❶ 海下传感器在水下的活动是怎样的
从大量的地震监测和钻探活动中,海洋地质学家们已经知道海底的下面存在着大量的地下海水,它们流动着,将热量带到海床的上面。科学家希望知道这些地下海水的活动究竟是怎样的,其移动的速度有多快。于是他们在海底钻了一些孔。然后将一些传感器放于孔中,通过这些传感器,科学家可以持续地获得有关海洋地下水压力和温度方面的资料。
这个海底地下监测系统被命名为CORKS,自1991年正式启用以来,它为人们提供了大量海底地层的信息。地球物理学家伊尔•戴维斯说:“现在我们知道,在大洋底部以下的确流动着大量的海水。”监测表明,这些海水可以在地下穿行好几公里。令人惊讶的是,这些安放在海底的传感器还记录下了发生在海面上的运动,如潮汐等。戴维斯认为,海平面乃至大气压力的升降会影响海底以下的状态,甚至可以导致它的形状发生改变。
海底以下是否存在生命也是一个令科学家备感兴趣的问题。几年前,科学家们在秘鲁附近海域进行了一次雄心勃勃的探索活动,他们在150米至5300米的水下进行钻探,结果竟在海底以下420米的地层里找到了微生物。科学家认为海底以下存在着大量的微生物,它们的数量可能占地球微生物总数量的三分之二,由此人们意识到类似的生命形式很可能也存在于其他行星和卫星的海洋下面。
❷ 哪几种传感器可以测量海洋表面温度
1.传感器:AATSR先进的沿轨道扫描辐射仪,卫星:ERS-2(欧空局),用途:海面温度,陆地应用。
2.传感器:ASTR纵向扫描辐射仪和微波探测仪,卫星:ERS-1(欧空局),用途:云,海面温度。
3.传感器:AVHRR甚高分辨率辐射仪,卫星:NOAA(美国),用途:云盖,海面温度,植被气溶胶。
4.传感器:MSU-M多光谱低分辨率扫描仪,和MSUS多光谱中等分辨率扫描仪及MSU-S多光谱中等分辨率扫描仪,卫星:OKEAN系列(俄罗斯/乌克兰),用途:云监测,海面温度。
5.传感器:RM-08被动式微波扫描辐射仪,卫星:OKEAN-0(乌克兰/俄罗斯),用途:水气,海水,海温监测。
6.传感器:MIMR多频微波成像辐射仪,卫星:EOS美国,用途,海温,风等。
7.另外还有些用于海洋监测的传感器:Altimeter高度计(EOS卫星,美国);AMI主动微波仪器(ERS-1卫星,欧空局);AMR测高微波辐射计(EOS卫星,美国);AMSR先进的微波扫描辐射仪(ADEOSII卫星,日本);DORIS卫星集成的多普勒轨道成像及无线电定位仪(EOS卫星,美国);Greben精密的雷达测高计,(PRIRODA-1卫星,俄罗斯);SeaWIFS海洋宽视场传感器,(seastar卫星,美国);WFI海洋宽视场成像仪,(CBERS卫星,中国/巴西)…
❸ 海洋磁力测量的测量仪器
一、GB-6型海洋氦光泵磁探仪
GB-6型海洋氦光泵磁探仪是一种原子磁力仪,是一种高精度磁异常探测器,适合于航空及海洋地球物理勘探中高精度磁测量,也可用于航空磁异常探潜。该仪器具有数字化、模块化、小型化和系统集成特点。用光泵技术制成的高灵敏度磁探仪,无零点漂移、不须严格定向,对周围磁场梯度要求不高,可连续测量等显着优点,可广泛用于航空及海洋地球物理勘探;航空探潜及探雷等军事目的。
该仪器已广泛用于港口、航道、锚地等对泥下障碍物、管道探测及海缆路由调查、重要工程水域磁场测量等海洋工程开发中,在海上和长江中已完成数十次探测与定位、打捞作业。
二、海洋磁力测量广泛使用核子旋进磁力仪,它是利用氢质子磁矩在地磁场中自由旋进的原理来测量地磁场总向量的绝对值。煤油、水、酒精等都含有不停“自旋”的氢质子,并产生一个“自旋”磁矩,称质子磁矩。这些质子在没有外磁场作用时,其指向毫无规则,宏观磁矩为零。当含氢液体处在地磁场中,经过一段时间,磁矩的方向就趋于地磁场的方向。如果加一个垂直于地磁场T 的强人工磁场H0(大于100奥斯特),则迫使质子磁矩趋于H0的方向。当人工磁场突然消失,质子磁矩受地磁场的作用,将逐渐回到T 的方向上去。因为每个质子具有“自旋”磁矩,同时受地磁场T 的作用,就产生了质子磁矩绕地磁场T 的旋进现象,即所谓质子旋进。旋进的圆频率ω与地磁场总强度T的绝对值T成正比,即旋进的频率越高地磁场越强。
ω=νpT
式中ω=2πfp,fp为旋进频率;νp为磁旋比,νp=26751.3/(奥斯特·秒)。经换算:T=23.4874fp(伽马)(1伽马=10-5奥斯特)。
由此可见,地磁场的测量可以转化为旋进频率的测量。在电路中采用放大、倍频和控制电子门开启时间的方法,可将测量结果直接以伽马示出。
