导航:首页 > 安装方法 > 几何方法测量地球形状

几何方法测量地球形状

发布时间:2022-08-23 15:13:33

① 物理大地测量学的简史

18世纪中叶以前,人们是单纯采用几何大地测量方法测定地球形状的。1743年法国的A.C.克莱洛在其着作《地球形状理论》中,假设地球内部处于静力平衡状态,地球的质量密度分布是从地球质心向外,随距离的增加而减小的。在这种假定下,他认为地球的外表面应是一个水准椭球,即椭球表面上各点的重力位相等,从而论证了重力值(物理量)和地球扁率(几何量)之间的数学关系,这一论证称为克莱洛定理。这一定理奠定了用物理方法研究地球形状的理论基础,形成了物理大地测量学的核心内容。
随着大地测量观测精度的提高,发现一些弧度测量的平差结果之间的矛盾远远超过了观测误差。19世纪初,法国的P.S.拉普拉斯和德国的C.F.高斯、F.W.贝塞尔等都认识到椭球面不足以代表地球表面。1849年,英国的Sir G.G.斯托克斯提出在地球的外重力位水准面上给定重力和重力位,已知地球离心力位,可以求出这个外重力位水准面的形状和外部重力位,无须对地球内部物质分布作任何假设。但为了求得唯一解,水准面外部不能有质量存在。斯托克斯这个理论是克莱洛定理的进一步发展。1873年,利斯廷(J.B.Listing)提出用大地水准面代表地球形状,由此可将斯托克斯理论用于研究大地水准面形状。但实际上由于大地水准面外部存在大陆,所以必须通过重力观测值的归算移去这些物质。这将使大地水准面发生形变。并且,要进行正确归算,必须知道归算范围内岩层密度分布的数据,这是一个十分复杂而难以解决的问题。所以归算问题一直成为经典的斯托克斯理论的障碍。
1945年,苏联的M.C.莫洛坚斯基提出了用地面重力观测来确定地球形状的理论,从而回避了长期无法解决的归算问题。但是仍然存在资料(重力数据)不足的矛盾。在平原或丘陵地区应用经典方法,虽然归算在理论上不严密,但不足以影响大地水准面的计算精度。困难在于莫洛坚斯基理论虽然严密,但在高山地区所需要的数据众多,目前条件下很难满足。
1964年瑞典的布耶哈默尔(A.Bjerhammer)应用重力延拓方法,1969年丹麦的克拉鲁普(T.Krarup)和1973年奥地利的莫里茨(H.Moritz)应用最小二乘法的拟合推估的方法进行解算,初步解决了上述的困难(见地球形状)。
由于人造地球卫星的出现,人们可以根据卫星轨道摄动理论,利用卫星观测资料,或综合利用地面重力测量资料和卫星观测资料来确定全球性的地球形状及其外部重力场,从而又丰富了物理大地测量学的内容。
总之,物理大地测量学研究地球形状的主要任务是应用地面和卫星大地测量所求得的数据,推出与整个地球相适应的椭球面(即地球椭球面),以及以这个椭球面为参考的地面点位置。

② 测量地球周长的方法

我们知道,地球的形状近似一个球形,那么怎样测出它的半径呢?据说公元前三世纪时希腊天文学家厄拉多塞内斯(Eratosthenes,公元前276—194)首次测出了地球的半径。

他发现夏至这一天,当太阳直射到赛伊城(今埃及阿斯旺城)的水井S时,在亚历山大城的一点A的天顶与太阳的夹角为7.2°(天顶就是铅垂线向上无限延长与天空“天球”相交的一点)。他认为这两地在同一条子午线上,从而这两地间的弧所对的圆心角SOA就是7.2°(如图1)。又知商队旅行时测得A、S间的距离约为5000古希腊里,他按照弧长与圆心角的关系,算出了地球的半径约为4000古希腊里。一般认为1古希腊里约为158.5米,那么他测得地球的半径约为6340公里。

其原理为:

设圆周长为C,半径为R,两地间的的弧长为L,对应的圆心角为n°。

因为360°的圆心角所对的弧长就是圆周长C=2πR,所以1°的圆心角所对弧长是,即。于是半径为的R的圆中,n°的圆心角所对的弧长L为:





当L=5000古希腊里,n=7.2时,

古希腊里)

