㈠ 排气消声器容积如何测量
可以经过一段消声器之后测。在整车底盘测功机上有测排放的接口,那里有文式管,在这里改装成流量计就行了。一般而言,增大工作容积就会增大发动机体积,重量也会随之增加。
这种方法对于追求结构紧凑,追求行驶经济性的现代乘用车设计者来说是难以接受的。因此,在同体积或者更小体积的前提下,通过改进发动机结构和采用新材料来追求更高的输出功率,是当前厂商的追求目标。
阻抗复合消声器:
由阻性消声器单元和吸声材料组成的消声器,具有阻性消声器和阻性消声器的共同特点。对低、中、高频噪声有很好的消声效果。降低了发动机的排气噪声,能够安全有效地排放高温废气。消声器作为排气管的一部分,应保证排气顺畅,阻力小,强度足够。
消声器应能承受500℃~700℃的高温排气,以保证在汽车规定行驶里程内不被损坏或失去消声效果。消音器的主要原理是里面有很多挡板,叫做消音。它的作用是使射击时枪口气流在其中膨胀减速,消耗多余的动能,最后从前方慢慢滑出,达到消音的目的。
一、检测标准:
1、户外标准
(2)排气噪声多表面测量方法专利扩展阅读:
噪音的一些控制方法:
1、降低声源噪音,工业、交通运输业可以选用低噪音的生产设备和改进生产工艺,或者改变噪音源的运动方式(如用阻尼、隔振等措施降低固体发声体的振动)。
2、在传音途径上降低噪音,控制噪音的传播,改变声源已经发出的噪音传播途径,如采用吸音、隔音、音屏障、隔振等措施,以及合理规划城市和建筑布局等。
3、受音者或受音器官的噪音防护,在声源和传播途径上无法采取措施,或采取的声学措施仍不能达到预期效果时,就需要对受音者或受音器官采取防护措施,如长期职业性噪音暴露的工人可以戴隔音耳塞、耳罩或头盔等护耳器。
㈢ 噪声测量技术的测点的选取
不同的噪声测量内容有不同的测点布置方法。测点的分布要以各种噪声测量规范为依据。待测声学参量亦应按相应的规范要求进行测量。
一般机械噪声的现场测量,选取测点的原则是尽可能接近机器,使机器的直达声远大于背景噪声或反射声。测量通风机、鼓风机、压缩机、内燃机、燃气轮机等进气噪声的测点应选取在进气口轴向上,距管口平面不应小于管口直径的1倍,也可选在距管口0.5米或1米处。排气噪声的测点,应选取在排气口轴线45°的方向上,或管口平面上距离管口中心0.5米、1米或2米处。
㈣ 怎样测噪音分贝怎样降低噪音
1、测量仪器。所有测量仪器均应符合相应标准,使用前必须校准。测量噪声级时,使用精密和普通声级计,如需测量噪声频谱,需要声级计上佩带滤波器;测量等效声级时,使用积分声级计;测量脉冲噪声则使用脉冲声级计;测量声强或分析噪声信号时使用声强计、实时分析仪等。
2、测量条件。测量中要考虑背景噪声的影响。当所测噪声高出背景噪声不足10dB时,应按规定修正测量结果;当所测噪声高出背景不足3dB时,测量结果不能作为任何依据,只能作为参考。当环境天气风速大于四级时,应停止室外测量。测量时要避免高温、高湿、强磁场、地面和墙面反射等因素的影响。
3、读取法。稳态噪声用慢挡读取指示值或等效声级。周期性变化噪声用快挡读取最大值并读取随时间变化的噪声值,也可以测量等效声级。脉冲噪声读取其峰值和脉冲保持值或测量等效声级。无规则变化噪声应测量若干时间段内的等效声级及每个时间段内的最大值。
降低噪音方法:
在建筑物中,为了减小噪声而采取的措施主要是隔声和吸声。隔声就是将声源隔离,防止声源产生的噪声向室内传播。在马路两旁种树,对两侧住宅就可以起到隔声作用。在建筑物中将多层密实材料用多孔材料分隔而做成的夹层结构,也会起到很好的隔声效果。
