导航:首页 > 安装方法 > 流量测量方法

流量测量方法

发布时间:2022-01-11 20:09:05

㈠ 污水流量怎么测量

可以用流量计测量。
超声波流量计:利用在不同流速中超声波传播的速度差异,测量发射端和接受端时间上的差异,从而知道流体的流速,乘以管道的截面积就可以知道流体的体积流量。
涡轮流量计:流体流过管道中涡轮叶片时,使涡轮叶片旋转,叶片的转速与流体的流量成正比,测量转速即可知道流体的流量。
靶式流量计:靶式流量计是一种流体阻力式流量计,当介质流过管道中的靶时,靶受到流体的作用力,力的大小与流体的流量的平方成正比,可以根据力的大小测量流量。
涡轮流量计由传感器和显示仪表组成,传感器主要由磁电感应转换器和涡轮组成。流体流过传感器时,先经过前导流件,再推动铁磁材料制成的涡轮旋转。旋转的涡轮切割固壳体上的磁电感应转换器的磁力线,磁路中的磁阻便发生周期性的变化,从而感应出交流电信号。
变面积式流量计的主要形式是转(浮)子流量计,是由锥形玻璃管和浮子组成,浮子能在垂直安装的锥形玻璃管内上下移动。被测流体自下向上流过管壁与浮子之间环隙时,托起浮子向上,这时管与浮子之间的环隙面积增大,直到浮子两边压差所形成的力与浮子重力相等时,浮子便处在一个平衡位置。

㈡ 流量计主要有哪几种分类测量原理分别是什么

目前流量测量的方法很多, 测量原理和流量传感器(或称流量计)也各不相同。

一、差压式流量计的基本构成和原理:
差压式流量传感器又称节流式流量传感器, 主要由节流装置和差压传感器 (或差压变送器)组成。 它是利用管路内的节流装置, 将管道中流体的瞬时流量转换成节流装置前后的压力差, 然后用差压传感器将差压信号转换成电信号, 或直接用差压变送器把差压信号转换为与流量对应的标准电流信号或电压信号, 以供测量、 显示、 记录或控制。
节流装置的作用是把被测流体的流量转换成压差信号。 当被测流体流过节流元件时,流体受到局部阻力, 在节流元件前后产生压力差, 就像电流流过电阻元件产生电压差那样。
二、 容积式流量计又称排量流量计(positive displacement flowmeter), 简称PD流量计或PDF, 在流量仪表中是精度最高的一类。它利用机械测量元件把流体连续不断地分割成单个已知的体积部分, 根据计量室逐次、重复地充满和排放该体积部分流体的次数来测量流量体积总量。PD流量计一般不具有时间基准, 为得到瞬时流量值需要另外附加测量时间的装置。
容积式流量计的分类: 1. 椭圆齿轮流量计 2. 腰轮流量计(又称罗茨流量计)
3. 活塞式式流量计活塞受被测介质推动在气缸中往复运动, 每往复一次送出一定量介质, 主要用于测量较低粘度的油类, 可以测量很小的流量。 4. 刮板式流量计在它的偏心转子上安装有刮板, 在转子旋转时由刮板与外壳间构成固定容积将介质送出流量计,再根据转子的转数确定总量。
三、 速度流量计——叶轮式流量计
通过叶轮盒的分配作用,将多束水流从叶轮盒的进水口切向冲击叶轮使之旋转,然后通过齿轮减速机构连续记录叶轮的转数,从而记录流经水表的累积流量。
四、振动式流量计
根据流体受阻后产生振动漩涡的原理制成的流量传感器,又称漩涡式流量计(俗称涡接流量计)。流体在流动过程中遇到某种阻碍后在它的下游会产生一系列自激振荡的漩涡,测量流量漩涡的振动频率就可推算出流量值。该进动频率与流量大小成正比,不受流体物理性质和密度的影响。
五、 电磁式流量计
流量传感器是把流过管道内的导电液体的体积流量转换为线性电信号。其转换原理就是着名的法拉第电磁感应定律,即导体通过磁场,切割电磁线,产生电动势。
六、质量流量计
科里奥利流量计 :利用振动流体管产生与质量流量相应的偏转来进行测量。科里奥利流量计可用于液体、浆体、气体或蒸汽的质量流量的测量。精确度高。但要对管道壁进行定期的维护,防止腐蚀。

㈢ 工业上常用的流量测量方法哪些

工业计量中常用的几种气体流量计有:

