导航:首页 > 安装方法 > 多相流测量方法

多相流测量方法

发布时间:2022-01-09 19:04:50

‘壹’ 流体测量的基本原理和方法。

流量测量方法
名词与术语
 瞬时流量:单位时间内流过管道横截面的流体量(m3/h、t/h)。
 累计流量:在一段时间内流过管道横截面的流体总量(m3、t)。
 流量计:用于测量管道中流量的计量器具称为流量计。
主要的质量指标
 流量范围:最大与最小可测范围,该范围内误差不超过容许值。
 量程和量程比:量程是最大流量与最小流量之差;量程比是最大流量与最小流量之比,又称范围度。
测量误差
基本误差:

准确度:流量计示值接近被测流量真值的能力,称为流量计的准确度。
准确度等级有:0.1、0.2、0.5、1.0、1.5、2.5、4.0级。
 重复性:流量计在同一工作条件下,多次重复测量,其示值一致性的程度,反映仪表随机性误差的大小。
按测量对象划分就有封闭管道和明渠两大类;
按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。
按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。

流量计简介

流量测量方法和仪表的种类繁多。工业用的流量仪表种类达100多种。品种如此之多的原因就在于至今还没找到一种对任何流体、任何量程、任何流动状态以及任何使用条件都适用的流量仪表。

本文按照目前最流行、最广泛的分类法,分别介绍各种流量计的原理、特点、应用概况及国内外的发展情况。

序号 流量计种类 全球产量
百分比
1 差压式流量计(孔板、文丘里) 45~55%
2 浮子流量计(又称玻璃转子流量计) 13~16%
3 容积式流量计(椭圆、腰轮、螺旋) 12~14%
4 涡轮流量计 9~11%
5 电磁流量计 5~6%
6 流体振荡流量计(涡街、旋进) 2.2~3%
7 超声流量计(时差式、多普勒) 1.6~2.2%
8 热式流量计 2~2.5%
9 科里奥利质量流量计 0.9~1.2%
10 其他流量计(插入式流量计 1.6~2.2%

1.1差压式流量计
差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。
差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。通常以检测件形式对差压式流量计分类,如孔板流量计、文丘里流量计、均速管流量计等。
二次装置为各种机械、电子、机电一体式差压计,差压变送器及流量显示仪表。它已发展为三化(系列化、通用化及标准化)程度很高的、种类规格庞杂的一大类仪表,它既可测量流量参数,也可测量其它参数(如压力、物位、密度等)。
差压式流量计的检测件按其作用原理可分为:节流装置、水力阻力式、离心式、动压头式、动压头增益式及射流式几大类。
检测件又可按其标准化程度分为二大类:标准的和非标准的。
所谓标准检测件是只要按照标准文件设计、制造、安装和使用,无须经实流标定即可确定其流量值和估算测量误差。
非标准检测件是成熟程度较差的,尚未列入国际标准中的检测件。
差压式流量计是一类应用最广泛的流量计,在各类流量仪表中其使用量占居首位。近年来,由于各种新型流量计的问世,它的使用量百分数逐渐下降,但目前仍是最重要的一类流量计。
优点:
(1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;
(2)应用范围广泛,至今尚无任何一类流量计可与之相比拟;
(3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。
缺点:
(1)测量精度普遍偏低;
(2)范围度窄,一般仅3:1~4:1;
(3)现场安装条件要求高;
(4)压损大(指孔板、喷嘴等)。
应用概况:
差压式流量计应用范围特别广泛,在封闭管道的流量测量中各种对象都有应用,如流体方面:单相、混相、洁净、脏污、粘性流等;工作状态方面:常压、高压、真空、常温、高温、低温等;管径方面:从几mm到几m;流动条件方面:亚音速、音速、脉动流等。它在各工业部门的用量约占流量计全部用量的1/4~1/3。
1.2 浮子流量计
浮子流量计,又称转子流量计,是变面积式流量计的一种,在一根由下向上扩大的垂直锥管中,圆形横截面的浮子的重力是由液体动力承受的,从而使浮子可以在锥管内自由地上升和下降。
浮子流量计是仅次于差压式流量计应用范围最宽广的一类流量计,特别在小、微流量方面有举足轻重的作用。
80年代中期,日本、西欧、美国的销售金额占流量仪表的15%~20%。我国产量1990年估计在12~14万台,其中95%以上为玻璃锥管浮子流量计。
特点:
(1)玻璃锥管浮子流量计结构简单,使用方便,缺点是耐压力低,有玻璃管易碎的较大风险;
(2)适用于小管径和低流速;
(3)压力损失较低。
1.3容积式流量计
原理
结构 容积式流量计按其测量元件分类,可分为椭圆齿轮流量计、刮板流量计、双转子流量计、旋转活塞流量计、往复活塞流量计、圆盘流量计、液封转筒式流量计、湿式气量计及膜式气量计等。

