孔物料具有外表面积和内表面积,如石棉纤维、岩(矿)棉、硅藻土等。测定方法有容积吸附法、重量吸附法、流动吸附法、透气法、气体附着法等。比表面积是评价催化剂、吸附剂及其他多孔物质如石棉、矿棉、硅藻土及粘土类矿物工业利用的重要指标之一。
(8)催化剂比表面积测定方法步骤扩展阅读
测量:固体有一定的几何外形,借通常的仪器和计算可求得其表面积。但粉末或多孔性物质表面积的测定较困难,它们不仅具有不规则的外表面,还有复杂的内表面。通常称1g固体所占有的总表面积为该物质的比表面积S 。
多孔物比表面积的测量,无论在科研还是工业生产中都具有十分重要的意义。一般比表面积大、活性大的多孔物,吸附能力强。测定比表面积方法有气体吸附法和溶液吸附法两类。
粉尘粒子愈细,比表面积愈大。细粒子常常表现出显着的物理和化学活动性,如氧化、溶解、蒸发、吸附、催化以及生理效应等都能因细粒子比表面大而被加速。
Ⅸ BET法计算比表面积
可以用BET法来测定
选择化学吸附能用于测定活性表面积.
首先你要确定你的催化剂属于哪种类型,要是酸性催化剂能用NH3
TPD
来测定它的酸性中心.要是碱性可以用CO
,H2等来测量抄
从气体吸附量计算活性表面积首先要确定选择吸附的计量关系,即每个吸附百分子能覆盖几个活性中心.对于氢吸附来说计量系数一般是2,CO在相同条件下是1桥式吸附是2
还有一种叫氢氧滴定的方法
首先让催化剂度吸附氧,再吸附氢,吸附的氢氧反应生成水,又消耗的氢按比例来推出吸氧量,从而得到氧吸附中心数目.
后一种比较适合活性炭载体的催化剂测量,因为活性炭可以吸附CO等气体,要是用BET法一定要选择活性炭不吸附的气体来测量才行
Ⅹ 比表面积检测方法的测试方法
比表面积测试方法主要分连续流动法(即动态法)和静态容量法 。
动态法
动态法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附量;静态法根据确定吸附吸附量方法的不同分为重量法和容量法;重量法是根据吸附前后样品重量变化来确定被测样品对吸附质分子(N2)的吸附量,由于分辨率低、准确度差、对设备要求很高等缺陷已很少使用;容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量;动态法和静态法的目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。由吸附量来计算比表面的理论很多,如朗格缪尔吸附理论、BET吸附理论、统计吸附层厚度法吸附理论等。其中BET理论在比表面计算方面在大多数情况下与实际值吻合较好,被比较广泛的应用于比表面测试,通过BET理论计算得到的比表面又叫BET比表面。统计吸附层厚度法主要用于计算外比表面;动态法仪器中有种常用的原理有直接对比法和多点BET法;
直接对比法
直接对比法,国外此种方法的仪器叫做直读比表面仪。该方法测试的原理是用已知比表面的标准样品作为参照,来确定未知待测样品相对标准样品的吸附量,从而通过比例运算求得待测样品比表面积。以使用氮吸附BET比表面标准样品为例,该方法的依据是有2个:一、BET理论的假设之一在吸附一层之后的吸附过程中的能量变化相当于吸附质分子液化热,也就是和粉体本身无关;二、在相同氮气分压(5%-30%)、相同液氮温度条件下,吸附层厚度一致;这就是以直接对比法所得出的比表面值与BET多点法得到的值一致性较好的原因;
多点BET法
多点BET法为国标比表面测试方法,其原理是求出不同分压下待测样品对氮气的绝对吸附量,通过BET理论计算出单层吸附量,从而求出比表面积;其理论认可度相对直接对比法高,但实际使用中,由于测试过程相对复杂,耗时长,使得测试结果重复性、稳定性、测试效率相对直接对比法都不具有优势,这是也是直接对比法的重复性标称值比多点BET法高的原因;动态法和静态容量法是目常用的主要的比表面测试方法。两种方法比较而言,动态法比较适合测试快速比表面积测试和中小吸附量的小比表面积样品(对于中大吸附量样品,静态法和动态法都可以定量的很准确),静态容量法比较适合孔径及比表面测试。虽然静态法具有比表面测试和孔径测试的功能,但静态法由于样品真空处理耗时较长,吸附平衡过程较慢、易受外界环境影响等,使得测试效率相对动态法的快速直读法低,对小比表面积样品测试结果稳定性也较动态法低,所以静态法在比表面测试的效率、分辨率、稳定性方面,相对动态法并没有优势;在多点BET法比表面分析方面,静态法无需液氮杯升降来吸附脱附,所以相对动态法省时;静态法相对于动态法由于氮气分压可以很容易的控制到接近1,所以比较适合做孔径分析。而动态法由于是通过浓度变化来测试吸附量,当浓度为1时的情况下吸附前后将没有浓度变化,使得孔径测试受限。
静态容量法
在低温(液氮浴)条件下,向样品管内通入一定量的吸附质气体(N2),通过控制样品管中的平衡压力直接测得吸附分压,通过气体状态方程得到该分压点的吸附量;通过逐渐投入吸附质气体增大吸附平衡压力,得到吸附等温线;通过逐渐抽出吸附质气体降低吸附平衡压力,得到脱附等温线;相对动态法,无需载气(He),无需液氮杯反复升降;由于待测样品是在固定容积的样品管中,吸附质相对动态法不流动,故叫静态容量法;
相关国家测试标准
国内关于比表面积测试的现行有效国家标准约有十几个,现列举几个比较常用的国家标准方法:GB/T 19587-2004 《气体吸附BET法测定固态物质比表面积》GB/T 13390-2008 《金属粉末比表面积的测定 氮吸附法》GB/T 7702.20-2008 《煤质颗粒活性炭试验方法比表面积的测定》GB/T 6609.35-2009 《氧化铝化学分析方法和物理性能测定方法 第35部分:比表面积的测定 氮吸附法》SY/T 6154-1995 《岩石比表面和孔径分布测定 静态氮吸附容量法》国内对于材料比表面积测测试机构有很多家,例如北科大分析检验中心、国家钢铁材料测试中心等。