为消除噪声,常用的吸声材料主要是多孔吸声材料,如玻璃棉、矿棉、膨胀珍珠岩、穿孔吸声板等。材料的吸声性能决定于它的粗糙性、柔性、多孔性等因素。另外,建筑物周围的草坪、树木等也都是很好的吸声材料,所以种植花草树木,不仅美化了我们生活和学习的环境,同时也防治了噪声对环境的污染。
(4)排气噪声多表面测量方法专利扩展阅读
1、首先要尽可能避免噪声。在不影响工作、学习和娱乐的情况下,应严格控制家用电器和其他发声器具的音量和开关时间。
尤其是高频立体声音响的使用,其音量一定要控制在70分贝以下(以无震耳欲聋的感觉为准)。汽车司机不应随意按喇叭,不要经常到人声嘈杂的商业区及歌厅去“接收”噪声等等,以尽可能地减少人为噪声的危害。
2、注意防止家用电器的噪声污染。在购置家用电器时,要选择质量好、噪声小的。尽量不要把家用电器集于一室,冰箱最好不要放在卧室;尽量避免各种家用电器同时使用;一旦家用电器发生故障,要及时排除,因为带病工作的家用电器产生 的噪声比正常机器工作的声音大得多。
3、安装中空玻璃窗、三层玻璃窗、真空玻璃窗、隔音密封条等。这样可将外来噪音减低一半,特别是临街的写字楼和家庭,效果比较理想;安装钢门隔声。钢门对隔音亦有一定的帮助,如镀锌钢门中层隔有空气的设计,使得无论室内或室外的声音均较难传送开去。此外,钢门附有胶边,与门身碰合时并不会发出噪音。
多用布艺装饰和软性装饰;室内不同功能房间的封闭。
㈤ 如何进行汽车噪音检测(或声级计如何使用)
噪音的测定及有关标准
1.汽车噪声是一个包括各种性质噪声的综合噪声源,其主要噪声源可分为:发动机、冷却系统、排气系统、进气系统、传动系统及轮胎。在这些噪声源中,有的与发动机转速有关,有的与汽车速度有关。近年来国内外工程技术人员通过采用声强测量等各种现代试验手段和分析技术,对汽车综合噪声的各主要噪声源的构成有了大致了解,但由于影响汽车噪声的因素很复杂,使得控制汽车噪声仍然显得十分困难。
不同类型汽车噪声的特性及各噪声源所占整车噪声能量的比率差异很大。以往的研究结果表明:发动机噪声所占的比重最大,而随着路面条件改善,车辆高速行驶时轮胎噪声已成为又一个主要噪声源,但是在国内交通状况下仍属于主要噪声来源。
为了有效地控制公路交通噪声,提高汽车乘坐舒适性,降低对驾乘人员及公路周围人员的听觉损害,国内外都制定了一些测试规范,此外还有一些如汽(柴)油机噪声、轮胎噪声等等总成测量方法。�
2.我国现行噪声标准与日本、欧美等国家噪声法规(标准)的比较
各国对汽车噪声认识都有一个不断演变的过程,以日本为例,日本在50年代初对于所有类型汽车都规定了同一限制值,正常行驶噪声和发动机怠速运转时的排气噪声均不得超过85dB(A)。随着日本国内汽车拥有量迅速增加,日本于1971年大幅度加强了对汽车正常行驶和排气噪声的限制,同时又开始限制汽车在市区行驶时产生的最大噪声及加速行驶噪声,1975年又修改了加速行驶噪声最大允许限制值,并制定了分两阶段实施目标的长期规划。通过以降低发动机噪声为中心的各项措施,发动机噪声占整车噪声的比重(以大型车为例)从开始实施长期规划初期的65%~75%降低到实现第二阶段目标的30%左右。各主要车型的加速行驶噪声实测值也平均下降了约10dB,降噪成效是十分显着的。
� 我国从1979年开始实施的《机动车辆允许噪声》(GB 1495-79)从我国当时的汽车工业水平出发以1985年1月1日为分界点,分别规定了在此之前之后机动车辆车外最大允许噪声。从我国车辆现状来看,我国合资引进的一些车型例如捷达、依维柯等由于直接采用了欧共体法规体系,其噪声指标已远远优于我国现行标准,而一些大型车辆(例如发动机后置大客车)其加速噪声值则长期徘徊在89dB(A)左右,高于国外同类型汽车约4~7dB(A)