特点 (1)计量精度高;
(2)安装管道条件对计量精度没有影响;
(3)可用于高粘度液体的测量;
(4)范围度宽;
(5)直读式仪表无需外部能源可直接获得累计,总量,清晰明了,操作简便。
缺点:
(1)结果复杂,体积庞大;
(2)被测介质种类、口径、介质工作状态局限性较大;
(3)不适用于高、低温场合;
(4)大部分仪表只适用于洁净单相流体;
(5)产生噪声及振动。

应用 容积式流量计与差压式流量计、浮子流量计并列为三类使用量最大的流量计,常应用于昂贵介质(油品、天然气等)的总量测量。
工业发达国家近年PD流量计(不包括家用煤气表和家用水表)的销售金额占流量仪表的13%~23%;我国约占20%,1990年产量(不包括家用煤气表)估计为34万台,其中椭圆齿轮式和腰轮式分别约占70%和20%。

优点:
应用概况:
1.4 涡轮流量计
涡轮流量计,是速度式流量计中的主要种类,它采用多叶片的转子(涡轮)感受流体平均流速,从而且推导出流量或总量的仪表。
一般它由传感器和显示仪两部分组成,也可做成整体式。
涡轮流量计和容积式流量计、科里奥利质量流量计称为流量计中三类重复性、精度最佳的产品,作为十大类型流量计之一,其产品已发展为多品种、多系列批量生产的规模。
优点:
(1)高精度,在所有流量计中,属于最精确的流量计;
(2)重复性好;
(3)元零点漂移,抗干扰能力好;
(4)范围度宽;
(5)结构紧凑。
缺点:
(1)不能长期保持校准特性;
(2)流体物性对流量特性有较大影响。
应用概况:
涡轮流量计在以下一些测量对象获得广泛应用:石油、有机液体、无机液、液化气、天然气和低温流体统在欧洲和美国,涡轮流量计在用量上是仅次于孔板流量计的天然计量仪表,仅荷兰在天然气管线上就采用了2600多台各种尺寸,压力从0.8~6.5MPa的气体涡轮流量计,它们已成为优良的天然气计量仪表。
1.5电磁流量计
电磁流量计是根据法拉弟电磁感应定律制成的一种测量导电性液体的仪表。
电磁流量计有一系列优良特性,可以解决其它流量计不易应用的问题,如脏污流、腐蚀流的测量。
70、80年代电磁流量在技术上有重大突破,使它成为应用广泛的一类流量计,在流量仪表中其使用量百分数不断上升。
优点:
(1)测量通道是段光滑直管,不会阻塞,适用于测量含固体颗粒的液固二相流体,如纸浆、泥浆、污水等;
(2)不产生流量检测所造成的压力损失,节能效果好;
(3)所测得体积流量实际上不受流体密度、粘度、温度、压力和电导率变化的明显影响;
(4)流量范围大,口径范围宽;
(5)可应用腐蚀性流体。
缺点:
(1)不能测量电导率很低的液体,如石油制品;
(2)不能测量气体、蒸汽和含有较大气泡的液体;
(3)不能用于较高温度。
应用概况:
电磁流量计应用领域广泛,大口径仪表较多应用于给排水工程;中小口径常用于高要求或难测场合,如钢铁工业高炉风口冷却水控制,造纸工业测量纸浆液和黑液,化学工业的强腐蚀液,有色冶金工业的矿浆;小口径、微小口径常用于医药工业、食品工业、生物化学等有卫生要求的场所。
1.6 涡街流量计
涡街流量计是在流体中安放一根非流线型游涡发生体,流体在发生体两侧交替地分离释放出两串规则地交错排列的游涡的仪表。
涡街流量计按频率检出方式可分为:应力式、应变式、电容式、热敏式、振动体式、光电式及超声式等。
涡街流量计是属于最年轻的一类流量计,但其发展迅速,目前已成为通用的一类流量计。
优点:
(1)结构简单牢固;
(2)适用流体种类多;
(3)精度较高;
(4)范围度宽;
(5)压损小。
缺点:
(1)不适用于低雷诺数测量;
(2)需较长直管段;
(3)仪表系数较低(与涡轮流量计相比);
(4)仪表在脉动流、多相流中尚缺乏应用经验。
1.7 超声流量计
超声流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。
根据对信号检测的原理超声流量计可分为传播速度差法(直接时差法、时差法、相位差法和频差法)、波束偏移法、多普勒法、互相关法、空间滤法及噪声法等。