为了消除日变和海岸效应的影响,在海洋质子旋进磁力仪的基础上制造了海洋质子磁力梯度仪。它的基本结构是由两台高精度的同步质子旋进磁力仪、微分计算器、双笔记录器和由同轴电缆拖曳船后两个一前一后的传感器组成,传感器间的距离大于 100米。磁扰动场的影响,可由两个相同传感器获得的总磁场强度差值中消除,实际上得到的是总磁场强度的水平梯度值。然后对水平梯度值进行积分,得到消除了日变和海岸效应的总磁场强度值。这样,海洋质子磁力梯度仪作大洋磁测就无须再设置日变观测站,即可消除日变和海岸效应的影响,因而比质子磁力仪更适合于海上测量。
由于大气受太阳辐射的影响,引起电离层的变化,致使磁场发生短周期的变化,这种现象称为日变。由于海水和岩石之间,不同岩性的岩石之间有电导率的差异,致使大地电磁场在海陆和不同岩石之间的边界发生畸变。这种畸变是一种不规则的磁扰,因地而异,尤其是在海沟和岛弧地区更为明显,这种现象称之为海岸效应。
❹ 传感器使用常见问题及解决办法
1.传感器使用常见问题及解决办法,题目包括种类,型号太多了,应该具体说明那型号。
2.因为传感器包括温度,压力,速度,重力,电磁,声光等。市场应用传感器品种之多,应用广泛。
❺ 传感器的检测方法
传感器一般有三种检测方法:1、直接检测,就是使用传感器仪表直接检测,传感器仪表会直接表示检测所需要的结果;2、间接检测,利用物理量和函数关系进行检测,通过函数关系式得到所需要的检测结果;3、组合检测,应用传感器仪表的同时运用物理量和联立方程组求解,得到所需要的检测结果。 基本上,每个行业中都会运用到压力传感器,汽车利用传感器有三种方法:1、加压检测,它是指汽车的水箱温度达到沸点,也就是人们常说的“车子水箱里的水煮成了开水”的情况。水箱的温度可以从汽车水温表的指示读数看出,一般要求不能超过95
❻ 海洋重磁测量野外工作方法
王功祥 唐卫
第一作者简介:王功祥,男,1971年出生,物探工程师,主要从事海洋重磁、地震及各种工程测量工作。
(广州海洋地质调查局 广州 510760)
摘要 海洋重磁测量在海洋调查中有着重要位置,有效控制野外资料采集是海洋重磁测量的关键一环。本文结合野外作业的实际情况,针对海洋重磁调查中的一些干扰效应进行了对比分析,以期提高海洋重磁调查野外资料采集的质量。
关键词 海洋重磁测量 干扰分析 野外作业
1 海洋重力测量
海上重力测量不同于陆地重力测量,它必须在运动的状态下,即所谓的动基座(如船)上进行。测量重力加速度的仪器的基座,对与地球连接的坐标系作相对运动。从本质上说,海洋重力仪可算作超高精度的加速度计,它测量的是瞬时重力加速度的一个分量。和任何加速度计一样,海洋重力仪也可以在相对基座的某个严格规定了的方向上记录加速度变化,这个方向就是仪器的测量灵敏轴。
1.1 海洋重力测量的主要干扰因素及其分析
1.1.1 水平干扰加速度
在水平面上测量的瞬时重力值可表示为G=g+x2/2g-Δа2/2g,其中x表示水平加速度,Δа表示瞬时垂线与真垂线的夹角,g表示重力真值。由上式可以看出水平加速度使重力增加x2/2g,而瞬时垂线与真垂线的夹角使重力减小Δа2/2g。为了得到重力真值,在平均测量中要引入加速度改正和倾斜改正Δg=-x2/2g+Δа2/2g。如果重力测量仪器安装在周期比船摇晃周期小得多的常平架中,则常平架纵轴(常平架重心和相互垂直的旋转轴交点的连线)将随时跟踪瞬时垂线方向。因此可以调整仪器,使其灵敏轴几乎同瞬时垂线一致,这样Δа即为常平架的定向误差,采用陀螺稳定平台就是基于这个道理。海上试验表明,对高达50Gal的加速度,由于稳定平台的周期(大于2分)比波浪周期(小于17秒)大得多,水平干扰加速度产生的误差很小,仍可以达到1mGal的精度。
1.1.2 垂直干扰加速度
在海洋重力测量中,最大的问题是垂直加速度引起的。由于无法区分开重力加速度和垂直干扰加速度,于是在动基座上的重力测量值实际上是由两部分组成:一部分是由重力本身引起的弹性系统变化;另一部分则是由垂直加速度作用而影响到重力仪读数的值。但垂直加速度对重力仪主要是造成瞬间交变干扰,且几乎按余弦规律变化,具有周期性特点,若重力仪是线性系统,测量时垂直干扰加速度并不会造成系统误差,这是其本身的平均值为零的缘故。在现代重力仪中都采用强阻尼措施而大大压制了垂直干扰加速度,但这也使得在运动着的船上所测的重力异常产生幅度的减小,同时也会引起弹性系统对重力变化的反应有滞后现象,以至于对某些短时间变化的局部重力异常感应不出来,或者减小了数值。