2.1 加速噪声测量
加速噪声由于其能反映出汽车在常用工况下车辆的最大噪声,特别是在市区行驶时的最大噪声,目前被大部分工业国家列入汽车定型试验的必测项目,成为考核汽车整车噪声的主要指标,其值也基本反映了各国在控制汽车噪声方面所达到的技术水平。各国在规定噪声限值所基于的试验方法不尽相同,我国汽车整车噪声控制水平还停留在相当于日本70年代的水准上。
2.2 车内噪声测量
车内噪声是影响乘员的舒适性、听觉损害程度、语言清晰度以及对车外各种音响讯号识别能力的重要因素,目前我国仅制定了匀速行驶车内噪声试验方法,而ISO、欧美日等国除制定了匀速行驶车内噪声试验方法,还制定了车辆加速行驶和车辆静止状态下发动机怠速工况和加速工况对车内各个区域位置影响的测量方法。
2.3 车辆定置状态噪声测量
欧美日车型试验中都规定车辆必须进行定置状态噪声测量,我国曾参照ISO 5130 1982,制定了《机动车辆噪声定量测量方法》,但一直未正式颁布执行。车辆定置噪声测量主要是针对排气噪声和发动机噪声的测量,我们在加速行驶噪声测量中常常可以发现安装有汽车排气管一侧的噪声值往往大于另一侧1~2dB(A),这说明在汽车综合噪声中排气噪声占有不可忽视的分量。车辆定置状态噪声测量对测量场地要求较低,测试简便、时间短,便于汽车制造厂对新车噪声的检测和车辆管理部门随时随地对使用车辆的噪声进行检测监督和控制,同时便于维修调试人员对发动机和消声设备的损坏和失效做出判断,可使车辆保持在较好的技术状态,减少对车辆的毁坏和对环境的污染。
2.4 其它有关标准
2.4.1 车外匀速行驶噪声、轮胎噪声
我国GB 1496-79只规定了测试50km/h一种车速的车外匀速行驶噪声测量方法。
匀速行驶车外噪声试验在许多国家都已不再列入车型试验,主要是方法和交通噪声的实际状态对应差,且与加速行驶噪声试验比较,其结果的再现性也差,且已经进行加速行驶噪声测量,没有必要再做匀速噪声测量。
目前国外倾向于对车速较高的汽车按照高速公路限定的最高车速进行以评价轮胎噪声为目的的高速行驶噪声试验,国际标准化组织正在开展此项研究工作。
2.4.2 发动机噪声
发动机噪声仍是影响我国整车噪声的首要因素。我国于1986年制定了内燃机噪声限值,1993年又做了修订,从目前情况看要使我国汽车整车噪声达到发达国家水平,仍应把攻关重点放在发动机降低噪声上。
㈥ 大家知道有什么办法能快速精确地定位噪声源
噪声源识别方法很多,从复杂程度、精度高低以及费用大小等方面均有不少的差别,实际使 用时可根据研究对象的具体要求,结合人力物力的可能条件综合考虑后予以确定。
具体说来,噪 声源识别方法大体上可分为二类:
第一类是常规的声学测量与分析方法,包括分别运行法、分别覆盖法、近场测量法、表面速 度测量法等。
第二类是声信号处理方法,它是基于近代信号分析理论而发展起来的,象声强法、表面强度 法、谱分析、倒频谱分析、互相关与互谱分析、相干分析等都属于这一类方法。
在不同研究阶段可以根据声源的复杂程度与研究工作的要求,选用不同的识别方法或将几种 方法配合使用。 声学测量法 人的听觉系统具有比最复杂的噪声测量系统更精确的区分不同声音的能力,经过长期实践锻 炼的人,有可能主观判断噪声声源的频率和位置。有经验的操作、检验人员在生产现场就能从机 器运转的噪声中判断是否正常,并能判定造成异常的原因。这种主观评价法在生产实际中往往是 很有用的。为了避免其他干扰因素,还可以借助医用听诊器等。然而,主观判断法并非是人人能 达到判断效果的,因为其带有主观因素,同样的机器噪声,不同的人鉴别的结果往往不一致。