超声流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,近年来它是发展迅速的一类流量计之一。
优点:
(1)可做非接触式测量;
(2)为无流动阻挠测量,无压力损失;
(3)可测量非导电性液体,对无阻挠测量的电磁流量计是一种补充。
缺点:
(1)传播时间法只能用于清洁液体和气体;而多普勒法只能用于测量含有一定量悬浮颗粒和气泡的液体;
(2)多普勒法测量精度不高。
应用概况:
(1)传播时间法应用于清洁、单相液体和气体。典型应用有工厂排放液、:怪液、液化天然气等;
(2)气体应用方面在高压天然气领域已有使用良好的经验;
(3)多普勒法适用于异相含量不太高的双相流体,例如:未处理污水、工厂排放液、脏流程液;通常不适用于非常清洁的液体。
1.8 科里奥利质量流量计
科里奥利质量流量计(以下简称CMF)是利用流体在振动管中流动时,产生与质量流量成正比的科里奥利力原理制成的一种直接式质量流量仪表。
我国CMF的应用起步较晚,近年已有几家制造厂(如太行仪表厂)自行开发供应市场;还有几家制造厂组建合资企业或引用国外技术生产系列仪表。
1.9明渠流量计
与前述几种不同,它是在非满管状敞开渠道测量自由表面自然流的流量仪表。
非满管态流动的水路称作明渠,测量明渠中水流流量的称作明渠流量计(open channel flowmeter)。
明渠流量计除圆形外,还有U字形、梯形、矩形等多种形状。
明渠流量计应用场所有城市供水引水渠;火电厂引水和排水渠、污水治理流入和排放渠;工矿企业水排放以及水利工程和农业灌溉用渠道。有人估计1995台,约占流量仪表整体的1.6%,但是国内应用尚无估计数据。
2 新工作原理流量仪表的研究和开发
2.1 静电流量计(electrostatic flowmeter)
日本东京技术学院研制适用于石油输送管线低导电液体流量测量的静电流量计。
静电流量计的金属测量管绝缘地与管系连接,测量电容器上静电荷便可知道测量管内的电荷。他们分别作了内径4~8mm铜、不锈钢等金属和塑料测量管仪表的实流试验,试验表明流量与电荷之间接近于线性。
2.2 复合效应流量仪表(combined effects meter)
该仪表的工作原理是基于流体的动量和压力作用于仪表腔体产生的变形,测量复合效应的变形求取流量。本仪表由美国GMI工程和管理学院开发,已申请两项专利。
2.3 转速表式流量传感器(tachmetric flowrate sensor)
它是由俄罗斯科学工程中心工业仪表公司开发,是基于悬浮效应理论研制的。该仪表已在若干现场成功的应用(例如在核电站安装2000余台测量热水流量,连续使用8年),且还在改进以扩大应用领域。
3 几种流量仪表应用和发展动向
3.1 科里奥利质量流量计(CMF)
国外CMF已发展30余系列,各系列开发在技术上着眼点在于:流量检测测量管结构上设计创新;提高仪表零点稳定性和精确度等性能;增加测量管挠度,提高灵敏度;改善测量管应力分布,降低疲劳损坏,加强抗振动干扰能力等。
3.2 电磁流量计(EMF)
EMF从50年代初进入工业应用以来,使用领域日益扩展,80年代后期起在各国流量仪表销售金额中已占16%~20%。
我国近年发展迅速,1994年销售估计为6500~7500台。国内已生产最大口径为2~6m的ENF,并有实流校验口径3m的设备能力。
3.3 涡街流量计(USF)
USF在60年代后期进入工业应用,80年代后期起在各国流量仪表销售金额中已占4%~6%。1992年世界范围估计销售量为3.54.8万台,同期国内产品估计在8000~9000台。
4 结论
由上述可知,流量计发展到今天虽然已日趋成熟,但其种类仍然极其繁多,至今尚无一种对于任何场合都适用的流量计。
每种流量计都有其适用范围,也都有局限性。这就要求我们:
(1)在选择仪表时,一定要熟悉仪表和被测对象两方面的情况,并要兼顾考虑其它因素,这样测量才会准确;
(2)努力研制新型仪表,使其在现有的基础上更加完善。