1.1.3 厄特屋斯效应
装在匀速航行船只上的重力仪,其读数除受基座干扰加速度影响外,还受厄特屋斯效应的影响,该效应同地球自转引起的离心力有关,主要受船航速、航向影响。
1.2 野外操作及其注意事项
1.2.1 设备安装
干扰加速度主要部分是由船上仪器安装点的交变摆动的特征所决定的。干扰加速度的优势周期和幅度值取决于众多因素:船型和排水量、仪器位置、波浪特征、船航向和航区。对于特定的调查船及作业工区,其性能参数是无法改变的,因此仪器安装位置及环境显得尤为重要,一般要求将仪器安装在船纵横摇的中心点,越靠近舱底越好,且远离热源体和强电磁源(主要是由于重力仪内部安装有用于强阻尼的永久磁铁)。
1.2.2 码头准备
海洋重力仪的弹性系统均为金属质构造,温度发生变化,其热胀冷缩现象显着,因此保持传感器内部恒温至关重要。一般来说厂家要求用户每天24小时不间断通电加温,但实际上很难做到,原因是:在仪器长期处于闲置状态时,长时间通电会导致一些指示灯烧毁,板件也会损坏,如KSS⁃31海洋重力仪控制单元ZE31的LP5.28 5V电源板曾经三次失效,所以只有在备航期间或航次间隔很短时才保持仪器的不间断通电。启动重力仪前究竟加温时间多长,按实际至少是1~2天,时间太短仪器读数不稳定,或频繁死机,或无法正常启动。有时候也有这种情况:仪器面板电流长时间不变化,表明内部温度指示已达到恒温数50℃,但实际上金属质弹性系统并没有达到均衡恒温状态。
当载体发生变化时,海洋重力仪必须做测试,包括平台抛物线测试、小球常数测试、延迟时间常数测试以及倾斜格值测试等,以确保整个系统通道的正常。
1.2.3 掉格现象
掉格是由弹性系统发生儒变或小球下掉所致,掉格现象往往瞬间发生,重力读数突然增加或减小几十或几百个毫伽,在模拟记录上会出现一条阶跃曲线。掉格现象与船变速或偏航情形不同,前者加速度或摆位并无变化,后者则有相应的偏移。在仪器出现掉格时,应停止测量,立即回到掉格前的位置或回到码头基点进行重复观测,以确保前期工作的可信性。
1.2.4 基点比对
基点的作用在于:控制重力测量点的观测精度,避免误差的积累;检查重力仪在某一段工作时间内的零点漂移,确定零点漂移校正系数;推算工区重力测点的相对或绝对重力值。海洋测量时由于距离陆地路途遥远,不可能经常性地往返基点测量,只能航段性地进行基点比对。为了控制零点线性漂移,海洋重力仪普遍采用了线性系统,即重力读数变化严格正比于重力变化的弹性系统。调查船出航和返航均需比对基点,在基点比对时要记录好各相关数据,包括重力传感器距基点的垂直、水平距离;调查船左、右舷距水面高度;码头距水面高程;仪器读数及比对时间等。在实际比对基点时有几个因素我们不得不考虑:基点周围建筑物群的变化;停靠或过往的附近船只。所有这些干扰物体的相互引力影响,均会造成仪器相对读数的降低。以广州海洋地质调查局的海洋四号和探宝号为例,当两艘大船靠在一起时,多次观测表明两船的引力影响导致重力读数降低2~3毫伽。在海上作业时不可避免地遭遇台风影响,在外港避风时期,观测收集各地港口、锚地的相对重力值或基点值,对于我们了解、控制仪器掉格情况也是很有帮助的。
图1 海洋重力模拟记录
Fig.1 Marine gravity simulation record
1.2.5 实时观测
在海上工作期间,重力调查质量监控主要是通过模拟记录来实现(如图1),即观察传感器在船运动姿态下感应的纵横加速度,一般海况下纵横加速度的变化表现在模拟记录纸上基本上在以中心点1~2格的范围内摆动;在恶劣海况下则有3~6格的变化。当船变速或偏航时,纵横加速度或重力值均会发生变化;由于新型海洋重力仪均直接接入实时定位数据(包括点位、速度、航向),当导航信号不稳定时,重力显示数据会发生急剧变化,因此将这些变化信息及时记载,对室内处理的帮助是很大的。一般来说,重力测量模拟记录曲线比较平滑,南北向重力读数变化大,东西向则较小;对曲线变化较大的地方应多加关注,如海山影响会导致重力数值降低,再如隆起或凹陷,由于剩余质量的亏损或盈余会导致重力读数的减少或增加。在海上,养成与地震资料、水深资料或多波束资料对比观察的良好习惯,对于提高我们海洋重磁观测的质量控制不无裨益。另外,了解我国各海区区域相对重力场,对于控制重力测量的野外变数也很有帮助,以KSS⁃31型海洋重力仪为例,如东江口码头相对测量值为-1900毫伽左右;南海相对测量值为-1400~-1700毫伽;东海相对测量值为-800~-1000毫伽;黄海相对测量值为-500~-800毫伽左右。