化为公里数为:(公里)。

厄拉多塞内斯这种测地球的方法常称为弧度测量法。用这种方法测量时,只要测出两地间的弧长和圆心角,就可求出地球的半径了。

近代测量地球的半径,还用弧度测量的方法,只是在求相距很远的两地间的距离时,采用了布设三角网的方法。比如求M、N两地的距离时,可以像图2那样布设三角点,用经纬仪测量出△AMB,△ABC,△BCD,△CDE,△EDN的各个内角的度数,再量出M点附近的那条基线MA的长,最后即可算出MN的长度了。

通过这些三角形,怎样算出MN的长度呢?这里要用到三角形的一个很重要的定理——正弦定理。

即:在一个三角形中,各边和它所对角的正弦的比相等。就是说,在△ABC中,有。

在图2中,由于各三角形的内角已测出,AM的长也量出,由正弦定理即可分别算出:

∴MN=MB+BD+DN。

如果M、N两地在同一条子午线上,用天文方法测出各地的纬度后,即可算出子午线1°的长度。法国的皮卡尔(Pi-card.J.1620—1682)于1669—1671年率领他的测量队首次测出了巴黎和亚眠之间的子午线的长,求得子午线1°的长约为111.28公里,这样他推算出地球的半径约为6376公里。 从而计算出周长。

③ 能得出地球是球形的有什么例子呢

月食的时候,月亮上的投影是地球的形状,可以看到是圆形

人类对于地球的形状和大小的认识有十分悠久的历史,公元前约200年,古希腊的厄拉多塞(Eratosthenes)首先用较为科学的方法测得了地球的大小。当时他注意到这样一个事实,6月22日中午埃及塞恩城上空太阳正当头顶 ,而同一时间在塞恩城以北约800千米的亚历山大里亚城 ,太阳光线已发生偏斜。他由此判断,地球是圆的,亚历山大里亚城太阳的偏斜一定是由地球表面弯曲引起的。于是,他根据建筑物的阴影,用几何方法求出地球的周长约为40,000千米,地球的半径为6400千米。这是一个非常接近后来精确测量的数字。

航海家麦哲伦完成环球航行以后,人们一致公认:地球是圆的。

如何测量地球是圆形的

首先要纠正一下,圆是平面图形,而地球是立体的,是一个近似的球体,而不是圆形。
以下是发现地球是球体的人以及过程。
古希腊哲学家毕达哥拉斯(Pythagoras)

地球是球形这一概念最先是公元前五、六世纪的古希腊哲学家毕达哥拉斯(Pythagoras)提出的。但是他的这种信念仅是因为他认为圆球在所有几何形体中最完美,而不是根据任何客观事实得出的。以后,亚里士多德根据月食时月面出现的地影是圆形的,给出了地球是球形的第一个科学证据。公元前3世纪,古希腊天文学家埃拉托斯特尼(Eratosthenes of Cyrene)根据正午射向地球的太阳光和两观测地的距离,第一次算出地球的周长。公元726年我国唐代天文学家一行主持了全国天文大地测量,利用北极高度和夏日日长计算出了子午线一度之长和地球的周长。1622年葡萄牙航海家麦哲仑(Ferdinand Magellan)领导的环球航行证明了地球确实是球形的。17世纪末,牛顿研究了地球自转对地球形态的影响,认为地球应是一个赤道略为隆起,两极略为扁平的椭球体。1733年巴黎天文台派出两个考察队,分别前往南纬2°的秘鲁和北纬66°的拉普林进行大地测量,结果证明了牛顿的推测。

20世纪60年代后人造卫星上天,为大地测量添加了新的手段。现已精确地测出地球的平均赤道半径为6378.14千米,极半径为6356.76千米,赤道周长和子午线周长分别为40075千米和39941千米,北极地区约高出18.9米,南极地区低下去24-3米。有人说地球像一只倒放着的大鸭梨。其实,地球的这些不规则部分对地球来说是微不足道的。从人造地球卫星拍摄的地球照片来看,它更像是一个标准的圆球。