流量相关的物性参数
在流量测量和计算中,要使用到一些流体的物理性质(流体物性),它们对流量测量的准确度及流量计的选用都有很大影响。我们对这些物性参数只作基本概念及一些简单计算式的介绍,详细数据资料需到有关手册去查询。
1.流体的密度
流体的密度由下式定义

ρ—流体密度,kg/m3;
m—流体的质量,kg;
V—流体的体积,m3。
(1) 液体的密度
压力不变时,液体密度计算式为:

ρ—温度t时液体的密度,kg/m3;
ρ20—20℃时液体的密度,kg/m3;
μ—液体的体积膨胀系数,1/℃;
t—液体的温度,℃。
温度不变时,液体密度计算式为:

ρ1—压力P1时液体的密度,kg/m3;
ρ0—压力P0时液体的密度,;kg/m3;
β—液体的体积压缩系数1/Mpa;
P0、P1——液体的压力,Mpa。
通常压力的变化对液体密度的影响很小,在5Mpa以下可以忽略不计,但是对于碳氢化合物,即使在较低压力下,亦应进行压力修正。
(2) 气体的密度
工作状态下干气体的密度计算式为:

ρ—工作状态下干气体的密度,kg/m3;
ρn—标准状态下(293.15k,101.325kPa)干气体的密度,kg/m3;
p—工作状态下气体的绝对压力,kPa;
pn—标准状态下绝对压力,101.325kPa;
T—工作状态下气体的绝对温度,K;
Tn—标准状态下绝对温度,293.15K;
Zn—标准状态下气体的压缩系数;
Z—工作状态下气体的压缩系数。
2.流体的粘度
流体本身阻滞其质点相对滑动的性质称为流体的粘性。流体粘性的大小用粘度来度量。同一流体的粘度随流体的温度和压力而变化。通常温度上升,液体的粘度下降,而气体粘度上升。液体粘度只在很高压力下才需进行压力修正,而气体的粘度与压力、温度的关系十分密切。表征流体粘度常用有如下二种:
(1)动力粘度

η——流体动力粘度,Pa•s;
τ—单位面积上的内摩擦力,Pa;
—速度梯度,1/s;
u —流体流速,m/s;
h —两流体层间距离,m。
(3)运动粘度 流体的动力粘度与其密度的比值称为运动粘度。

v——运动粘度m2/s 。
3.热膨胀率
热膨胀率是指流体温度变化1ºC时其体积的相对变化率,即:

β—流体的热膨胀率,1/℃;
V —流体原有体积,m3;
∆V—流体因温度变化膨胀的体积,m3;
∆T—流体温度变化值,℃。
4.压缩系数
压缩系数是指当流体温度不变,所受压力变化时,其体积的变化率,即:

k—流体的压缩系数,1/Pa;
∆V—压力为p时的流体体积m3;
∆p—压力增加∆p时流体体积的变化量,m3。
5.雷诺数
雷诺数是一个表征流体惯性力与粘性力之比的无量纲量,其定义为:

V—流体的平均速度,m/s;
L—流速的特征长度,如在圆管中取管内径值,m;
ν—流体的运动粘度,m2/s。
雷诺数的大小可以判断流动的状态,一般管道雷诺数Re<2300为层流状态,Re=2000~4000为过渡状态,Re>4000为湍流(紊流)状态。

希望能用上。

‘贰’ 两相电机的测量方法

为了实现对气液两相流的粒子粒径、空间分布及其速度测量,对激光干涉气液两相流测量技术(ILIDS)进行了深入研究,该技术是一种应用于气液两相流测量的新技术,其主要优点是不干扰流场和颗粒粒径、位置测量精度高。基于该技术所开发的图像自动处理方法可以利用普通粒子成像测量技术系统拍摄气液两相流的激光散射干涉图像,并利用图像卷积定位、傅里叶变换频率分析及其图像互相关测速等图像处理手段从干涉图像中自动提取粒子的位置、直径和速度信息。为了验证该方法的测量精度,对喷嘴生成的气水两相流进行了测量实验,得到了喷嘴出口处不同区域的粒径、速度矢量的空间分布,并将测得的速度矢量与用粒子成像测量技术方法测得的结果进行对比,证明两种方法测量的平均速度差别仅为0.38%。