(1)差压式流量计

(2)速度式流量计

(3)容积式流量计
该数据由江苏金湖奥特美自动化仪表厂免费为您提供

㈣ 流速测量都有哪些方法

流速测量方法
1、浮标法
浮标法是河流测速中很常用,简单易行的一种方法。在河流测速中,在上游的某一位置放置漂浮物,同时用秒表记下当时的时间,当漂浮物到达下游某一位置时记录时间,同时测出这两个位置的距离,就可以算出河水的流速,重复几次就可以求出河水的平均流速。但是这种方法只能测出流体的表面流速。在坡面流测速中,我们也可以用此种方法,漂浮物可以选用较为小的诸如泡沫颗粒一类的东西。两点间的距离应该是径流流过的距离。重复几次,即可确定水流速度的平均值。此种方法简单易行,不足之处就是误差较大。用公式表示为:
2、颜色示踪法
颜色示踪法也是河流测流速的一种方法。通过给流体注入染色剂,如红墨水,在初始位置倒入染色剂并记录时间,选定某一位置作为中止位置,当染色后的流体到达时记录时间,就可以求出水流流速。多做几个重复,就可以求出此段距离内的平均流速。这种方法同样简便易行,误差较浮标法小,但要注意距离不能选得太长,否则染色剂会稀释严重,肉眼不易观察。计算公式和浮标法相同
3、盐液示踪法
盐液示踪法是在上游某一位置给径流中注入盐液,同时用秒表记录时间,通过布设在下游的电极来感应盐液的到达,由连接在电极上的灵敏电流计显示出来。通过时间差和距离,就可以算出此段距离内的流体速度。
计算公式和上式相同,只不过时间 为从开始注入染色剂到电流计的指针发生明显偏移的时间。
4、流量法
在明渠水流测量过程中,对于非常规则的渠道,流量法是目前测量流速比较准确的方法之一,其原理明确、简单。对于坡面薄层水流,由于水流深度在厘米级,其误差主要是产生于水层厚度的测量。在不同坡度和泥沙含量条件下,测量水流流量与水深,流量用积分桶测量,水深用水位计测量,水位计的精度为1/10mm。可以用公式表示为:
5、电解质脉冲法
这是一种较新的测速方法。在示踪法的基础上,假设加入的盐液为电解质脉冲,建立盐液在水流中迁移的数学模型,并求得解析解,再根据测量结果拟合出水流速度,这种方法即为电解质脉冲法。该方法从理论和初步测量结果来看是可行的,但其可行性还需要用大量的实验进行验证,分析泥沙含量、流速和流量对测量结果的影响。由于在野外或室内不规范的条件下,至今没有一种好的方法对薄层水流流速进行比较准确的测量,因此只有在室内设置规范的模拟水槽,建立盐液在水流中迁移的数学模型,并求得解析解,经模数转换后用最小二乘法对电解质迁移的数学模型进行拟合,计算出水流速度。同时,用质心运动速度和流量法的测量结果对这种方法进行验证。

㈤ 怎样测量网络流量

测试宽带流量方法如下:

1 先安装360安全卫士软件

2 打开360安全卫士-点击宽带测速器如下图红色线框位置

㈥ 常见的流量的测量方法有哪些各有何特点

所谓流量,是指单位时间内流经封闭管道或明渠有效截面的流体量,又称瞬时流量。当流体量以体积表示时称为体积流量;当流体量以质量表示时称为质量流量。单位时间内流过某一段管道的流体的体积,称为该横截面的体积流量。简称为流量,用Q来表示。

㈦  管路计算与流量测量

一、管路计算

管路分简单管路和复杂管路两种。简单管路系指由一种管径所组成的单一管路;而复杂管路则是由不同管径的管子连接而成的串联管路,或由几个简单管路并联组成的并联管路和分支管路。复杂管路的计算是以简单管路的计算为基础。本节只讨论简单管路计算。

管路计算实际上是连续性方程式、柏努利方程式与能量损失计算式的具体运用,由于已知量与未知量情况不同,计算方法亦随之而改变。在实际工作中常遇到的管路计算问题,归纳起来有以下三种情况:

(1)已知管径、管长、管件和阀门的设置及流体的输送量,求流体通过管路系统的能量损失,以便进一步确定输送设备的输出功率、设备内的压强或设备间的相对位置等。这一类的计算比较容易,前面已讨论过。

(2)已知管径、管长、管件和阀门的设置及允许的能量损失,求流体的流速或流量。

(3)已知管长、管件和阀门的当量长度、流体的流量及允许的能量损失,求管径。

后两种情况都存在着共同性问题,即流速v或管径d为未知,因此不能计算雷诺数Re值,则无法判断流体的流型,所以也不能确定摩擦系数μ。在这种情况下,工程计算中常采用试差法或其他方法来求解。下面通过例题介绍试差法的应用。