2 海洋磁力测量
2.1 海洋磁力测量的主要干扰因素及其分析
2.1.1 系统噪声
该误差与仪器本身固有特性有关,往往不可预测,是一个固定值。电子干扰在船上通常是一个很大的噪声源,这要取决于仪器设备的安装条件,尤其是接地,但也会随着噪声源的开启和关闭而变化。
2.1.2 船磁方位效应
方位误差是由船磁在传感器上的效应引起。在海洋环境中主要由两个因素引起:一种是船的永久磁场。调查船处于地磁场环境中必然要被磁化,而且磁化后产生的附加磁矩特别强,因而呈现出很强的磁性,磁性一旦形成很难消失,这就组成了船的永久磁场;另一种是船上渗透性物质在地磁场作用下的感应磁场。随着调查船所处的地磁场变化以及测量船相对地磁场的空间方位的变化,船磁也在不断变化,这部分瞬时变化的附加磁场就组成了船磁的感应磁部分,感应磁场的方向与地磁场方向一致。在海上测量时,调查船航向的变化只是影响了船磁的感应磁部分。船的永久磁场是由船的固有磁矩产生的,因此大小应该一样,但随调查船的航向变化而改变方向。文献指出:调查船的永久磁场是一个典型的余弦曲线,感应磁场是一个典型的正弦曲线,而且感应场的影响要比永久磁场大得多。因此船磁的总体影响也应该是一个典型的正弦曲线,也就是我们在实际进行船磁方位试验时通常见到的“W”形状。
2.1.3 涌浪和传感器运动干扰
该误差来源是一种动态环境:来自于海涌的磁性振荡以及拖曳系统中流体的不稳定性因素。海浪噪声是由于海水中地磁场中的传播媒介的周期性运动而引起的,这种效应在磁场中产生的周期性变化是很大的,通常10~20秒的周期性海浪运动会产生好几个纳特的磁场变化。但是通常海洋调查有和海浪同样周期(4~11秒)的采样率,而且系统噪声水平也有半个纳特,因此涌浪噪声可能不被识别。另一种误差源是由于拖曳系统中流体不稳定性引起的,导致了传感器旋转周期的旋进信号进行周期性调谐,海洋调查对于传感器这种非稳定性因素造成的影响也很难从系统噪声中分辨出来。
2.2 野外作业及其注意事项
2.2.1 电缆长度的确定
磁力拖曳电缆究竟施放多长目前并无理论上推导,一般经验法则是:做总场调查时为2~3倍船长,做梯度测量时为3~5倍船长。2000年在南海做亚太光缆调查时,由于水深较浅,平均20m,为保证水面设备安全,我们做了如下试验:奋斗四号船长85m,施放电缆为170m时,磁力数据非常紊乱;施放电缆为200m时,磁力数据稍好一点,但仍然有点乱;施放电缆为220m时,磁力数据比较平稳;2002年在租用20m小船做浅水物理调查时,当施放磁法电缆到50m时,磁力数据才稳定。这说明只有在拖曳电缆至少为2.5倍船长时,才能采集到正常的磁力数据。
2.2.2 甲板电缆铺设
甲板电缆是拖曳电缆与磁力设备之间的连接电缆,尽管甲板电缆采用了屏蔽措施,但如果铺设位置及走向不合适,就会对采集的数据造成影响,特别是在甲板强电磁场区,如架有高压电缆、集束通讯通信电缆等地方,一定要尽量避开;如实在无法避开,最好使甲板电缆与干扰电缆呈垂直走向通过。野外实际对比观测表明,如果甲板电缆铺设不当,往往会有1~3纳特的数值附加在正常磁力数据上,严重的会有7~8纳特的干扰,甚至会造成磁力设备无法正常运转。
2.2.3 海底日变站的设立
在高精度的海洋磁测中,地磁周日变化是一种严重干扰场,在南沙,由于距离海南地磁台太远,交点均方差往往达到27纳特以上,因此在工区附近建立海底日变站非常迫切且重要。海底日变站必须设立在地形平坦且地磁场相对平静的地方,其结构如图3所示。2004年广州海洋地质调查局从加拿大引进一套SENTINEL陆地/海洋日变站观测系统,5月海洋四号利用该日变数据绘制的船磁方位曲线非常理想,也就是说海底日变站的建立基本上剔除了野外磁力调查过程中的日变影响,如图2所示。
图2 南海东沙海域船磁方位曲线。左图是日变改正之前的曲线,右图是日变改正之后的曲线
Fig.2 Curve of shipˊs magnet orientation in dongsha south China sea.Left figure is the curve before time variety correction,right figure is the curve after time variety correction
图3 地磁日变观测锚系结构