‘叁’ 多相流理论研究

随着水文地质科学的发展,地下水水流和溶质运移的理论也在不断发展。目前有关多相流理论的研究受到了水文地质学界的极大关注,许多学者认为这一领域的研究是水文地质学在21世纪的热点之一。

目前,对于地下环境中的水、溶质在单相的流体状态下的作用和运移问题的研究比较成熟,但实际上,水和溶质在地下的运移是一个非常复杂的体系,包括气—液—固的多相体系,有时还要考虑能量的变化和影响等问题。如不论应用何种模型进行地下水资源评价,含水层补给量的计算都非常重要,这就首先要考虑水在包气带的运移和作用,而水在包气带的运移就是一个水-气的多相流问题。在研究地下水中的污染质运移问题时,还要考虑污染物与介质的反应,即考虑固相问题。因此,多相流运移理论的研究对于地下水资源评价、地下水污染的模拟预报都具有重要的意义。

一、多相流理论研究的现状

目前国际上水文地质界对地下的多相流系统研究比较重视,特别是在溶质迁移方面,如对NAPL(Nonaqueous Phase Liquid,非水相液体)污染质的研究已成为水文地质学者研究的热点和前沿(H.J.Vermeulen,1996)。NAPL属于有机污染,与水非混溶,可来自石油、石油化工、农药、洗涤剂等等,范围非常广泛。NAPL在地下环境中的运移是一个非常复杂的问题,实际上它是一个气-水-NAPL-固多相体系。目前,国际上NAPL在包气带和含水层中运移的模拟模型较多,但大部分的模型所考虑的问题单一,仅就某一方面建立模型进行模拟。如Jacob Bear(1996)对潜水面上LNAPL(L表示light,轻非水相液体)透镜体运移的研究,利用垂向上水、LNAPL和气三相平衡分布的假设,建立了NAPL漂浮在潜水面上的物质平衡方程,并进行了模拟;Paul C.Reeves和Michael A.Celia(1996)建立了“空隙规模”的网络模型,对毛细压力、饱和度和相界面积间的关系进行了计算;Chiu-On Ng和Chiang C.Mei(1996)建立了模型模拟了包气带中VOC(挥发性有机物)的运移问题;Rainer Helmig(1996)建立了非均质孔隙介质中DNAPL(D表示dense,重非水相液体)运移的模拟模型,等等。

美国能源部太平洋西北实验室最近成功开发了“多相流地下运移”大型模拟模型软件,可用来解决复杂的、非线性、多相流、非饱和的水流、物质和能量等运移问题,它几乎涉及了绝大部分的污染质运移问题(M.D.White&M.Oostrom,1995)。“多相流地下运移”模型具有九个亚模型,分别为:水模型、水-气模型、水-气-能量模型、水-油模型、水-气-油模型、水-气-油-能量模型、水-盐模型、水-气-盐模型和水-气-能量-盐模型。每个亚模型都可独立使用,模型间也可共用一些模块。根据不同的具体问题,模型可以模拟一维、二维和三维流情形。

(一)水亚模型

主要考虑水和岩石介质的作用,可模拟饱和、非饱和情况下的地下水流问题和污染质运移问题。模型中物理参数可以是常数也可以随水相压力改变而变化,模拟层的饱和度(S)、渗透率(k)是由不同的S-k-p(p为压力)关系得到的。这种关系可以是滞后的、非滞后的,而且可以考虑流体的“包裹”现象。模型的计算结果包括:水相压力、饱和度、水相达西速度、溶质浓度和溶质通量。

(二)水-气亚模型

考虑水相、气相和岩石介质,模拟饱和、非饱和地下水流问题和溶质运移问题,并有气相参与。模型假设溶解的气相物质在气-液相间的转换符合亨利定律,被模拟的污染物质可以在液相和气相中运移。模拟层的S-k-p关系可以是滞后的、非滞后的,而且可以考虑流体的“包裹”现象。模型计算结果包括:水相和气相压力、饱和度、水相和气相达西速度、溶质浓度和溶质通量。

(三)水-气-能量亚模型

模型同时求解水、气和能量守恒三个方程,与水-气亚模型的区别是增加了温度变量,在模型中考虑了热量的传输和转换。由于温度的变化,水相饱和度的变化范围增大。模型计算结果包括:水相和气相压力、温度、饱和度、水相和气相达西速度、热通量、溶质浓度和溶质通量。该模型还可以模拟冰冻过程,包括孔隙中水的冰冻过程,模拟中还考虑溶质浓度对冰冻的影响。

