⑴ 初中幾何證明有哪些方法
對於證明題,有三種思考方式:
(1)正向思維。對於一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。這種方法是推薦學生一定要掌握的。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯,數學這門學科知識點很少,關鍵是怎樣運用,對於初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現在開始,總結做題方法。同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。例如:可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。這是非常好用的方法,同學們一定要試一試。
(3)正逆結合。對於從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。
⑵ 初中數學幾何證明題技巧
幾何證明題入門難,證明題難做,是許多初中生在學習中的共識,這裡面有很多因素,有主觀的、也有客觀的,學習不得法,沒有適當的解題思路則是其中的一個重要原因。掌握證明題的一般思路、探討證題過程中的數學思維、總結證題的基本規律是求解幾何證明題的關鍵。在這里結合自己的教學經驗,談談自己的一些方法與大家一起分享。
一要審題。很多學生在把一個題目讀完後,還沒有弄清楚題目講的是什麼意思,題目讓你求證的是什麼都不知道,這非常不可取。我們應該逐個條件的讀,給的條件有什麼用,在腦海中打個問號,再對應圖形來對號入座,結論從什麼地方入手去尋找,也在圖中找到位置。
二要記。這里的記有兩層意思。第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來。如給出對邊相等,就用邊相等的符號來表示。第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復述出來。
三要引申。難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那麼這里的引申就需要平時的積累,平時在課堂上學的基本知識點掌握牢固,平時訓練的一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結論(就像電腦一下,你一點擊開始立刻彈出對應的菜單),然後在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便於以後難題的學習。
四要分析綜合法。分析綜合法也就是要逆向推理,從題目要你證明的結論出發往回推理。看看結論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對頂角相等2.平行線里同位角相等、內錯角相等3.餘角、補角定理4.角平分線定義5.等腰三角形6.全等三角形的對應角等等方法。然後結合題意選出其中的一種方法,然後再考慮用這種方法證明還缺少哪些條件,把題目轉換成證明其他的結論,通常缺少的條件會在第三步引申出的條件和題目中出現,這時再把這些條件綜合在一起,很條理的寫出證明過程。
五要歸納總結。很多同學把一個題做出來,長長的鬆了一口氣,接下來去做其他的,這個也是不可取的,應該花上幾分鍾的時間,回過頭來找找所用的定理、公理、定義,重新審視這個題,總結這個題的解題思路,往後出現同樣類型的題該怎樣入手。
以上是常見證明題的解題思路,當然有一些的題設計的很巧妙,往往需要我們在填加輔助線,
分析已知、求證與圖形,探索證明的思路。
對於證明題,有三種思考方式:
(1)正向思維。對於一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。這種方法是推薦學生一定要掌握的。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯,數學這門學科知識點很少,關鍵是怎樣運用,對於初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現在開始,總結做題方法。同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。例如:可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。這是非常好用的方法,同學們一定要試一試。
(3)正逆結合。對於從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。
要掌握初中數學幾何證明題技巧,熟練運用和記憶如下原理是關鍵。
下面歸類一下,多做練習,熟能生巧,遇到幾何證明題能想到採用哪一類型原理來解決問題。
一、證明兩線段相等
1.兩全等三角形中對應邊相等。
2.同一三角形中等角對等邊。
3.等腰三角形頂角的平分線或底邊的高平分底邊。
4.平行四邊形的對邊或對角線被交點分成的兩段相等。
5.直角三角形斜邊的中點到三頂點距離相等。