Fig.3 Anchor system structure of geomagnetism time variety observation
2.2.4 船磁方位试验
为了消除船体在地磁场磁化作用下产生的感应磁场影响,同时为了方便对不同航次相邻测线的磁场进行水平调整,在作业工区必须做45°八方位定点偏向航行观测。由于白天日变及电磁干扰较大,船磁方位试验最好选在晚上或凌晨进行,试验点应选择在局部地磁场平静的地方,试验顺序:0°→225°→90°→315°→180°→45°→270°→135°→0°→225°→90°→315°→180°→45°→270°→135°→0°。
试验前要精确计算定位点距离磁力传感器位置,以方便偏距调整。试验主要采集圆中心(如图4所示)数据,因此在船进入中心点前一定要确保船航行在测线上并已走直,并且磁力电缆已拉直。
2.2.5 实时观测
对于质子磁力仪,如G801、G821、SeaSPY等,在接收线圈内其感应讯号的电压为V(t1)=CκpH0γpsin2θsin(γpT t1)e-A,其中θ为线圈轴线与地磁场T之间的夹角。当θ=45°时,讯号幅度只降低了一半,因此对于探头定向只要求大致与T相垂直。但是,θ接近于零度,则是探头的工作盲区。
光泵磁力仪运用电子跃迁和光泵泵激原理,采用感应灵敏元件和同步调谐回路,其灵敏度比质子磁力仪更高。但其存在工作盲区,如图5所示,当地磁场与传感器光泵中心轴线夹角为±15°时,感应不到信号,因此为了获得工区各测线方向上的最大信号强度,必须实时调节传感器的角度。在我国海域通常在旋转0°和倾斜0°情况下各测线方向一般能感应到有效信号。2005年海洋四号在执行南海中南部海域重磁测量时,发现磁力模拟记录有周期性锯齿状出现,G880光泵磁力仪感应的信号只有400左右。该区域地磁倾角21°,由于测线的近南北、东西向展布,运行CSAZ演示程序后才知道,由于工作盲区的存在,使得在该区域传感器只能保持旋转90°和倾斜0°姿态,调整后信号强度达到800以上,数据相当稳定。
图4 船磁方位示意图
Fig.4 Sketch map of shipˊs magnet orientation
海上磁力质量的监控主要是通过在仪器面板上指示的信号强度以及模拟记录(图6)显示的抖动度。各种类型的海洋磁力仪指示的信号强度的标准并不一致,对于质子磁力仪信号强度至少要求130;对于光泵磁力仪信号强度至少要求450。磁力数据的抖动度只能作为一种相对参考,如2004年我们在执行汕头南澳岛大桥路由调查中发现,磁力抖动基本在2~3纳特之间,但仪器信号又很稳定,架设的日变站也无法正常工作,后来才知道整个南澳岛及周边区域基底出露的是磁性很强的玄武岩。野外观测实际表明,磁力数据出现大的抖动(一般大于2纳特)时,往往由如下几个因素引起:通讯干扰、电焊焊弧,这是人为电磁波信号的扰动;探头尾翼松动或脱落,或挂上渔网、渔标等杂物,导致拖鱼无法控制平衡;过往船只附加的船磁影响;甲板电缆铺设不当导致的电磁干扰;磁暴,这是太阳黑子周期出现的征兆,其影响是全球性的,灾难性的,1997年在南沙作业时曾监控过一次,模拟记录上显示的是一条条急剧变化的平行线,持续时间约10个小时;地质背景场或断裂破碎带,2004年南澳岛作业就是这种情况,在我国黄海、南中国海域,断裂发育丰富,磁力模拟记录上观测到的急剧变化的平行线非常多,但与磁暴不同的是,这种现象往往持续时间很短;恶劣海况或雷电天气也会造成磁力数据的跳变。
图5 光泵磁力仪盲区示意图
Fig.5 Sketch map of dead zone for optical pumping magnetometer
图6 磁力模拟记录
Fig.6 Marine magnetism simulation record
3 结论
重磁测量资料包含了丰富的信息,无论是地壳深部构造与地壳均衡状态的研究,还是普查、勘探多种矿产资源,或是在水文、工程(乃至考古等)方面的应用等诸多地质任务,都有可能利用重磁资料来加以研究或解决。野外重磁资料采集的质量监控,其根本目的就是保证野外采集资料的真实性、可靠性,尽可能地防止无用的或无意义的信息叠加在有用的地质体信息之上,以方便室内资料的处理。
参考文献及资料
海军海洋测绘研究所.1990.海洋重力测量,92~95
罗孝宽,郭绍雍等.1990.应用地球物理教程.北京:地质出版社,209~210
GEOMETRICS,INC.1997.G⁃880 CESIUM MARINE MAGNETOMETER Operation Manual