(四)水-油亚模型

考虑水、NAPL和岩石介质,模拟水、NAPL和其他溶质的饱和、非饱和运移问题。模拟层的S-k-p关系可以是滞后的、非滞后的,而且可以考虑流体的“包裹”现象。污染质可以在水和NAPL中运移。模型计算结果包括:水相和NAPL压力、饱和度、水相和NAPL达西速度、溶质浓度和溶质通量。

(五)水-气-油亚模型

模型同时求解水、气和VOC质量守恒3个方程,可模拟水相、气相、NAPL和岩石系统的流动和溶质运移问题。模型考虑了 VOC和溶解的气体在不同相之间的转换,并假设这种相之间的转换达到平衡。被模拟的污染物质可以在液相、气相和NAPL中运移。模拟层的S-k-p关系可以是滞后的、非滞后的,而且可以考虑流体的“包裹”现象。模型计算结果包括:水相、气相和NAPL压力、饱和度、水相、气相和NAPL达西速度、溶质浓度和溶质通量。

(六)水-气-油-能量亚模型

模型同时求解水、气、VOC和能量守恒方程,在水-气-油模型的基础上增加了温度变量。模型可模拟水-气-岩石系统中不同流体饱和程度下水和溶质的运移以及热能的转换。模型计算结果包括:水相、气相和NAPL压力、温度、饱和度、水相、气相和NAPL达西速度、热通量、溶质浓度和溶质通量。

(七)水-盐亚模型

模型同时求解水、盐质量守恒两个方程,可模拟饱和、非饱和情况下水流和溶质运移问题。这一模型的特点是:被模拟水流的物理特性随水中盐浓度的变化而变化,这与一般的溶质运移模型的假设不同。模拟层的S-k-p关系可以是滞后的、非滞后的,而且可以考虑流体的“包裹”现象。被模拟的污染物质(不是盐分)可以在液相中运移。模型计算结果包括:水相压力、饱和度、水相达西速度、盐浓度、盐通量、溶质浓度和溶质通量。

(八)水-气-盐亚模型

模型同时求解水和气质量守恒两个方程,在水-盐亚模型的基础上增加了气相的参与。盐分在水相中运移,并考虑其与介质的作用。盐分质量守恒方程与流动方程同时求解。模型假设溶解的气相物质在气-液相间的转换符合亨利定律。被模拟的污染物质(不是盐分)可以在液相和气相中运移,并与介质具有不同的作用。模型计算结果包括:水相、气相压力、饱和度、水相、气相达西速度、盐浓度、盐通量、溶质浓度和溶质通量。

(九)水-气-能量-盐亚模型

模型同时求解水、气和能量守恒3个方程,与水-气-盐模型的区别是增加了温度变量。在模型中考虑了热量的传输和转换。模型计算结果包括:水相、气相压力、温度、饱和度、水相、气相达西速度、热通量、盐浓度、盐通量、溶质浓度和溶质通量。该模型还可以模拟冰冻过程,包括孔隙中水的冰冻过程,模拟中还考虑溶质浓度对冰冻的影响。

这9个亚模型组成了“多相流地下运移”模型,它几乎涉及了饱和、非饱和、多相流等地下溶质运移和作用的全部过程,这一模型对边界条件的处理也具有很大的灵活性和实用性。对于水、气和VOC质量守恒方程,采用8种边界条件,分别为:Dirichlet、Neumann、零通量、初始条件、饱和、单位梯度、水力梯度和自由梯度;对于能量和溶质守恒方程,采用Dirichlet、零通量、初始条件、流出和流入5种边界条件。总之,这一模型具有很强的模拟功能和实用性。

二、存在的问题和未来发展趋势

首先,在目前多相流的研究中,多使用达西定律来描述气体的运动。虽然达西定律是地下水在含水层中运移的重要定律,但能否直接应用于描述地下气体的流动,以及如何确定相关参数仍是问题。此外,有关气相运移的模型在实际操作中仍有很大的不确定性,如初始、边界条件的确定,热力学反应参数的确定等。

此外,在非饱和带中,采用不同的S-k-p关系来描述其特性时,有的模型甚至有五六种关系可供选择,包括了滞后作用、包裹现象等等。但如何根据实际问题真实地反应包气带中气、NAPL和水之间的相互作用并给予描述,目前仍然是一个困难。