6.線段垂直平分線上任意一點到線段兩段距離相等。
7.角平分線上任一點到角的兩邊距離相等。
8.過三角形一邊的中點且平行於第三邊的直線分第二邊所成的線段相等。
9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
10.圓外一點引圓的兩條切線的切線長相等或圓內垂直於直徑的弦被直徑分成的兩段相等。
11.兩前項(或兩後項)相等的比例式中的兩後項(或兩前項)相等。
12.兩圓的內(外)公切線的長相等。
13.等於同一線段的兩條線段相等。
二、證明兩個角相等
1.兩全等三角形的對應角相等。
2.同一三角形中等邊對等角。
3.等腰三角形中,底邊上的中線(或高)平分頂角。
4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。
5.同角(或等角)的餘角(或補角)相等。
6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等於它所夾的弧對的圓周角。
7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。
8.相似三角形的對應角相等。
9.圓的內接四邊形的外角等於內對角。
10.等於同一角的兩個角相等。
三、證明兩條直線互相垂直
1.等腰三角形的頂角平分線或底邊的中線垂直於底邊。
2.三角形中一邊的中線若等於這邊一半,則這一邊所對的角是直角。
3.在一個三角形中,若有兩個角互余,則第三個角是直角。
4.鄰補角的平分線互相垂直。
5.一條直線垂直於平行線中的一條,則必垂直於另一條。
6.兩條直線相交成直角則兩直線垂直。
7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。
8.利用勾股定理的逆定理。
9.利用菱形的對角線互相垂直。
10.在圓中平分弦(或弧)的直徑垂直於弦。
11.利用半圓上的圓周角是直角。
四、證明兩直線平行
1.垂直於同一直線的各直線平行。
2.同位角相等,內錯角相等或同旁內角互補的兩直線平行。
3.平行四邊形的對邊平行。
4.三角形的中位線平行於第三邊。
5.梯形的中位線平行於兩底。
6.平行於同一直線的兩直線平行。
7.一條直線截三角形的兩邊(或延長線)所得的線段對應成比例,則這條直線平行於第三邊。
五、證明線段的和差倍分
1.作兩條線段的和,證明與第三條線段相等。
2.在第三條線段上截取一段等於第一條線段,證明餘下部分等於第二條線段。
3.延長短線段為其二倍,再證明它與較長的線段相等。
4.取長線段的中點,再證其一半等於短線段。
5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質等)。
六、證明 角的和差倍分
1.與證明線段的和、差、倍、分思路相同。
2.利用角平分線的定義。
3.三角形的一個外角等於和它不相鄰的兩個內角的和。
⑶ 初中數學證明全等有哪幾種方法呢
(1)有兩邊及其夾角對應相等的兩個三角形全等「邊角邊」簡稱「SAS」
;
(2)有兩角及其夾邊對應相等的兩個三角形全等「角邊角」簡稱「ASA」;
(3)
三組對應邊分別相等的兩個三角形全等「邊邊邊」簡稱「SSS」;
(4)有兩角及其一角的對邊對應相等的兩個三角形全等「角角邊」簡稱「AAS」;
(5)直角三角形全等條件有:斜邊及一直角邊對應相等的兩個直角三角形全等「斜邊、直角邊」簡稱「HL」.
⑷ 關於初中數學!證明的方法!
很簡單,上課認真聽,課後認真完成作業,沒事的時候還可以多研究研究書上的例題,我知道書上的例題一般很簡單,你可以去做一做課外的題目,最好是由書上例題延伸出來的,其實證明題做多了也是會有技巧的,所以要多練題。
⑸ 初中幾何證明方法歸納 如中線倍長法等 越多越好 最好有解析(比如什麼是中線倍長法等)
倍長中線法 :延長中線,使所延長部分與中線相等,然後往往需要連接相應的頂點,則對應角對應邊都對應相等。常用於構造全等三角形。中線倍長法多用於構造全等三角形和證明邊之間的關系以方便求其中一邊的范圍值。
【例①】
如圖,在△ABC中,AB=2AC,AD平分BC,AD⊥AC,求∠BAC的度數。
證明:在AC上截取AE=AB,連接DE
∵AD平分∠BAC
∴∠1=∠2
又∵AD=AD,AB=AE
∴△ABD≌△AED(SAS)
∴BD=DE,∠B=∠3
又∵∠B=2∠C
例3-圖
∴∠3=2∠C
又∵∠3=∠4+∠C
∴2∠C=∠4+∠C
即∠C=∠4
∴DE=CE
∴BD=CE
∵AE+EC=AC
∴AB+BD=AC
以上採用的是截長補短法里的截長法
如有疑問,歡迎追問
⑹ 初中數學證明
數學的解題方法是隨著對數學對象的研究的深入而發展起來的。六年級的同學們很快就要小學畢業,中學的大門已經向我們敞開。為了能進一步學好數學,有必要掌握初中數學的特點尤其是解題方法。 下面介紹的解題方法,都是初中數學中最常用的,有些方法也是中學教學大綱要求掌握的。同樣這些方法也能給你們現在的學習有些幫助。請同學們把它作為資料好好保存,當然,以後全部學會弄懂,保存大腦當中再好不過了。