此外,主观评价法也无法对噪声源作定量的评价。因此,人们常常采用声学测量和信号分析等方 法。
声压法 :
近场测量法 这种方法简便易行,通常用于寻找机器的主要噪声源。具体做法是用声级计在紧靠机器的表 面扫描,并从声级计的指示值大小来确定噪声源的部位。 根据声学原理,近场测量法的正确性是有条件的。传声器测得的声级主要应是靠近的某个噪 声源引起的,而其他噪声源对测量值没有影响或影响很小。但是某一点的声场总会受到附近其他 声源的混杂,尤其是在车间现场。所以近场测量法不能提供精确的测量值。因此这种方法通常用 于机器噪声源的粗略定位。
选择运行法 选择运行法就是设法将机器中的运转零部件按测量要求逐级连接或逐级分离进行运行,分别 测得部分零件的声级及其在机器整体运行时总声级中所占的份额,从而确定主要噪声源的方法。 这种方法对复杂的机器,尤其是多级齿轮传动机器的噪声源识别相当有用。当然这种方法只有当 机器的各部分可以分别脱开运行的情况下才能使用。 噪声源识别与定位的方法 例如,要估计风机的电机和风扇产生的噪声,可以断开风扇,只开动电机,测量电机的噪 声。由电机的噪声级和频谱与风机总噪声级和频谱,根据声级叠加原理可估计出风扇噪声的声级 和频谱。在测量电机的噪声时,应该保持电机的负荷不变。风机噪声与电机噪声的差别越大,风 扇噪声的估计准确度越高。
选择覆盖法 对于不能改变运行状态的情况,通常采用选择覆盖法识别噪声源。这种方法用隔声材料(铅 板)把机器各部分分别覆盖起来以测定未覆盖部分的噪声以确定噪声源。覆盖层(隔声罩)要专 门设计以保证覆盖后的噪声比覆盖前小10dB。测某一部位的噪声时要将其他部位覆盖起来,这样 就相当于分别测取了各个独立的噪声源。将各部位测得的噪声大小进行比较即可找出主要噪声 源。隔声罩可用1~1.5mrn厚的铅板罩住机器的某部分,罩内填矿棉或玻璃纤维。这种覆盖技术 大约可以降低噪声10~15dBA,故易与未覆盖的振动面区分开。不过,这种方法适用于识别中频 和高频噪声,因为隔声罩的低频隔声能力很差。也可以根据噪声特性来区分。例如,测量发动机 的机械噪声和排气噪声时可以把排气管引到墙外,并对缝隙密封。在室内可以测得发动机的机械 噪声,在墙外可以测量排气噪声。
声强法 :
在三维流体声场中,声强矢量等于有效声强矢量与声强偏差的矢量和。声强偏差表征声场中 局部区域内声能流,其矢量流线为环状。窄频域中声强偏差通常是非零有旋矢量,因此,窄频带 中声强矢量不一定是沿径向背离声源的。各频率点声强矢量流线通常是曲线形状,特别是在近场 或反射波较强的区域,声强流线的曲率半径较小,有些频率点声强矢量甚至指向声源,这说明由 声场中几点处单一频率声强矢量不能推断出声源所在方位。随着频率带宽的增加,声强偏差的影 响减少。当声强偏差值可以忽略时,声强矢量等于有效声强矢量。声强矢量流线代表声场中实际 功率流线,即由声源出发到无限远区域或功率吸收点终止。在这种情况下根据不在一个平面上的 几点声强矢量可以判断声源所在方位。用于声源定位的分析频率带宽一般不应窄于1/3倍频程带 宽;根据经验,最好选用包含几个倍频程带宽的频带为分析频率带宽。某点处声强矢量由该点处3 个正交方向上声强测量值估算。