在多相流模拟模型研究中,实验室机理模拟尤为重要。如以前一直认为DNAPL一般只出现在含水层的底部,但经过室内模拟实验,发现DNAPL可以在包气带或含水层中渗透性能相对弱的层位或呈透镜体存在。此外,包气带中S-k-p的关系对于污染质运移的模拟至关重要,它的确定也需要大量的实验室工作。

以上多相流研究中存在的问题也正是未来研究的方向和发展趋势。许多学者实际上已经开始了上述领域的研究。

‘肆’ 目前多相流计量的基本思想和方法有哪些

联恒星科技智能油井多相流量计是一款非分离、无辐射、高实时性的计量装置,能够提供油、气、水、液多相的瞬时产量,累计产量和含水率、含气率、气液(油)比等关键指标数据。其技术水平和应用效果填补了国内该领域的空白,并且达到国际领先水平。该产品主要用于上游油气生产过程中井口油-气-水多相流原油产出物的各相流量在线计量,可以取代传统的分离式计量罐以及通过多通阀进行倒井的复杂计量流程,能够有效助力智慧油田油气生产物联网建设,并且适用陆地、海洋的单井、汇井等环境。

该产品采用多种多相流实时计量的核心技术,采用模块化设计,包含电学层析成像模块、实时在线微波组分测量模块、双差压文丘里流量测量模块以及多传感器高速数据采集模块,并且搭配油气生产大数据管理及分析系统,不但能够直观的掌握油气水产出规律,为生产决策提供实时和准确的量化数据,还能够促进油气田降本增效、工况诊断、精简地面工程、优化生产管理,为每一口井建立全生命周期的“个人”健康档案,实现向智能油气田的升级转型。

‘伍’ 多相流两项不同入口不同出口如何设置

可参考立交桥的设计

‘陆’ 如何多相流中体积分数梯度

多相流的测量主要是测量相持率和各相的流速。针对不同类型的多相流,测量的方式都不同。气固两相流、液固两相流,对固体颗粒可以用示踪方法,对分离了颗粒的流体相可以采用通用的流量计测量。对于气液两相流体,要区分层流和紊流情况,关注相持率和两相滑脱问题。可以用射线法、微波、声波、涡轮等等,方式多种多样。目前市面上常见的多相流流量计对应用范围都有严格的定义。

‘柒’ Fluent做流体分析的时候,离散相和多相流有什么区别啊 我就想知道什么是离散相,什么是多相流

转的:

两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。

两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。

引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。

离散相模型

 FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相;

 离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等;

 应用范围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等;

 颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑;

 湍流中颗粒处理的两种模型:Stochastic Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道”

多相流模型

FLUENT中提供的模型:

 VOF模型(Volume of Fluid Model)

 混合模型(Mixture Model)

 欧拉模型(Eulerian Model)

VOF模型(Volume of Fluid Model)

 VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0<α1<1,表示该控制容积中有两相交界面;

 VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。

混合模型(Mixture Model)

 用混合特性参数描述的两相流场的场方程组称为混合模型;

 考虑了界面传递特性以及两相间的扩散作用和脉动作用;使用了滑移速度的概念,允许相以不同的速度运动;

 用于模拟各相有不同速度的多相流;也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流;

 缺点:界面特性包括不全,扩散和脉动特性难于处理。

欧拉模型(Eulerian Model)

 欧拉模型指的是欧拉—欧拉模型;

 把颗粒和气体看成两种流体,空间各点都有这两种流体各自不同的速度、温度和密度,这些流体其存在在同一空间并相互渗透,但各有不同的体积分数,相互间有滑移;

 颗粒群与气体有相互作用,并且颗粒与颗粒之间相互作用,颗粒群紊流输运取决于与气相间的相互作用而不是颗粒间的相互作用;

 各颗粒相在空间中有连续的速度、温度及体积分数分布。

几种多相流模型的选择

 VOF模型适合于分层流动或自由表面流;

 Mixture和Eulerian模型适合于流动中有混合或分离,或者离散相的体积份额超过10%-12%的情况。

Mixture模型和Eulerian模型区别

 如果离散相在计算域分布较广,采用 Mixture模型;如果离散相只集中在一部分,使用Eulerian模型;

 当考虑计算域内的interphase drag laws 时,Eulerian模型通常比Mixture模型能给出更精确的结果;

 从计算时间和计算精度上考虑

‘捌’ 自然现象中有哪些多相流现象

气液两相流,如:泄水建筑中的掺气水流等。气固两相流,如气流输送(喷吹)粉料,含尘埃的大气流动等。液固两相流,如天然河道中的含沙水流等。

‘玖’ Fluent做流体分析的时候,离散相和多相流有什么区别啊 我就想知道什么是离散相,什么是...