The Field Employment Method of Marine Gravity & Magnetism Survey
Wang Gongxiang Tang Wei
(Guangzhou Marine Geological Survey,Guangzhou,510760)
Abstract:The proction of marine gravity and magnet detection plays an important role of ma⁃rine survey.Itˊs a basilica factor about how to actually control data collection ring marine gravi⁃ty & magnetism survey.This article devotes to satisfying the readers through contrastively analyzing some disturb effects ring marine gravity&magnetism survey,simultaneity opening out depiction by use.
Key words:Marine gravity & magnetism survey Disturb effects analysis Field employment
❼ 海洋环境传感器的结构、原理、特点
传感器 一、传感器(transcer)的定义 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 二、传感器的分类 传感器的分类 可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。 根据传感器工作原理,可分为物理传感器和化学传感器二大类 传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。 化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。 有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。 常见传感器的应用领域和工作原理列于表1.1。 按照其用途,传感器可分类为: 压力敏和力敏传感器 位置传感器 液面传感器 能耗传感器 速度传感器 热敏传感器 加速度传感器 射线辐射传感器 振动传感器 湿敏传感器 磁敏传感器 气敏传感器 真空度传感器 生物传感器等。 以其输出信号为标准可将传感器分为: 模拟传感器——将被测量的非电学量转换成模拟电信号。 数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。 膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。 开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。 在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。从所应用的材料观点出发可将传感器分成下列几类: (1)按照其所用材料的类别分 金属 聚合物 陶瓷 混合物 (2)按材料的物理性质分 导体 绝缘体 半导体 磁性材料 (3)按材料的晶体结构分 单晶 多晶 非晶材料 与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向: (1)在已知的材料中探索新的现象、效应和反应,然后使它们能在传感器技术中得到实际使用。 (2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。 (3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。 现代传感器制造业的进展取决于用于传感器技术的新材料和敏感元件的开发强度。传感器开发的基本趋势是和半导体以及介质材料的应用密切关联的。表1.2中给出了一些可用于传感器技术的、能够转换能量形式的材料。 