平均赤道半径: ae = 6378136.49 米
平均极半径: ap = 6356755.00 米

平均半径: a = 6371001.00 米

赤道重力加速度: ge = 9.780327 米/秒2

平均自转角速度: ωe = 7.292115 × 10-5弧度/秒

扁率: f = 0.003352819

质量: M⊕ = 5.9742 ×1024 公斤

地心引力常数: GE = 3.986004418 ×1014 米3/秒2

平均密度: ρe = 5.515 克/厘米3

太阳与地球质量比: S/E = 332946.0

太阳与地月系质量比: S/(M+E) = 328900.5

回归年长度: T = 365.2422 天

离太阳平均距离: A = 1.49597870 × 1011 米

逃逸速度: v = 11.19 公里/秒

表面温度: t = - 30 ~ +45

表面大气压: p = 1013.250毫巴

⑤ 有什么方法能知道地球是什么形状的

近似球体

有人说,地球像一个倒放着的大鸭梨。其实地球确切地说,是个三轴椭球体。

太阳是球体,月亮是球体,没有人怀疑,因为大家都确确实实地遥望到了。可是人们生活在大地上,在宇宙航行以前,不能像观察太阳和月亮那样去眺望地球。地球比起人类的视野又是如此地广大,人们伫立在地面上,所看到的只是自己眼界所能达到的一小部分,就是四周被地平线所限制约以4.6公里为半径范围内的一块平地——视地平,因而对地球的形状产生过种种从直觉出发的推测。我国古代就有“天圆如张盖,地方如棋局”的说法,就是把地球看作扁平状,把天空看作罩在地面上的圆罩子。古俄罗斯人想象大地是驮在三条鲸鱼背上的盘子,这三条鲸鱼又是浮游在海洋上的。再如古印度人认为大地是一个隆起的圆盾,由三条大象扛着,这三条大象站在龟背上,而这个龟又是浮游在广阔海洋之中的。这些都是人类对地球的最原始的认识。

早在公元前五百多年,毕达哥拉斯从哲学观点出发,认为球形是最完美的形状,因而提出地球为球状的臆测。公元前三百年,亚里斯多德看到月食时地球投到月亮上的影子是弧形等现象,提出了地球为球状的科学证据。我国早在战国时期哲学家惠施就提出地球是球形的看法。但这一见解当时却很少人接受。直到公元1522年麦哲伦及其伙伴完成绕地球一周之后,人们才确立了地球为球体的概念。

十七世纪中叶以前,人们一直把地球看作是正球形体,通过科学实践,对这一看法才获得进一步的修订、提高。1672年,天文学家里奇比从巴黎(49°N )带了一只钟到南美洲的圭亚那(5°N),发现这只钟每天慢了二分二十八秒,带回巴黎后又恢复正常。以后在其它地方作类似的观察,也有类似的结果。这表明从极地向赤道移动,钟摆的摆动速度变慢,或者说是摆的振动周期变长了。经过物理学的推测,地球不是一个正圆球体,而是两极略扁赤道凸出的旋转球体。

所谓旋转椭球体,是由经线圈绕地轴回转而成的。所有经线圈都是相等的椭圆,而赤道和所有纬线圈都是正圆。测量上为了处理大地测量的结果,采用与地球大小形状接近的旋转椭球体并确定它和大地原点的关系,称为参考椭球体。十九世纪,经过精密的重力测量和大地测量,进一步发现赤道也并非正圆,而是一个椭圆,直径的长短也有差异。这样,从地心到地表就有三根不等长的轴,所以测量学上又用三轴椭球体来表示地球的形状。

此后,又发现地球的南北两半球不对称,南极较北极离地心要近一些,在北极凸出18.9米,在南极凹进25.8米;又在北纬45˚地区凹陷,在南纬45˚隆起。这一形状和参考椭球体对比,地球又有点像梨子的样子,于是测量学中又出现“梨形地球”这一名称。总之地球的形状很不规则,不能用简单的几何形状来表示。更确切地说,地球具有独特的地球形体。从宇宙空间观看地球,它既不像梨,也不象橘子或鸡蛋,倒像一个滚圆的球。人们利用宇宙飞船和同步卫星在36,000公里高空的实际观测,已把地球的真面貌拍摄下来了。可以看到,在这个小行星上,辽阔的海洋呈蔚蓝色,突出在水体上呈褐色的是陆地,青葱翠绿的是地面上的植被,还有萦绕在上空不断变化着的白云。