转的: 两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。 两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。 引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。 离散相模型 ? FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相; ? 离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等; ? 应用范围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等; ? 颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑; ? 湍流中颗粒处理的两种模型:Stochastic Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道” 多相流模型 FLUENT中提供的模型: ? VOF模型(Volume of Fluid Model) ? 混合模型(Mixture Model) ? 欧拉模型(Eulerian Model) VOF模型(Volume of Fluid Model) ? VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0<α1<1,表示该控制容积中有两相交界面; ? VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。 混合模型(Mixture Model) ? 用混合特性参数描述的两相流场的场方程组称为混合模型; ? 考虑了界面传递特性以及两相间的扩散作用和脉动作用;使用了滑移速度的概念,允许相以不同的速度运动; ? 用于模拟各相有不同速度的多相流;也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流; ? 缺点:界面特性包括不全,扩散和脉动特性难于处理。 欧拉模型(Eulerian Model) ? 欧拉模型指的是欧拉—欧拉模型; ? 把颗粒和气体看成两种流体,空间各点都有这两种流体各自不同的速度、温度和密度,这些流体其存在在同一空间并相互渗透,但各有不同的体积分数,相互间有滑移; ? 颗粒群与气体有相互作用,并且颗粒与颗粒之间相互作用,颗粒群紊流输运取决于与气相间的相互作用而不是颗粒间的相互作用; ? 各颗粒相在空间中有连续的速度、温度及体积分数分布。 几种多相流模型的选择 ? VOF模型适合于分层流动或自由表面流; ? Mixture和Eulerian模型适合于流动中有混合或分离,或者离散相的体积份额超过10%-12%的情况。 Mixture模型和Eulerian模型区别 ? 如果离散相在计算域分布较广,采用 Mixture模型;如果离散相只集中在一部分,使用Eulerian模型; ? 从计算时间和计算精度上考虑

‘拾’ 如何在fluent中设置多相流

使用一般多相流模型的步骤(Steps for Using the General Multiphase Models)
设置和求解一般多相流问题的步骤的要点如下,各个子部分详细的讲述在随后的章节中。记住这里给出的仅是与一般多相流计算相关的步骤。有关你使用的其它模型和相关的多相流模型的输入的详细信息,将在这些模型中合适的部分给出。
1) 选中你想要使用的多相流模型(VOF, mixture, or Eulerian)并指定相数。 Define Models Multiphase... 2) 从材料库中复制描述每相的材料。
Define Materials...
如果你使用的材料在库中没有,应创建一种新材料。 !!如果你的模型中含有微粒(granular)相,你必须在fluid materials category中为它创建新材料(not the solid materials category.)
3) 定义相,指定相间的相互作用(interaction)(例如,使用欧拉模型时的drag functions) Define Phases...
4) (仅对欧拉模型)如果流动是紊流,定义多相紊流模型。
Define Models Viscous...
5) 如果体积力存在,turn on gravity and specify the gravitational acceleration. Define Operating Conditions...
6) 指定边界条件,包括第二相体积份额在流动边界和壁面上的接触角。 Define Boundary Conditions... 7) 设置模拟具体的解参数
Solve Controls Solution...
8) 初始化解和为第二相设定初始体积份额。
Solve Initialize Patch... 9) 计算求解和检查结果

阅读全文

与多相流测量方法相关的资料

热点内容
电视机180度挂架安装方法 浏览:383
快速成型的好方法 浏览:391
社会过程中的研究方法 浏览:109
万用表测量硅好坏的方法 浏览:560
零件快速连接方法 浏览:498
大班额因材施教研究方法 浏览:261
新冠自测方法图片 浏览:927
电脑院徽的制作方法 浏览:307
12种茶气的鉴别方法 浏览:633
市级地方法规报哪里批准 浏览:878
万寿菊怎么种植方法 浏览:576
实验室可采用检测校准的方法为 浏览:280
癫痫病的药物治疗方法 浏览:931
冰淇淋增稠剂使用方法 浏览:50
简单美白祛痘的方法 浏览:572
核桃树嫁接方法视频 浏览:802
男性问题的治疗方法 浏览:5
快速脱单方法和技巧 浏览:242
三星的录音权限在哪里设置方法 浏览:695
鼻炎怎么治好彻底除根方法视频 浏览:703