⑴ 什么是GNSS测量技术
GNSS的全称是全球导航卫星系统(Global Navigation Satellite System),它是泛指所有的全球卫星导航系统以及区域和增强系统,它利用包括美国的GPS、俄罗斯的GLONASS、欧洲的GALILEO、中国的北斗卫星导航系统,美国的WAAS(广域增强系统)、欧洲的EGNOS(欧洲静地导航重叠系统)和日本的MSAS(多功能运输卫星增强系统)等卫星导航系统中的一个或多个系统进行导航定位,并同时提供卫星的完备性检验信息(Integrity Checking)和足够的导航安全性告警信息。
GNSS的基本原理:测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过记录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。
⑵ 比较gnss绝对定位和相对定位的优点
卫星定位可分为绝对定位和相对定位,其中RTK(载波相位实时动态相对定位)是比较常用的高精度相对定位方法,RTK定位(Real Time Kinematic Positioning)是采用两台接收机,由基准站和流动站的观测值组成双差组合进行实时的厘米级定位。
其优点主要体现在:初始化时间仅数秒,固定解的精度可达到厘米级,可以满足高精度实时动态定位的要求。
由于其精度要求达到厘米级,要用到的观测量是载波相位观测值,这就需要进行模糊度的确定及周跳探测及修复,周跳探测是进行RTK定位的前提,因为周跳发生会引起模糊度的变化。
RTK定位中数据预处理的关键问题就是周跳的探测,目前RTK定位中最常用的周跳探测方法是码伪距与相位组合法、电离层残差法和M-W组合法。
三种周跳探测方法都有是失效的情况,在实际应用中常综合这三种周跳探测方法的利弊:先用伪距-相位组合探测大于8周以上的大周跳,把周跳限制在8周以内。
然后用电离层残差法联合M-W组合方法探测小至1周的小周跳。模糊度确定是RTK定位的核心算法,一旦能够正确固定整周模糊度,就可以得到毫米级的距离观测值。
(2)gnss距离测量主要的两种方法扩展阅读
卫星定位技术经过近30多年的发展,已经广泛服务于国民经济的各个方面。卫星定位已发展了3代技术,现在正处于第三代向第四代的过渡阶段。
卫星定位技术分为绝对定位和相对定位技术,第一代绝对定位技术即通过伪距测量的方法获取定位坐标,第一代相对定位技术分为载波差分与伪距差分技术,载波差分技术即静态测量技术,伪距差分定位通常运用在信标机上。
载波静态差分技术精度高但是需要内业处理才能得到定位结果,不具备时效性,载波静态差分技术结合通讯传输技术发展为RTK技术,能够实时获得动态差分定位结果。
伪距差分定位如信标机具有使用范围的局限性,伪距差分技术结合广域播发的技术发展为广域差分定位技术,能够通过卫星大范围播发伪距差分信号,如我们所熟知的SBAS技术(主要指美国WAAS、日本MSAS等),常规RTK技术及广域差分定位技术组成第二代卫星定位技术。
⑶ gnss接收机是如何测定伪距的
伪距测量是全球卫星导航系统(GNSS)与其它无线通信系统一大显着区别之一。在卫 星导航定位系统中,必须通过 PRN 码测出用户接收机到各颗卫星的距离,才能定位。卫星 钟差、用户钟差、多普勒效应、电离层延迟、对流层延迟等,都使测距产生一定的误差,所 以称为伪距。伪距测量的精度,直接影响到定位的精度。为定量分析伪距测量对定位结果的 影响,本文给出选择不同星的伪距和同一伪距不同误差情况下对最终定位结果的影响,为接 收机的研发提供重要的参考。
⑷ GNSS定位的基本原理如何确定卫星的位置 如何测量出站星距离
卫星的位置确定,主要还是通过遥测技术测量轨道的精确参数,并把轨道的参数注入到卫星上播放的星历之中。至于测量出站和星之间的距离是通过多个卫星与该站之间的时延来测得的。