例1-6如本题附图所示,水从水塔引至车间,管路为φ114×4mm的钢管,共长150m(包括管件及阀门的当量长度,但不包括进出口损失的当量长度)。水塔由水面维持恒定,并高于排水口12m,问水温为12℃时,此管路的输水量为若干m3/h。

例题1-6示图

解:以塔内水面为上游截面1-1′,排水管出口外侧为下游截面2-2′,并通过排水管出口中心作基准水平面。在两截面间列柏努利方程式,即

非金属矿产加工机械设备

式中z1=12mz2=0

v1=0v2=0

p1=p2

非金属矿产加工机械设备

将以上各值代入柏努利方程式,整理得出管内水的流速为:

非金属矿产加工机械设备

上两式中虽只有两个未知数μ与v,但还不能对v进行求解。由于式(b)的具体函数关系与流体的流型有关,现v为未知,故不能计算Re值,也就无法判断流型,而且在一些生产中对于粘性不大的流体在管内流动时多为湍流。在湍流情况下,雷诺数Re范围不同,式(b)的具体关系也不同,即使可推测出雷诺数Re的大致范围,将相应的式(b)具体关系代入式(a),又往往得到难解的复杂方程式,故经常采用试差法求算v即假设一个μ值,代入式(a)算出v值。利用此v值计算Re。根据算出的Re值及

从图1-15查出μ值。若查得的μ值与假设值相符或接近,则假设的数值可以接受。如不相符,需另设一μ值,重复上面计算,直至所设μ值与查出的μ值相符或接近为止。

设μ=0.02代入式(a)得:

非金属矿产加工机械设备

从有关资料查得12℃时水的粘度为1.236×10-3Pa·s,于是

非金属矿产加工机械设备

取管壁的绝对粗糙度ε为0.2mm,ε/d=0.2/106=0.00189

根据Re及ε/d从图1-15查得μ=0.024。查出的μ值与假设的μ值不相等,故应进行第二次试算。

重设μ=0.024,代入式(a)解得v=2.58m/s。由此v值算出Re=2.2×105,在图1-15中查得μ=0.0241。查出的μ值与所设μ值基本相符,故根据第二次试算的结果知v=2.58m/s。

输入量

上面用试差法求算流速时,也可先假设v值而由式(a)算出μ值。再以所假设的v算出Re值。并根据Re及ε/d从图1-15查出μ值。此值与由式(a)解出的μ值相比较,从而判断所设之v值是否合适。

二、流量的测量

在生产过程中输送流体时,流体的流量往往是操作中必需测量、调节与控制的一个重要技术量。测量流量的方法很多,本节只介绍几种以柏努利方程式作为测量原理的孔板流量计、文氏流量计、转子流量计。

(一)孔板式流量计

在管道里插入一片带有圆孔的金属板的装置,孔板的中心位于管道的中心线上,图1-16所示,这样构成的装置叫做孔板流量计。

图1-16孔板流量计

当管内流体流过孔口时,因流道截面突然缩小,使流速较管内平均流速增大,动压头增大,与此同时,静压头下降,即孔口下游的压强比上游低。流体流经孔口后,流动截面并不立即扩大到与管截面相等,而是继续收缩,经一定距离后,才逐渐恢复到整个管截面。根据流体流经截面最小处的压强和孔板前压强的差值,可以算出管内流体的流量,这个压强差是通过外接压差计来测定的。

对孔口前截面1-1′与孔板孔口截面2-2′列出柏努利方程式,式中暂不计损失压头,得

非金属矿产加工机械设备

在孔板流量计上安装U型管液柱压差计,是为了求得式中的压强差(p1-p2)。但测压孔并不是开在如图例1-5中1-1′和2-2′截面处。而一般都在紧靠孔口的前后,所以实际的测得压强差并非(p1-p2)。以孔口前后的压强差代替式中的(p1-p2)时,上式必须校正。设U型管压差计中的读数为R,指示液密度为ρ,管中流体的密度为ρ,则孔口前后的压强差为

R(ρ-ρ)g

同时,由于流体收缩处的截面A2难以知道,而小孔的截面积A0是可以测定的,所以需用小孔处的流速v0来代替v2。此外,流体流经孔板时还有一定的损失压头。综合考虑上述三方面的影响,引入校正系数C,将v0、实测压差代入

非金属矿产加工机械设备

根据连续方程式,得

非金属矿产加工机械设备

代入上式,整理得

非金属矿产加工机械设备

并令

称为孔流系数]]

若孔口面积为A0,则流体在管道中的流量

非金属矿产加工机械设备

孔流系数C0的数值一般由实验测定。实验结果如图1-17所示。图中的横坐标Re值是按管道内径进行计算的。由图1-17可见,Re为定值时,A0/A值越大,则C0即为常数。孔板流量计的使用范围,应该是C0为定值的区域里,如