从上面可以看出,人类对地球形状的认识是随着科学技术的发展而逐步提高的。正圆球体、旋转椭球体、三轴椭球体以及地球形体等,对于地球的真实形状而言,可以说都是近似的。反过来,人们在生产斗争和科学实践中,也需要对地球的形状加以不同程度的简化。例如在制造地球仪或绘制全球性地图时,就必须把地球当作正圆球体来看待;当测绘大比例尺地形图时,有必须把地球作为有规则的参考椭球体来处理;而在发射人造天体及其轨道计算时,则需要把赤道的扁率以及各地对参考椭球体的偏离更精确地计算进去。

因此,地球的形状不能用某种几何形状来表示,严格地说应称它为地球形体。

⑥ 如何测量地球半径

公元前三世纪时希腊天文学家厄拉多塞内斯(eratosthenes,公元前276—194)首次测出了地球的半径。
他发现夏至这一天,当太阳直射到赛伊城(今埃及阿斯旺城)的水井s时,在亚历山大城的一点a的天顶与太阳的夹角为7.2°(天顶就是铅垂线向上无限延长与天空“天球”相交的一点)。他认为这两地在同一条子午线上,从而这两地间的弧所对的圆心角soa就是7.2°。又知商队旅行时测得a、s间的距离约为5000古希腊里,他按照弧长与圆心角的关系,算出了地球的半径约为4000古希腊里。一般认为1古希腊里约为158.5米,那么他测得地球的半径约为6340公里。
其原理为:
设圆周长为c,半径为r,两地间的的弧长为l,对应的圆心角为n°。
因为360°的圆心角所对的弧长就是圆周长c=2πr,所以1°的圆心角所对弧长是,即。于是半径为的r的圆中,n°的圆心角所对的弧长l为:
当l=5000古希腊里,n=7.2时,
古希腊里)
化为公里数为:(公里)。
厄拉多塞内斯这种测地球的方法常称为弧度测量法。用这种方法测量时,只要测出两地间的弧长和圆心角,就可求出地球的半径了。
近代测量地球的半径,还用弧度测量的方法,只是在求相距很远的两地间的距离时,采用了布设三角网的方法。比如求m、n两地的距离时,可以像图2那样布设三角点,用经纬仪测量出△amb,△abc,△bcd,△cde,△edn的各个内角的度数,再量出m点附近的那条基线ma的长,最后即可算出mn的长度了。
通过这些三角形,怎样算出mn的长度呢?这里要用到三角形的一个很重要的定理——正弦定理。
即:在一个三角形中,各边和它所对角的正弦的比相等。就是说,在△abc中,有。
在图2中,由于各三角形的内角已测出,am的长也量出,由正弦定理即可分别算出:
∴mn=mb+bd+dn。
如果m、n两地在同一条子午线上,用天文方法测出各地的纬度后,即可算出子午线1°的长度。法国的皮卡尔(pi-card.j.1620—1682)于1669—1671年率领他的测量队首次测出了巴黎和亚眠之间的子午线的长,求得子午线1°的长约为111.28公里,这样他推算出地球的半径约为6376公里。
或者用向心力与速度关系的公式测出.

⑦ 测量学上是如何表示地球的大小和形状及地面点的点位的

经过长期的测量实践研究表明,地球形状近似于两极稍扁的旋转椭球,在几何大地测量中,椭球的形状和大小通常用长半轴a和扁率表示.
地面的点位就要用坐标系了.测量常用坐标系大地坐标系,空间直角坐标系,平面直角坐标系.

⑧ 地球的形状和大小

通俗说地球形状是两极稍扁、赤道略鼓的椭球体。
下面是一个材料:

地球形状研究

(figure of the Earth) 在地球物理学中是指地球整体的几何形状,即大地水准面的形状。对地球形状的研究是大地测量学和固体地球物理学的一个共同课题,其目的是运用几何方法、重力方法和空间技术,确定地球的形状、大小、地面点的位置和重力场的精细结构。