例如,在笛卡尔坐标空间中,若在3个正交轴向上声强测量值为 Ix、Iy和Iz,则声强矢量幅值为: 噪声源识别与定位的方法 通常情况下,用声强技术定位声源是非常耗费时间的,除非声强仪能同时测量声强矢量的三 个正交轴向分量,否则每点处要进行三次测量才能确定其声强矢量。声源定位精度主要与流体声 场特性有关,对于阻性声场,声源定位精度通常较高。 应用少数几点处声强矢量定位声源时,定位精度与测点位置选择有关。测点位置最好均匀地 分布在声源周围,一旦声源位置初步确定后,与声源相距较远的测点处的声强矢量应当抛弃。如 果声场中声强矢量空间分布已测定,则声源和功率吸收点的位置就能容易地确定。声强技术还能 非常有效地用于寻找隔墙或封闭空间的漏声位置,检查隔声室、消声室和隔声罩等封闭空间的隔 声质量。在隔声实验以前,声强技术可以用于检查测试构件的密封情况。当声场是几个声源辐射 场的迭加时,声强技术可以用于寻找主要辐射声源;按辐射声功率大小顺序排列声源。对于复杂 机器的声辐射,可以应用扫描式测量方法测量机器的各部分(表面)声辐射功率,找出主要声辐 射区域或部件。 我们知道,在点声源或其组合声源辐射近场中,瞬态声强无功分量远大于其有功分量。但反 过来就不一定成立,即当某物体表面附近有很强的瞬态声强无功分量时,并不意味着该物体是声 源。例如,在封闭室内混响声场中。此外,近场中瞬态声强无功分量的大小不能反映声源辐射效 率的强弱。因此,瞬态声强无功分量(复数声强的虚部)只能是声源定位的一种辅助手段,用于 初步分析。
阵列法:
传声器阵列是由许多传声器按一定方式排列组成的阵列,具有强指向性,可用来测定声源的 空间分布,即求出声源的位置和强度,因而可识别机车行进时的噪声源。将数字技术应用于声望 远镜,可以实现声望远镜的空间自动扫描。因此,可以对高速运动的声源(例如火车、飞机)进 行分析,并对接收的声信号进行频谱分析,从而得出不同频段内声源的空间分布。目前使用最广 泛的方法是把传声器排列在直线上,此系统称为线列阵指向性系统。 线列阵利用许多拾声点上接收信号的干涉效应而产生的指向性。但这种等间距、等强度的线 列阵的旁瓣比较大,如果各传声器的信号按一定规则修正,则可以抑制旁瓣。常用传声器阵按照 契比雪夫级数的系数修正。这样可使主瓣变宽但旁瓣下降30dB。 传声器阵可用模拟电路来完成,但目前一般采用数字方法处理。将传声器输出信号采样,经 模数转换送入计算机,通过计算机自动更换聚焦点位置,在xy线上扫描,得出xy线上声源强度的 分布,同时用快速傅里叶变换计算出各点的频谱。 用线列阵传声器每次只能测定分布在一条线上的声源,如果要同时分析几个方向的声源的分 布情况,则必须使用几个传声器阵列或方阵。 传声器阵望远镜的另一原理是:首先对声望远镜中两个传声器输出信号做互相关,然后利用 时延做快速傅里叶变换求出频谱。频谱与两个传声器的距离有关,用两个传声器距离做快速傅里叶 变换即可得到从不同方向传来的不同频带声波的强度关系。
信号分析法 时域分析法
根据各声源或声源各部分时间特性的差别来识别,它对有离散谱的信号更为合适。如果机器 产生脉冲噪声,可记录噪声的时间历程。在双线性示波器上显示,另用一路显示标记脉冲,由机 器某运动部分触发以使噪声和机械动作相联系。一旦噪声信号与机械振动联系起来就可确定噪声 来自振动部分。 平均技术是时域分析法的发展。有时在噪声和振动时间历程中,由于背景噪声太高,难以区 分离散重复事件。把背景噪声按机器工作一周分段,用许多周的信号求平均,无周期性部分信号 多次平均后增长较慢,而周期信号增长较快,因此可检出周期信号。通常取10~100工作周期信 号平均,以明显区别出重复事件。平均过程利用计算机来完成 频域分析法 如果噪声源的噪声在不同频率区域,可以采用窄带频谱分析法。用加速度计测量噪声源的振 动,用传声器测量某点的声压,求出它们的频谱进行分析。某噪声源的振动信号频谱的主要部分 和声信号频谱的主要部分位于相同频率区域,或在某些频率都有峰值,即可认为这一噪声源是主 要噪声源。