,应用于Re>2×105流动情况。

在实际应用中,安装在管径小于50mm管道上的孔板,应先用实验方法求得该孔板的qv,s-R关系,而后再使用。安装在管径大于50mm管道上的孔板,因所测流量较大,不易测定qv,s-R曲线,此时,应采用标准孔板,其系列规格可查阅有关手册。

孔板流量计安装位置的上下游都要有一段内径不变的直管,以保证流体通过孔板之前的速度分布稳定。通常要求上游直管长度为50d,下游直管长度为10d。若

较小,则这段长度可缩短些。

非金属矿产加工机械设备

孔板式流量计构造简单,制造、安装方便,应用很广。但流体流经孔板时,因突然收缩和扩大,损失压力较大。此项损失压头随d0/d1的减少而增大,当d0/d1=0.5或更大时,其值约为所测得的压强差的90%。所以孔板式流量多用于测定气体和牛顿流体(不含任何固相成分)的流量。

(二)文丘里流量计

孔板流量计的主要缺点在于流体流经孔板时流速突然改变,损失大量压头。为了减少能量的损失,用一段渐缩、渐扩管代替孔板,这样构成的流量计,称为文丘里(文氏)流量计,其结构如图1-18所示。

图1-18文丘里流量计

为了避免流量计长度过大,基于前述原因,收缩角可取得大些,通常为15°~25°,扩大角仍须取得小些,一般为5°~7°。

与孔板流量计相似,文氏管流量计亦可根据柏努利方程式得出流量计算式

非金属矿产加工机械设备

式中C——文氏管流量计的流量系数,在湍流时,一般取0.98;

A2——文氏管的最小截面(m2)。

文氏管流量计的阻力较小,流体的损失压头约为所测得压强差的10%,但其结构不如孔板紧凑,加工也较麻烦。常用于测定压力管道内的工业流体流量。

(三)转子流量计

转子流量计构造如图1-19所示。在一个截面积自下向上逐渐扩大的垂直锥形玻璃管1内,装有一个能旋转自如的,由金属或其他材质制成的转子2(或称浮子)。管中无流体通过时,转子将沉于管底部。当被测流体以一定的流量通过流量计时,流体在转子与管壁间环隙中的速度要增大,则静压强下降,于是在转子的上下端形成一个压差,转子将浮起。随转子的上浮环隙面积逐渐增大,环隙中流速将减少,转子两端的压差随之降低。当转子上浮至某一高度,转子上下端压差造成的升力恰等于转子的重量时,转子不再上升,悬浮于该高度上。

当流量增大,转子两端的压差也随之增大,转子原来的力平衡被破坏,转子将上升至另一高度达到新的力平衡。当流量减少,转子将下降至另一高度,达到新的力平衡。在玻璃管外表面刻有读数,根据转子停留的位置,即可读出被测流体的流量。

转子流量计与孔板流量计不同的地方是转子流量计的环隙截面是可变的,而转子上下方的压强差都不随流量而变,所以有时称转子流量计为恒压降流量计。

图1-19转子流量计

1-锥形玻璃管;2-转子;3-刻度

转子流量计出厂时其刻度常针对某特定流体而刻制。如果把适用于某一流体的转子流量计用来测量其他流体的流量时,刻度就需校正,校正式如下:

非金属矿产加工机械设备

式中qv1——出厂流量计上针对“1”流体体积流量刻度值;

qv2——流量计用于流体“2”时,qv1刻度的实际体积流量;

ρ1——流体“1”的密度;

ρ2——流体“2”的密度;

ρ——转子材料的密度。

转子流量计能直接观察到流体的流动,损失压头较小,安装时在流量计的前后不需要维持一定长度的直管段,因此在实验室和工业生产上得到广泛应用,尤其是用在直径小于50mm的管道中测量流量,能适应于腐蚀性流体的测量,但它不能经受高温(一般不能过120℃)和高压(一般不能超过4~5kg/cm2),再者也不适于混浊液体的流量测量。当用它们来测量粘度较大的流体,或者在流体中混有固体颗粒时,容易使测压口堵塞或使转子卡死,结果造成测量误差或使测量工作无法进行,此时可采用其他流量计,如靶式流量计等,关于这些流量计在此不再一一叙述,如需要时,可查仪表手册。