地球的形状主要是由地球的引力和自转产生的离心力决定的。人类对地球形状的认识经历了很长的时间。初期认为天圆地方,以后逐渐认识到地球是个圆球。17世纪法国人发现地球不是正圆而是扁的,牛顿等根据力学原理,提出地球是扁球的理论,这一理论直到1739年才为南美和北欧的弧度测量所证实。其实,在此之前中国为编绘《皇舆全图》,就曾进行了大规模的弧度测量,并发现纬度愈高,经线的弧长愈长的事实。这同地球两极略扁,赤道隆起的理论相符。1849年英国的斯托克斯提出利用地面重力观测确定地球形状的理论。经过100多年来的努力,特别是人造卫星等先进技术的应用,使地球形状的测定越来越精确。地球非常接近于一个旋转椭球,其长半轴为6378136米,扁率为1∶298.257。

严格而言,地球形状应该是指地球表面的几何形状,但是地球自然表面极其复杂,所以从科学上,人们都把平均海水面及其延伸到大陆内部所构成的大地水准面作为地球形状的研究对象,因为大地水准面同地球表面形状十分接近,又具有明显的物理意义。但是大地水准面还不是一个简单的数字曲面,无法在这样的面上直接进行测量和数据处理。而从力学角度看,如果地球是一个旋转的均质流体,那么其平衡形状应该是一个旋转椭球体。于是人们进一步设想用一个合适的旋转椭球面来逼近大地水准面。要确定这一椭球,只需知道其形状参数(长半轴a,扁率α)和物理参数(地心引力常数GM和旋转角速度ω)即可。同大地水准面最为接近的椭球面称为平均地球椭球面。如果能确定大地水准面与该椭球面之间的偏差,亦即大地水准面与椭球面之间的差距(大地水准面差距N)和倾斜(垂线偏差θ),则大地水准面的形状可完全确定(图1)。

实际测量结果表明,虽然大地水准面很不规则,甚至南北两半球也不对称,北极略凸出,南极则偏平,夸张地说近似一梨形。但大地水准面同一个与它最相逼近的旋转椭球相比,最大偏离N值在100米左右,θ值一般在10〃之内。因此,可分两步确定大地水准面的形状:

①确定一个同它最逼近的旋转椭球面,即平均地球椭球;

②确定大地水准面同这个椭球的偏离。这是地球形状学研究中的两个主要课题。

确定地球形状的地面测量方法 利用地面观测来研究地球形状的经典方法是弧度测量,即根据地面上丈量的子午线弧长,推算出地球椭球的扁率。以后,人们广泛地用建立天文大地网的方法确定同局部大地水准面最相吻合的参考椭球。但是这些纯几何测量的方法都由于不能遍及整个地球而有很大的局限性。

大地水准面是一个重力等位面,而重力又是重力等位面的法向导数,这样便可以通过重力位把二者联系起来。事实上,地球重力场的不规则分布和大地水准面的起伏都同地球内部质量分布不均匀有关。地球形状研究和地球重力场研究是同一个问题的两个侧面。基于这一思想,斯托克斯提出了利用地面上的重力观测来确定大地水准面形状的问题(称为斯托克斯问题),并证明了以下定理:一个外表面为水准面的物体,若已知其外表面形状S,包围的质量M,旋转的角速度ω,即可唯一地求出该物体表面上及其外的重力位和重力值,即g=f(M,S,ω)和W=f(M,S,ω)。

在大地测量中,要求解决其逆问题,即根据在大地水准面上观测的重力来推求大地水准面的形状:

S=F(g,ω,M),

取大地水准面为边界面,解位论的第三边值问题,可以得出上述问题的解。大地水准面起伏可按下式计算:

式中

称为斯托克斯函数;R为地球平均半径;λ为平均重力;g0-λ0为大地水准面上的混合重力异常(见重力异常),dσ为微分球面元。

同样,垂线偏差θ的两个分量ξ(子午圈分量)和η(卯酉圈分量)为:

式中

称为韦宁·迈内兹(又译维宁·曼尼兹)函数;α为从计算点至流动面元的方位角。

这样,只要有全球重力异常资料,就可以利用上述公式进行数值积分,从而确定出大地水准面的形状。

但是,实际应用斯托克斯方法求解地球形状时,有很大的困难。由于大地水准面外部存在质量,为此而必须采取的去掉或移入内部的质量调整办法都会引起大地水准面的变形;此外,实际观测是在地球自然表面上进行的,为了构成大地水准面上的边值条件,就必须把地面观测值归算到大地水准面上。然而只有了解地面和大地水准面间的物质密度分布,才能进行调整和归算,但这正是我们至今还不能精确知道的。为此,苏联学者莫洛坚斯基提出一种新的理论,他避开了大地水准面的概念和地壳密度分布问题,而是直接取一个非常接近于地球表面的似地球表面(即地形表面)为边界面,用地面上的大地测量和重力测量数据直接确定出地球表面的真实形状:

S=f(gs,Ws,ω)

式中gs和Ws分别为地球表面上的重力和重力位,重力位可根据水准测量、重力测量和天文大地测量的结果求得。

莫洛坚斯基理论的基本思想是把边界条件建立在似地球表面(地形表面)上(图2)。地形表面上的一点(设为

Q)同地球表面上的一点(设为P)是一一对应的。而且通过以下条件唯一地被确定;Q点的大地经度、纬度应等于P点的天文经度和纬度;地球椭球在Q点的正常位应等于实际地球在P点的重力位。前者确定了Q点的平面位置,后者确定了垂直位置。显然,Q点相对于椭球的高度就定义为P点的正常高,而差距ζ=PQ为高程异常。与这样建立的边界条件相联系的是实际观测的地球表面重力值,它不涉及任何重力归算问题。这样解出的是地球表面点的高程异常,即地球自然表面到地形表面的差距。地形表面到平均地球椭球的差距(正常高Hr)已由水准测量得出,地球表面形状则完全确定。

为了和大地水准面的概念相联系,莫洛坚斯基还定义出一个与平均地球椭球相距为ζ的曲面,称之为似大地水准面。大地水准面与似大地水准面是十分接近的,在海洋上完全重合,在陆地稍差一些。由于似大地水准面不是水准面,因此它是没有物理意义的。显然,在不知道地球内部密度分布的情况下,仅依据地表面的测量资料,人们只能确定出似大地水准面(以及地球自然表面),而不是大地水准面的精确形状。

在研究地球表面形状的现代理论中,继莫洛坚斯基之后,瑞典的布耶哈默尔(A.Bjerhammer)提出了等效地球的概念和解法。等效地球是包围在实际地球表面之内的圆球,它具有同地球一样的角速度,绕共同的旋转轴旋转,并假定球内有某种物质分布,以致它在地表上和地表外所产生的引力位同实际地球的引力位完全相同。根据位论第三边值问题的唯一性,要满足上述条件,等效球面上的虚似重力异常同真实地球表面上的重力异常之间应满足泊松积分关系式。只要按地表面重力异常解泊松积分方程,求出等效面上的虚似重力异常,就可以由斯托克斯公式严密地求出地球表面上的高程异常和垂线偏差,同样无须知道地壳密度。

确定地球形状的近代空间技术 用地面测量资料研究地球形状,需要全球均匀分布的测量资料,这是很难实现的。近代空间技术的发展为研究地球形状提供了新手段。

利用空间技术来研究地球形状的方法分为两大类,第一类是几何方法。例如用干涉测量、激光测距和多普勒测量等方法,被观测的对象如射电源、月球或卫星等。它们在天球惯性参考系中的位置是能较准确地知道的,而天球惯性参考系和以地球质心为原点的地球参考系,可把岁差、章动和地球自转参数联系起来,从而得到地面点在地球参考系的位置。如果在地面所有点上都进行了这类测量,就可描绘出地球表面的真实形状。至于卫星测高方法,则是更直接的测定海洋面上大地水准面形状的方法。测高仪得出的是卫星到瞬时海洋面的距离,经过海潮、海流、风、气压和海水盐度等改正后,可归算为卫星至大地水准面的距离,再根据卫星的精密轨道参数,就可求得大地水准面差距N。第二类是动力方法。因为地球形状及其引力场的不规则,必然造成卫星轨道偏离其正常的椭圆轨道,亦即使卫星轨道产生摄动。观测卫星摄动可以得出地球形状及其引力场的有用信息。然而要获得较高的精度,则必须有全球分布的卫星观测站,并且对具有不同轨道倾角的卫星进行观测。

数字结果 为了描述地球的几何和物理特征,通常引进含有4个参数的平均地球椭球。这4个参数是赤道半径a,引力位二阶带谐系数J2,地心引力常数GM,以及地球自转的角速度ω。此处J2定义为:

式中C、A分别为绕旋转轴和赤道轴的主转动惯量。因此,J2是衡量地球动力扁率的物理量,它同地球的几何扁率有确定的关系。

平均地球椭球参数

表中列出不同年代测得的4个参数值,基本参数的选择反映了大地测量学的发展状况。起初由几何量表示扁率,现在可以从卫星轨道的摄动所确定的J2中推得。根据开普勒第三定律和对月球、星际间飞行器或深空探测器的观测求得GM,而根据多普勒效应、激光测距和测高技术可求得α值。所以现在基本参数的确定均依赖于空间技术。

为了表征大地水准面形状,已推导出相应的数学模型,到目前为止通常采用球谐函数的表示方法。

确定大地水准面形状,最好的方法是综合利用空间和地面的资料。空间技术中应包括卫星跟踪技术,测高仪测量,卫星-卫星跟踪技术,卫星激光测距;地面测量技术有重力测量、天文大地测量。目前的许多模型中以美国戈达德空间飞行中心的GEM模型为最佳。

近年来发射的吉奥斯-3和海洋卫星上装有雷达测高仪,这使得大地水准面模型大为改善。其中吉奥斯-3精度为0.5~0.8米,而海洋卫星达到10厘米级。目前依据这些资料求得的海洋大地水准面比GEM系统求得的大地水准面提高了一个数量级。

上图为从地球模型GEM-10求得的大地水准面差距图。从图中可以看出:①大地水准面是一个复杂不规则的曲面;②大地水准面同平均地球椭球面的差距在-105~+73米之间,如果在10-5的精度以内,可以把大地水准面视为椭球面;③大地水准面最大的凹陷是在印度半岛南端附近,大地水准面差距具有最大负值-105米,大地水准面位于地球椭球面之下,在新几内亚岛附近具有最大正值+73米。