按照其制造工艺,可以将传感器区分为: 集成传感器 薄膜传感器 厚膜传感器 陶瓷传感器 集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。 薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。 厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。 陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶-凝胶等)生产。 完成适当的预备性操作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。 每种工艺技术都有自已的优点和不足。由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。 三、传感器的静态特性 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。 四、传感器的动态特性 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。 五、传感器的线性度 通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。 拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。 六、传感器的灵敏度 灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。 它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。 灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。 当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。 提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。 七、传感器的分辨力 分辨力是指传感器可能感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。 通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。 八、电阻式传感器 电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。 九、电阻应变式传感器 传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。 十、压阻式传感器 压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。 用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感 材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。 十一、热电阻传感器 热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。 十二、传感器的迟滞特性 迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出-一输入特性曲线不一致的程度,通常用这两条曲线之间的最大差值△MAX与满量程输出F·S的百分比表示。 迟滞可由传感器内部元件存在能量的吸收造成。
❽ 海洋方面专门的传感器有哪些呢详细介绍下某个一传感器以及它在海洋学上的应用吧~谢~
不知道你要哪种被测参数的传感器,下面我简单说几样;
1、海洋温度,主要安装于卫星上,目前欧盟,俄罗斯,乌克兰,美国,中国都有相应的传感器。主要采用的是微波辐射原理。可以测量任意区域海洋温度。
2、深水压力传感器,用于测量指定水深范围的压力。压电,压阻等原理都有。这种传感器比较普遍。
3、海底深度传感器,一般利用激光,超声波等测深传感器。
❾ 水位传感器的工作原理
随着科技的进步啊,人们研究科技的手法也成熟起来了,对于水位传感器,不管是在水箱上,还是在水塔上,还是在洗衣机上,都会用到这个技术,那么你知道什么是水位传感器么,水位传感器的工作原理又是什么呢?