㈧ 手机怎么测流量速度

1、首先启动手机端的浏览器,如下图所示。

㈨ 流量和流速计算公式

流量和流速的方程为:流速乘以横截面积就是流量。他两个是正比例关系。

Q=Sv=常量。(S为截面面积,v为水流速度)(流体力学上长用Q=AV),单位是立方米每秒。

流速与压力的关系是“伯努利原理”。


最为着名的推论为:等高流动时,流速大,压力就小。


丹尼尔·伯努利在1726年提出了“伯努利原理”。


这是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。


即:动能+重力势能+压力势能=常数。


其最为着名的推论为:等高流动时,流速大,压力就小。


伯努利原理往往被表述为p+1/2ρv2+ρgh=C,这个式子被称为伯努利方程。


式中p为流体中某点的压强,v为流体该点的流速,ρ为流体密度,g为重力加速度,h为该点所在高度,C是一个常量。


它也可以被表述为p1+1/2ρv12+ρgh1=p2+1/2ρv22+ρgh2。


需要注意的是,由于伯努利方程是由机械能守恒推导出的,所以它仅适用于粘度可以忽略、不可被压缩的理想流体。

㈩ 流体测量的基本原理和方法。

流量测量方法
名词与术语
 瞬时流量:单位时间内流过管道横截面的流体量(m3/h、t/h)。
 累计流量:在一段时间内流过管道横截面的流体总量(m3、t)。
 流量计:用于测量管道中流量的计量器具称为流量计。
主要的质量指标
 流量范围:最大与最小可测范围,该范围内误差不超过容许值。
 量程和量程比:量程是最大流量与最小流量之差;量程比是最大流量与最小流量之比,又称范围度。
测量误差
基本误差:

准确度:流量计示值接近被测流量真值的能力,称为流量计的准确度。
准确度等级有:0.1、0.2、0.5、1.0、1.5、2.5、4.0级。
 重复性:流量计在同一工作条件下,多次重复测量,其示值一致性的程度,反映仪表随机性误差的大小。
按测量对象划分就有封闭管道和明渠两大类;
按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。
按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。

流量计简介

流量测量方法和仪表的种类繁多。工业用的流量仪表种类达100多种。品种如此之多的原因就在于至今还没找到一种对任何流体、任何量程、任何流动状态以及任何使用条件都适用的流量仪表。

本文按照目前最流行、最广泛的分类法,分别介绍各种流量计的原理、特点、应用概况及国内外的发展情况。

序号 流量计种类 全球产量
百分比
1 差压式流量计(孔板、文丘里) 45~55%
2 浮子流量计(又称玻璃转子流量计) 13~16%
3 容积式流量计(椭圆、腰轮、螺旋) 12~14%
4 涡轮流量计 9~11%
5 电磁流量计 5~6%
6 流体振荡流量计(涡街、旋进) 2.2~3%
7 超声流量计(时差式、多普勒) 1.6~2.2%
8 热式流量计 2~2.5%
9 科里奥利质量流量计 0.9~1.2%
10 其他流量计(插入式流量计 1.6~2.2%

1.1差压式流量计
差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。
差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。通常以检测件形式对差压式流量计分类,如孔板流量计、文丘里流量计、均速管流量计等。
二次装置为各种机械、电子、机电一体式差压计,差压变送器及流量显示仪表。它已发展为三化(系列化、通用化及标准化)程度很高的、种类规格庞杂的一大类仪表,它既可测量流量参数,也可测量其它参数(如压力、物位、密度等)。
差压式流量计的检测件按其作用原理可分为:节流装置、水力阻力式、离心式、动压头式、动压头增益式及射流式几大类。
检测件又可按其标准化程度分为二大类:标准的和非标准的。
所谓标准检测件是只要按照标准文件设计、制造、安装和使用,无须经实流标定即可确定其流量值和估算测量误差。
非标准检测件是成熟程度较差的,尚未列入国际标准中的检测件。
差压式流量计是一类应用最广泛的流量计,在各类流量仪表中其使用量占居首位。近年来,由于各种新型流量计的问世,它的使用量百分数逐渐下降,但目前仍是最重要的一类流量计。
优点:
(1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;
(2)应用范围广泛,至今尚无任何一类流量计可与之相比拟;
(3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。
缺点:
(1)测量精度普遍偏低;
(2)范围度窄,一般仅3:1~4:1;
(3)现场安装条件要求高;
(4)压损大(指孔板、喷嘴等)。
应用概况:
差压式流量计应用范围特别广泛,在封闭管道的流量测量中各种对象都有应用,如流体方面:单相、混相、洁净、脏污、粘性流等;工作状态方面:常压、高压、真空、常温、高温、低温等;管径方面:从几mm到几m;流动条件方面:亚音速、音速、脉动流等。它在各工业部门的用量约占流量计全部用量的1/4~1/3。
1.2 浮子流量计
浮子流量计,又称转子流量计,是变面积式流量计的一种,在一根由下向上扩大的垂直锥管中,圆形横截面的浮子的重力是由液体动力承受的,从而使浮子可以在锥管内自由地上升和下降。
浮子流量计是仅次于差压式流量计应用范围最宽广的一类流量计,特别在小、微流量方面有举足轻重的作用。
80年代中期,日本、西欧、美国的销售金额占流量仪表的15%~20%。我国产量1990年估计在12~14万台,其中95%以上为玻璃锥管浮子流量计。
特点:
(1)玻璃锥管浮子流量计结构简单,使用方便,缺点是耐压力低,有玻璃管易碎的较大风险;
(2)适用于小管径和低流速;
(3)压力损失较低。
1.3容积式流量计
原理
结构 容积式流量计按其测量元件分类,可分为椭圆齿轮流量计、刮板流量计、双转子流量计、旋转活塞流量计、往复活塞流量计、圆盘流量计、液封转筒式流量计、湿式气量计及膜式气量计等。