⑸ GNSS接收机测定卫星到接收机距离的方法有哪两种哪一种精度更高
不止两种吧……
⑹ 什么是gnss综述目前几个主要的导航系统的现状,各有什么优势及不足
GNSS是全球导航卫星系统的简称。全球导航卫星系统定位是利用一组卫星的伪距、星历、卫星发射时间等观测量,同时还必须知道用户钟差。全球导航卫星系统是能在地球表面或近地空间的任何地点为用户提供全天候的3维坐标和速度以及时间信息的空基无线电导航定位系统。
目前全球技术成熟的导航系统有GPS,伽俐略,格洛纳斯,北斗二代。其中美国的gps占主要市场,北斗二代系统后起之秀,发展迅猛,在亚太地区发展迅猛,其余两个系统由于资金投入不足,卫星更新慢,市场逐渐在萎缩。
未来几年,卫星导航系统将进入一个全新的阶段。用户将面临4大全球系统近百颗导航卫星并存且相互兼容的局面。丰富的导航信息可以提高卫星导航用户的可用性、精确性、完备 性以及可靠性,但与此同时也得面对频率资源竞争、卫星导航市场竞争、时间频率主导权竞争以及兼容和互操作 争论等诸多问题。
(6)gnss距离测量主要的两种方法扩展阅读:
GPS存在三部分的误差:
第一部分是所有GPS接收机都有的,如卫星钟误差,星历误差、电离层误差、对流层误差等,其误差利用差分技术可以完全消除。
第二部分是传播延迟误差,该误差大部分也可以消除,主要取决于基准接收机和用户接收机的距离。
第三部分是所有GPS接收机固有的误差,例如通道延迟、多径效应、内部噪声等,该误差无法消除。
参考资料来源:网络-GNSS
⑺ 简述GNSS定位的基本原理及在测绘领域中的应用。
GNSS定位通过地面上的接收机接收GNSS卫星信号实现定位,GNSS定位在测绘中的应用非常广泛,比如用RTK测点、放样。用GNSS接收机做监测等。
GNSS的基本原理是测量出已知位置的卫星到用户接收机之间的距离,综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。
(7)gnss距离测量主要的两种方法扩展阅读:
GPS存在三部分的误差:
第一部分是所有GPS接收机都有的,如卫星钟误差,星历误差、电离层误差、对流层误差等,其误差利用差分技术可以完全消除;
第二部分是传播延迟误差,该误差大部分也可以消除,主要取决于基准接收机和用户接收机的距离;
第三部分是所有GPS接收机固有的误差,例如通道延迟、多径效应、内部噪声等,该误差无法消除;
⑻ GNSS测量的基本原理
GNSS的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过记录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。
PS:实际GNSS测量工作原理参照华测导航的GNSS大地测量产品的相关应用。
⑼ 卫星定位定向及RTK原理是什么
卫星定位定向及RTK原理:测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。
卫星定位系统是一种使用卫星对某物进行准确定位的技术,它从最初的定位精度低、不能实时定位、难以提供及时的导航服务,发展到现如今的高精度GPS全球定位系统,实现了在任意时刻、地球上任意一点都可以同时观测到4颗卫星,以便实现导航、定位、授时等功能。
设备部分
用户设备部分即GPS 信号接收机,其主要功能是能够捕获到按一定卫星截止角所选择的待测卫星,并跟踪这些卫星的运行。当接收机捕获到跟踪的卫星信号后,即可测量出接收天线至卫星的伪距离和距离的变化率,解调出卫星轨道参数等数据。根据这些数据,接收机中的微处理计算机就可按定位解算方法进行定位计算,计算出用户所在地理位置的经纬度、高度、速度、时间等信息。
⑽ gnss接收机是如何测定伪距的
咨询记录 · 回答于2021-09-28