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。
⑺ 初中全等三角形有哪幾種證明方法
驗證兩個全等三角形一般用邊邊邊(SSS)、邊角邊(SAS)、角邊角(ASA)、角角邊(AAS)、和直角三角形的斜邊,直角邊(HL)5種方法來判定。
判定方法:
1、SSS(Side-Side-Side)(邊邊邊):三邊對應相等的三角形是全等三角形。
2、SAS(Side-Angle-Side)(邊角邊):兩邊及其夾角對應相等的三角形是全等三角形。
3、ASA(Angle-Side-Angle)(角邊角):兩角及其夾邊對應相等的三角形全等。
4、AAS(Angle-Angle-Side)(角角邊):兩角及其一角的對邊對應相等的三角形全等。
5、RHS(Right angle-Hypotenuse-Side)(直角、斜邊、邊)(又稱HL定理(斜邊、直角邊)):在一對直角三角形中,斜邊及另一條直角邊相等。(它的證明是用SSS原理)
(7)初中數學常用的證明的方法有幾種擴展閱讀:
一、全等三角形性質
1、全等三角形的對應角相等。
2、全等三角形的對應邊相等。
3、能夠完全重合的頂點叫對應頂點。
4、全等三角形的對應邊上的高對應相等。
5、全等三角形的對應角的角平分線相等。
6、全等三角形的對應邊上的中線相等。
7、全等三角形面積和周長相等。
8、全等三角形的對應角的三角函數值相等。
二、推論
1、SSS(Side-Side-Side)(邊、邊、邊):
各三角形的三條邊的長度都對應相等的話,該兩個三角形就是全等三角形。
2、SAS(Side-Angle-Side)(邊、角、邊):
各三角形的其中兩條邊的長度都對應相等,且這兩條邊的夾角(即這兩條邊組成的角)都對應相等的話,該兩個三角形就是全等三角形。
3、ASA(Angle-Side-Angle)(角、邊、角):
各三角形的其中兩個角都對應相等,且這兩個角的夾邊(即公共邊,)都對應相等的話,該兩個三角形就是全等三角形。
4、AAS(Angle-Angle-Side)(角、角、邊):
各三角形的其中兩個角都對應相等,且其中一個角的對邊(三角形內除組成這個角的兩邊以外的那條邊)或鄰邊(即組成這個角的一條邊)對應相等的話,該兩個三角形就是全等三角形。
5、HL定理(hypotenuse -leg) (斜邊、直角邊):
直角三角形中一條斜邊和一條直角邊都對應相等,該兩個三角形就是全等三角形。
⑻ 初中數學常用的證線段相等的方法有哪些
證明兩線段相等
1.兩全等三角形中對應邊相等。
2.同一三角形中等角對等邊。
3.等腰三角形頂角的平分線或底邊的高平分底邊。
4.平行四邊形的對邊或對角線被交點分成的兩段相等。
5.直角三角形斜邊的中點到三頂點距離相等。
6.線段垂直平分線上任意一點到線段兩段距離相等。
7.角平分線上任一點到角的兩邊距離相等。
8.過三角形一邊的中點且平行於第三邊的直線分第二邊所成的線段相等。
9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
10.兩前項(或兩後項)相等的比例式中的兩後項(或兩前項)相等。
11.等於同一線段的兩條線段相等。
⑼ 尋求所有常用的數學證明方法
證明命題的方法:
大多數命題都取下面兩種形式中的一種:
「若P,則Q」
P=>Q
「P,當且僅當Q」
P<=>Q
要證後一種。我們先證「P蘊涵Q」再證「Q蘊涵P」即可。
而證明「P蘊涵Q」通常有三種方法:
1。最直接的方法是,假設P使真的在設法去推導Q是真的。這里不必擔心P是假的的情況。因為「P蘊涵Q」自然是真的。(這涉及蘊涵的概念,相信你是清楚的)
2。第二種方法是寫出它的逆否「(非Q)蘊涵(非P)」然後證明它。
這時我們假定(非Q)是真的,然後設法推證非P是真的。
3。歸謬法。(反證法就是歸謬法!!!)
想真正弄清反證法,我們還得做些准備。
先看看什麼是矛盾吧,它的定義是精確的。
觀察P與(非P)這個命題。用真值表。
P
非P
P與(非P)
T
F
F
F
T
F
我們發現,無論P是T還是F,命題P與(非P)永遠是F.這時我們說P與(非P)是一個矛盾。
再看一個真值表,討論P與(非Q).
P
Q
非Q
P與(非Q)
非[P與(非Q)]
P蘊涵Q
T
T
F
F
T
T
T
F
T
T
F
F
F
T
F
F
T
T
F
F
T
F
T
T
我們發現非[P與(非Q)]和P蘊涵Q同T同F,他們是邏輯等價的。
現在我們可以討論反證法了。
運用反證法。假設P和非Q都是真的。然後尋找一個矛盾。由此斷定我們的假設是假的。即「非[P與(非Q)]」是真的。而這與
「P蘊涵Q
」等價。從而證明了P蘊涵Q真。
具體的證明需要運用具體數學知識,以上只是最一般的方法以及邏輯原理。
⑽ 初中數學所有證明方法.技巧.條件等等 最好具體
七年級的數學證明還好點,直接把題里的已知條件分析下,基本就能得出正確證明方法了。到了八年級後,就需要進行仔細分析了。一般還要做輔助線了。如果不進行綜合考慮,根本沒法做出來。
八年級常用的:三線合一,平行四邊形的性質與判別,勾股定理,
九年級:與圓有關的,比如垂徑定理。勾股定理。