特点 (1)计量精度高;
(2)安装管道条件对计量精度没有影响;
(3)可用于高粘度液体的测量;
(4)范围度宽;
(5)直读式仪表无需外部能源可直接获得累计,总量,清晰明了,操作简便。
缺点:
(1)结果复杂,体积庞大;
(2)被测介质种类、口径、介质工作状态局限性较大;
(3)不适用于高、低温场合;
(4)大部分仪表只适用于洁净单相流体;
(5)产生噪声及振动。

应用 容积式流量计与差压式流量计、浮子流量计并列为三类使用量最大的流量计,常应用于昂贵介质(油品、天然气等)的总量测量。
工业发达国家近年PD流量计(不包括家用煤气表和家用水表)的销售金额占流量仪表的13%~23%;我国约占20%,1990年产量(不包括家用煤气表)估计为34万台,其中椭圆齿轮式和腰轮式分别约占70%和20%。

优点:
应用概况:
1.4 涡轮流量计
涡轮流量计,是速度式流量计中的主要种类,它采用多叶片的转子(涡轮)感受流体平均流速,从而且推导出流量或总量的仪表。
一般它由传感器和显示仪两部分组成,也可做成整体式。
涡轮流量计和容积式流量计、科里奥利质量流量计称为流量计中三类重复性、精度最佳的产品,作为十大类型流量计之一,其产品已发展为多品种、多系列批量生产的规模。
优点:
(1)高精度,在所有流量计中,属于最精确的流量计;
(2)重复性好;
(3)元零点漂移,抗干扰能力好;
(4)范围度宽;
(5)结构紧凑。
缺点:
(1)不能长期保持校准特性;
(2)流体物性对流量特性有较大影响。
应用概况:
涡轮流量计在以下一些测量对象获得广泛应用:石油、有机液体、无机液、液化气、天然气和低温流体统在欧洲和美国,涡轮流量计在用量上是仅次于孔板流量计的天然计量仪表,仅荷兰在天然气管线上就采用了2600多台各种尺寸,压力从0.8~6.5MPa的气体涡轮流量计,它们已成为优良的天然气计量仪表。
1.5电磁流量计
电磁流量计是根据法拉弟电磁感应定律制成的一种测量导电性液体的仪表。
电磁流量计有一系列优良特性,可以解决其它流量计不易应用的问题,如脏污流、腐蚀流的测量。
70、80年代电磁流量在技术上有重大突破,使它成为应用广泛的一类流量计,在流量仪表中其使用量百分数不断上升。
优点:
(1)测量通道是段光滑直管,不会阻塞,适用于测量含固体颗粒的液固二相流体,如纸浆、泥浆、污水等;
(2)不产生流量检测所造成的压力损失,节能效果好;
(3)所测得体积流量实际上不受流体密度、粘度、温度、压力和电导率变化的明显影响;
(4)流量范围大,口径范围宽;
(5)可应用腐蚀性流体。
缺点:
(1)不能测量电导率很低的液体,如石油制品;
(2)不能测量气体、蒸汽和含有较大气泡的液体;
(3)不能用于较高温度。
应用概况:
电磁流量计应用领域广泛,大口径仪表较多应用于给排水工程;中小口径常用于高要求或难测场合,如钢铁工业高炉风口冷却水控制,造纸工业测量纸浆液和黑液,化学工业的强腐蚀液,有色冶金工业的矿浆;小口径、微小口径常用于医药工业、食品工业、生物化学等有卫生要求的场所。
1.6 涡街流量计
涡街流量计是在流体中安放一根非流线型游涡发生体,流体在发生体两侧交替地分离释放出两串规则地交错排列的游涡的仪表。
涡街流量计按频率检出方式可分为:应力式、应变式、电容式、热敏式、振动体式、光电式及超声式等。
涡街流量计是属于最年轻的一类流量计,但其发展迅速,目前已成为通用的一类流量计。
优点:
(1)结构简单牢固;
(2)适用流体种类多;
(3)精度较高;
(4)范围度宽;
(5)压损小。
缺点:
(1)不适用于低雷诺数测量;
(2)需较长直管段;
(3)仪表系数较低(与涡轮流量计相比);
(4)仪表在脉动流、多相流中尚缺乏应用经验。
1.7 超声流量计
超声流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。
根据对信号检测的原理超声流量计可分为传播速度差法(直接时差法、时差法、相位差法和频差法)、波束偏移法、多普勒法、互相关法、空间滤法及噪声法等。