什么是水位传感器
水位传感器是一种测量水位的压力传感器。静压投入式水位变送器是基于所测水静压与水的高度成比例的原理,采用国外先进的隔离型扩散硅敏感元件或陶瓷电容压力敏感传感器,将静压转换为电信号,再经过温度补偿和线性修正,转化成标准电信号(一般为4~20mA/1~5VDC)。
水位传感器工作原理
工作原理:容器内的水位传感器,将感受到的水位信号传送到控制器,控制器内的计算机将实测的水位信号与设定信号进行比较,得出偏差,然后根据偏差的性质,向给水电动阀发出“开”“关”的指令,保证容器达到设定水位。进水程序完成后,温控部份的计算机向供给热媒的电动阀发出“开”的指令,于是系统开始对容器内的水进行加热。到设定温度时。控制器才发出关阀的命令、切断热源,系统进入保温状态。程序编制过程中,确保系统在没有达到安全水位的情况下,控制热源的电动调节阀不开阀,从而避免了热量的损失与事故的发生。
水位传感器安装要求
1、传感器引线不易太长,安装时注意不能折弯引线。注意不能使引线承受过大的拉力。
2、任何时候都不能堵塞传感器引线中的空气管,否则无法测量数据。
3、引线如果太长,必须进行防雷处理。
4、传感器不能投入到泥沙中,否则会造成传感器测压孔堵塞,从而无法测量数据。并且定期清理传感器测压孔,注意不能用尖锐物体插入测压孔。
5、传感器不能安装在动水中,应该安装在测压井或通过管道安装在水中。
6、定期清理传感器中的泥沙,以免泥沙阻塞孔从而影响测量。
7、定期进行测量校准,提高测量精度。
水位传感器修复及检查
1、拔下水位传感器的透明管下端吹气,可以听到传感器的动作声音,说明通水管未漏气。
2、拆开洗衣机壳上部,拔下水位选择旋钮,找到传感器并卸下,再次吹气并测量触点接触情况,发现接触不良,断定是传感器故障而不是控制板的问题。
3、传感器用铁制圆形外壳封闭且是压边固定在传感器座上的,水位控制旋钮通过不同深度的齿形拨叉控制触点的距离来控制水位,只好用薄改锥慢慢撬开拆下。
4、触点快速动作铜片与普通的微动开关一样,只是较大,其触点仅是一条压焊的铜丝,用砂纸打磨并测量接触良好,恢复原状。如吹气时动作不灵敏,可稍微调节一下调节螺钉使之能灵活通、断。
注意!拆下触点部分时,要先拆下侧壳(板正2个固定脚,拔下),再拆下水位控制铁压板、弹簧及压帽(压板及传动杆各一个),再将传动杆芯旋转90度就可分解。不要丢掉那几个弹簧、压帽!
5、恢复原状,试机即可。
以上就是为您带来的什么是水位传感器了,科技产品的更新换代不断加速提高,科学技术的影响力也越来越大。