㈦ 汽车发动机噪声源位置识别方法有哪些
汽车是我们生活中常用的交通工具,那么汽车发动机的噪声源应该如何识别位置呢?大家请看我接下来详细地讲解。
一,发动机噪声产生原理
发动机噪声包括燃烧噪声和机械噪声。机械噪声是由活塞冲击、齿轮传动、供油系统、阀链等声源产生的。峰值声压级出现在500-900 Hz,最高声压级可达92 dB。燃烧噪声是由燃烧室中气体的波动引起的,通过发动机传递到大气中。
㈧ 噪声治理中噪声检测有哪些方法
各类标准的适用区域:
0类标准适用于疗养区、高级别墅区、高级宾馆区等特别需要安静的区域。位于城郊和乡村的这一类区域分别按严于0类标准5分贝执行。
1类标准适用于以居住、文教机关为主的区域。乡村居住环境可参照执行该类标准。
2类标准适用于居住、商业、工业混杂区。
3类标准适用于工业区。
4类标准适用于城市中的道路交通干线道路两侧区域,穿越城区的内河航道两侧区域。穿越城区的铁路主、次干线两侧区域的背景噪声(指不通过列车时的噪声水平)限值也执行该类标准。
2、室内标准:
室内噪声标准可分为住宅和非住宅两种。住宅室内噪声标准是根据生活安静的要求和所在区域环境噪声标准,参考住宅窗户条件制定的,一般不应低于所在区域的环境噪声标准20分贝。
中国住宅室内的标准规定为低于所在区域环境噪声标准10分贝,因为中国城市有较多的小工厂紧靠住宅。非住宅的室内噪声标准,是根据房间用途规定的。
二、检测方法:
环境噪声检测测量仪器精度为 2 型及2 型以上的积分平均声级计或环境噪声自动监测仪器,其性能需符合GB3785 和GB/T 17181 的规定,并定期校验。测量前后使用声校准器校准测量仪器的示值偏差不得大于0.5 dB,否则测量无效。声校准器应满足GB/T 15173 对1 级或2 级声校准器的要求。测量时传声器应加防风罩 。
根据监测对象和目的,可选择以下三种测点条件(指传声器所置位置)进行环境噪声的测量:
1、一般户外
距离任何反射物(地面除外)至少3.5 m 外测量,距地面高度1.2 m 以上。必要时可置于高层建筑上,以扩大监测受声范围。使用监测车辆测量,传声器应固定在车顶部1.2m 高度处。
2、噪声敏感建筑物户外
在噪声敏感建筑物外,距墙壁或窗户1 m 处,距地面高度1.2 m 以上。
3、噪声敏感建筑物室内
距离墙面和其他反射面至少 1 m,距窗约1.5 m 处,距地面1.2 m~1.5 m 高。
㈨ 关于噪音水平
我国于1993年制定的《城市区域环境噪声标准》中规定:城市居民区的噪声允许标准为1级。具体为:昼间不大于55分贝,夜间不大于45分贝。
所以国家规定是很严格的,如果过大,会诱发心脏病、高血压、头疼、思维下降等。
家庭解决噪音大问题的办法:1,测出具体噪声的分贝数,如果超标,有根据地立即向有关部门投诉陪偿(有先例);2,加装双层玻璃,并减少开窗;3,锻炼抗噪音的能力(我家原在马路边上住,时间长了居然对外界的噪音毫无感觉);4,经常去外面活动,无意中加强了锻炼;5,要求肇事单位在噪音源加反射墙。
祝您成功!!