超声流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,近年来它是发展迅速的一类流量计之一。
优点:
(1)可做非接触式测量;
(2)为无流动阻挠测量,无压力损失;
(3)可测量非导电性液体,对无阻挠测量的电磁流量计是一种补充。
缺点:
(1)传播时间法只能用于清洁液体和气体;而多普勒法只能用于测量含有一定量悬浮颗粒和气泡的液体;
(2)多普勒法测量精度不高。
应用概况:
(1)传播时间法应用于清洁、单相液体和气体。典型应用有工厂排放液、:怪液、液化天然气等;
(2)气体应用方面在高压天然气领域已有使用良好的经验;
(3)多普勒法适用于异相含量不太高的双相流体,例如:未处理污水、工厂排放液、脏流程液;通常不适用于非常清洁的液体。
1.8 科里奥利质量流量计
科里奥利质量流量计(以下简称CMF)是利用流体在振动管中流动时,产生与质量流量成正比的科里奥利力原理制成的一种直接式质量流量仪表。
我国CMF的应用起步较晚,近年已有几家制造厂(如太行仪表厂)自行开发供应市场;还有几家制造厂组建合资企业或引用国外技术生产系列仪表。
1.9明渠流量计
与前述几种不同,它是在非满管状敞开渠道测量自由表面自然流的流量仪表。
非满管态流动的水路称作明渠,测量明渠中水流流量的称作明渠流量计(open channel flowmeter)。
明渠流量计除圆形外,还有U字形、梯形、矩形等多种形状。
明渠流量计应用场所有城市供水引水渠;火电厂引水和排水渠、污水治理流入和排放渠;工矿企业水排放以及水利工程和农业灌溉用渠道。有人估计1995台,约占流量仪表整体的1.6%,但是国内应用尚无估计数据。
2 新工作原理流量仪表的研究和开发
2.1 静电流量计(electrostatic flowmeter)
日本东京技术学院研制适用于石油输送管线低导电液体流量测量的静电流量计。
静电流量计的金属测量管绝缘地与管系连接,测量电容器上静电荷便可知道测量管内的电荷。他们分别作了内径4~8mm铜、不锈钢等金属和塑料测量管仪表的实流试验,试验表明流量与电荷之间接近于线性。
2.2 复合效应流量仪表(combined effects meter)
该仪表的工作原理是基于流体的动量和压力作用于仪表腔体产生的变形,测量复合效应的变形求取流量。本仪表由美国GMI工程和管理学院开发,已申请两项专利。
2.3 转速表式流量传感器(tachmetric flowrate sensor)
它是由俄罗斯科学工程中心工业仪表公司开发,是基于悬浮效应理论研制的。该仪表已在若干现场成功的应用(例如在核电站安装2000余台测量热水流量,连续使用8年),且还在改进以扩大应用领域。
3 几种流量仪表应用和发展动向
3.1 科里奥利质量流量计(CMF)
国外CMF已发展30余系列,各系列开发在技术上着眼点在于:流量检测测量管结构上设计创新;提高仪表零点稳定性和精确度等性能;增加测量管挠度,提高灵敏度;改善测量管应力分布,降低疲劳损坏,加强抗振动干扰能力等。
3.2 电磁流量计(EMF)
EMF从50年代初进入工业应用以来,使用领域日益扩展,80年代后期起在各国流量仪表销售金额中已占16%~20%。
我国近年发展迅速,1994年销售估计为6500~7500台。国内已生产最大口径为2~6m的ENF,并有实流校验口径3m的设备能力。
3.3 涡街流量计(USF)
USF在60年代后期进入工业应用,80年代后期起在各国流量仪表销售金额中已占4%~6%。1992年世界范围估计销售量为3.54.8万台,同期国内产品估计在8000~9000台。
4 结论
由上述可知,流量计发展到今天虽然已日趋成熟,但其种类仍然极其繁多,至今尚无一种对于任何场合都适用的流量计。
每种流量计都有其适用范围,也都有局限性。这就要求我们:
(1)在选择仪表时,一定要熟悉仪表和被测对象两方面的情况,并要兼顾考虑其它因素,这样测量才会准确;
(2)努力研制新型仪表,使其在现有的基础上更加完善。