对大地水准面起伏的分析表明,其大尺度形态同地壳表面的地形起伏之间没有明确的相关性,但是同构造形态有某种对应关系,即大地水准面至少能部分地反映出深部地幔的运动。

⑨ 什么是经典大地测量

大地测量学 根据德国着名大地测量学家F.R. Helmert的经典定义,它是一门量测和描绘地球表面的科学。它也包括确定地球重力场和海底地形。也就是研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科。测绘学的一个分支。 大地测量学的任务 ·确定地球形状及其外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。 ·研究月球及太阳系行星的形状及其重力场。 ·建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要。 ·研究为获得高精度测量成果的仪器和方法等。 ·研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。 ·研究大规模、高精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法,测量数据库建立及应用等。 大地测量学的分支 ·几何大地测量学亦即天文大地测量学:它的基本任务是确定地球的形状和大小及确定地面点的几何位置。 ·物理大地测量学也称理论大地测量学:它的基本任务是用物理方法(重力测量)确定地球形状及其外部重力场。 ·空间大地测量学:主要研究人造地球卫星及其他空间探测器为代表的空间大地测量的理论,技术与方法。 大地测量学中测定地球大小,指测定地球椭球的大小;研究地球形状,指研究大地水准面形状;测定地面点的几何位置,指测定以地球椭球面为参考的地面点位置。将地面点沿法线方向投影于椭球面上,用投影点在椭球面上的大地经度、大地纬度表示点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标表示。 大地测量工作为大规模的测制地形图提供水平控制网和高程控制网;为开发矿山、兴修水利、发展交通等经济建设提供控制基础;为发射导弹和航天器提供地面点的精确坐标和地球重力场数据;为地球物理学、地球动力学、地震学的研究任务提供测量数据。 简史 大地测量学历史悠久。公元前3世纪,亚历山大的埃拉托色尼利用在两地观测日影的方法,首次推算出地球子午圈的周长,也是弧度测量的初始形式。724年 ,中国唐代的南宫说等人在张遂(一行)指导下在今河南省境内实测了一条长约300千米的子午弧,并测同一时刻南北两点的日影长度,推算出纬度1°的子午弧长。这是世界上第一次实测弧度测量。其他国家也相继进行过类似的工作。17世纪以前,由于工具简单,技术水平低,所得结果精度不高。1617年荷兰W.斯涅耳首创三角测量法,克服了直接丈量距离的困难。随后又有望远镜、水准器、测微器等的发明,测量仪器制造逐渐完善,精度提高,为大地测量学的发展奠定了技术基础。17世纪末,英国I.牛顿和荷兰C.惠更斯从力学观点研究地球形状,提出地球是两极略扁的椭球体。1735~1741年法国科学院派两支测量队分别在赤道附近的秘鲁和北极圈附近的拉普兰进行弧度测量,证实地球是两极略扁的椭球体。中国清代康熙年间为编制《皇舆全图》,实施了大规模天文大地测量。这次测量中,发现高纬度的东北地区每度子午弧比低纬度的河北地区的要长,这个发现比法国早。1730年英国西森发明经纬仪,促进了三角测量的发展。1743年法国克莱罗发表了《地球形状理论》,指出用重力测量精确求定地球扁率的方法。1806年法国的A.-M.勒让德和1809年德国的C.F.高斯分别发表了最小二乘法理论,产生了测量平差法。1849年英国Sir G.G.斯托克斯创立用重力测量成果研究水准面形状的理论。1880年瑞典耶德林提出悬链线状基线尺测量方法,继而法国制成因瓦基线尺,使丈量距离的精度明显提高。19世纪末和20世纪30年代,先后出现了摆仪和重力仪,使重力点数量大量增加,为研究地球形状和地球重力场提供大量重力数据。1945年苏联的M.C.莫洛坚斯基提出,不需要任何归算,可以直接利用地面重力测量数据严格求定地面点到参考椭球面的大地高程,直接确定地球表面形状,这一理论已被许多国家采用。 20世纪40年代,电磁波测距仪的发明,克服了量距的困难,使导线测量、三边测量得到重视和发展。1957年第一颗人造地球卫星发射成功后,产生了卫星大地测量学,使大地测量学发展到一个新阶段。导航卫星多普勒定位技术,能够以±1米或更高的精度测定任一地面点在全球大地坐标中的地心坐标。卫星雷达测高技术,可测定海洋大地水准面的起伏。新发展起来的卫星射电干涉测量技术,可以测定地面上相距几十千米的两点间的基线向量在全球坐标系三轴方向上的基线分量,即两点间的3个坐标差。卫星大地测量学仍在发展中,具有很大的潜力。 分支 大地测量学包括几何大地测量学、物理大地测量学、卫星大地测量学、海洋大地测量学和动态大地测量学。 几何大地测量采用一个与地球外形最接近的旋转椭球代表地球形状,用几何方法测定它的形状和大小,并以该椭球面为参考研究和测定大地水准面,以及建立大地坐标系,推算地面点的几何位置。 物理大地测量用一个同全球平均海水面位能相等重力等位面即大地水准面代表地球的实际形状,在地球表面进行重力测量,并用地面重力测量数据研究大地水准面相对于地球椭球面的起伏。 卫星大地测量利用卫星在地球引力场中的轨道运动,从尽可能均匀分布在整个地球表面上的十几个至几十个跟踪站,观测至卫星瞬间位置的方向、距离或距离差,积累对不同高度不同倾角的卫星的长期(数年)观测资料,可以综合解算地球的几何参数和物理参数,以及地面跟踪站相对于地球质心的几何位置。

阅读全文

与几何方法测量地球形状相关的资料

热点内容
屋面防雷卡计算方法 浏览:182
心率训练的方法 浏览:622
怎么用几何方法来表示平移 浏览:102
骑固定自行车减肥的最佳方法 浏览:582
中学生过敏了怎么办最快方法 浏览:486
常用的舞蹈教学方法有哪些 浏览:837
肾果食用方法 浏览:1
游泳池尿素检测方法 浏览:953
鹅咳嗽怎么治疗方法 浏览:843
如何改变晨练方法 浏览:139
解决问题最有力的方法 浏览:514
海洋油污常用处理方法 浏览:354
黄斑区前膜治疗方法 浏览:483
导尿管的使用方法 浏览:426
从化区农业公司注册方法有哪些 浏览:33
2倍褶窗帘四爪钩安装方法 浏览:2
婴儿治疗便秘方法 浏览:443
四种常用构图方法 浏览:753
男士脱发自行治疗方法 浏览:382
如何用最简单的方法做拼图 浏览:659