流量相关的物性参数
在流量测量和计算中,要使用到一些流体的物理性质(流体物性),它们对流量测量的准确度及流量计的选用都有很大影响。我们对这些物性参数只作基本概念及一些简单计算式的介绍,详细数据资料需到有关手册去查询。
1.流体的密度
流体的密度由下式定义

ρ—流体密度,kg/m3;
m—流体的质量,kg;
V—流体的体积,m3。
(1) 液体的密度
压力不变时,液体密度计算式为:

ρ—温度t时液体的密度,kg/m3;
ρ20—20℃时液体的密度,kg/m3;
μ—液体的体积膨胀系数,1/℃;
t—液体的温度,℃。
温度不变时,液体密度计算式为:

ρ1—压力P1时液体的密度,kg/m3;
ρ0—压力P0时液体的密度,;kg/m3;
β—液体的体积压缩系数1/Mpa;
P0、P1——液体的压力,Mpa。
通常压力的变化对液体密度的影响很小,在5Mpa以下可以忽略不计,但是对于碳氢化合物,即使在较低压力下,亦应进行压力修正。
(2) 气体的密度
工作状态下干气体的密度计算式为:

ρ—工作状态下干气体的密度,kg/m3;
ρn—标准状态下(293.15k,101.325kPa)干气体的密度,kg/m3;
p—工作状态下气体的绝对压力,kPa;
pn—标准状态下绝对压力,101.325kPa;
T—工作状态下气体的绝对温度,K;
Tn—标准状态下绝对温度,293.15K;
Zn—标准状态下气体的压缩系数;
Z—工作状态下气体的压缩系数。
2.流体的粘度
流体本身阻滞其质点相对滑动的性质称为流体的粘性。流体粘性的大小用粘度来度量。同一流体的粘度随流体的温度和压力而变化。通常温度上升,液体的粘度下降,而气体粘度上升。液体粘度只在很高压力下才需进行压力修正,而气体的粘度与压力、温度的关系十分密切。表征流体粘度常用有如下二种:
(1)动力粘度

η——流体动力粘度,Pa•s;
τ—单位面积上的内摩擦力,Pa;
—速度梯度,1/s;
u —流体流速,m/s;
h —两流体层间距离,m。
(3)运动粘度 流体的动力粘度与其密度的比值称为运动粘度。

v——运动粘度m2/s 。
3.热膨胀率
热膨胀率是指流体温度变化1ºC时其体积的相对变化率,即:

β—流体的热膨胀率,1/℃;
V —流体原有体积,m3;
∆V—流体因温度变化膨胀的体积,m3;
∆T—流体温度变化值,℃。
4.压缩系数
压缩系数是指当流体温度不变,所受压力变化时,其体积的变化率,即:

k—流体的压缩系数,1/Pa;
∆V—压力为p时的流体体积m3;
∆p—压力增加∆p时流体体积的变化量,m3。
5.雷诺数
雷诺数是一个表征流体惯性力与粘性力之比的无量纲量,其定义为:

V—流体的平均速度,m/s;
L—流速的特征长度,如在圆管中取管内径值,m;
ν—流体的运动粘度,m2/s。
雷诺数的大小可以判断流动的状态,一般管道雷诺数Re<2300为层流状态,Re=2000~4000为过渡状态,Re>4000为湍流(紊流)状态。

希望能用上。

阅读全文

与流量测量方法相关的资料

热点内容
三星手机设置铃声哪里设置方法 浏览:429
帽子制作方法视频手工 浏览:950
如何用spss进行人口预测方法 浏览:649
艾蜜塔使用方法 浏览:931
湿气重怎么祛除最快最有效方法 浏览:387
硅酸盐水泥板安装方法 浏览:160
车间门安装方法 浏览:508
中药山药食用方法 浏览:936
外科手术区皮肤消毒方法步骤 浏览:881
耳道干燥快速恢复十大方法 浏览:855
学生用什么方法较快阅读 浏览:765
圆心角周长计算方法 浏览:651
特级化学教师教学方法 浏览:621
雷诺氏病中医治疗方法 浏览:124
网上赚钱的方法都有哪些 浏览:889
手机小型电流表的认识和使用方法 浏览:817
客厅收纳最好方法如何 浏览:659
草龟怎么煮的正确方法 浏览:318
当归祛斑怎样使用方法 浏览:818
除油溶液分析方法 浏览:759