① 邏輯函數的常用表示方法
邏輯函數的函數值一般是 0 和 1 ,在計算機里 0 代表「假」,1 代表「真」;
你問的是邏輯函數的常用表示方法,也沒有說具體的情況,我就舉個表示邏輯函數的例子吧
函數 f(x) 的取值是這樣的,當 x>0 ,函數取值為1 ;當 x<0 ,函數取值為 0 ;
那麼就是要寫出對任意不為零的 x 的 f(x) 的通項公式;如下
f(x) = (1/2) * [ |x|/x + 1 ] ;
當 x>0 時,f(x)=(1/2)*(x/x +1)=1 ;
當 x<0 時,f(x)=(1/2)*(-x/x +1)=0 ;
希望對你有幫助~
② 函數通常有三種表示方法
表示函數關系的方法不止三種:
1)解析式法;
2)列表法;
3)圖象法;
4)方程法,如
e^(xy)
=
sin(x+y)
確定有隱函數;
5)描述法,如
[x]
定義為「不大於
x
的最大整數」,用的是用一段話來描述一個函數的方法;
6)級數法;
……
③ 函數的表示方法有哪三種
1、列表法:一目瞭然,使用起來方便,但列出的對應值是有限的,不易看出自變數與函數之間的對應規律。列表法也有它的局限性:在於求解范圍小,適用題型狹窄,大多跟尋找規律或顯示規律有關。比如,正、反比例的內容,整理數據,乘法口訣,數位順序等內容的教學大都採用「列表法」。
2、解析式法:簡單明了,能夠准確地反映整個變化過程中自變數與函數之間的相依關系,但有些實際問提中的函數關系,不能用解析式表示。
3、圖象法:形象直觀,但只能近似地表達兩個變數之間的函數關系。把一個函數的自變數x與對應的因變數y的值分別作為點的橫坐標和縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。這種表示函數關系的方法叫做圖象法。
拓展資料:
函數的定義:給定一個數集A,假設其中的元素為x。現對A中的元素x施加對應法則f,記作f(x),得到另一數集B。假設B中的元素為y。則y與x之間的等量關系可以用y=f(x)表示。我們把這個關系式就叫函數關系式,簡稱函數。
函數概念含有三個要素:定義域A、值域C和對應法則f。其中核心是對應法則f,它是函數關系的本質特徵。
函數(function),最早由中國清朝數學家李善蘭翻譯,出於其著作《代數學》。之所以這么翻譯,他給出的原因是「凡此變數中函彼變數者,則此為彼之函數」,也即函數指一個量隨著另一個量的變化而變化,或者說一個量中包含另一個量。
函數的定義通常分為傳統定義和近代定義,函數的兩個定義本質是相同的,只是敘述概念的出發點不同,傳統定義是從運動變化的觀點出發,而近代定義是從集合、映射的觀點出發。
常用邏輯函數的幾種表示方法
常用的邏輯函數表示方法有邏輯真值表、邏輯函數式(簡稱邏輯式或函數式)、邏輯圖、波形圖、卡諾圖和硬體描述語言等。
◆ 邏輯真值表
將輸入變數所有的取值下對應的輸出值找出來,列成表格,即可得到真值表。
◆ 邏輯函數式
將輸出與輸入之間的邏輯關系寫成與、或、非等運算的組合式,即邏輯代數式,就得到了所需的邏輯函數式。如:Y=A(B+C)。
◆ 邏輯圖
將邏輯函數式中各變數之間的與、或、非等邏輯關系用圖形符號表示出來,就可以畫出表示函數關系的邏輯圖(logic diagram)。
◆ 波形圖
如果將邏輯函數輸入變數每一種可能出現的取值與對應的輸出值按時間順序依次排列起來,就得到了表示該邏輯函數的波形圖。這種波 形圖(waveform)也稱為時序圖(timing diagram)。
◆ 波形圖法
一種表示輸入輸出變數動態變化的圖形,反映了函數值隨時間變化的規律。
◆ 硬體設計語言法法
是採用計算機高級語言來描述邏輯函數並進行邏輯設計的一種方法,它應用於可編程邏輯器件中。目前採用最廣泛的硬體設計語言有ABLE-HDL、 VHDL等。
⑤ 函數有哪三種表示方法
表示函數有三種方法:解析法,列表法,圖象法.結合其意義,優點與不足,分別說明如下. (1)利用解析式(如學過的代數式)表示函數的方法叫做解析法.用解析式表示函數的優點是簡明扼要,規范准確.已學利用函數的解析式,求自變數x=a時對應的函數值,還可利用函數的解析式,列表,描點,畫函數的圖象,進而研究函數的性質,又可利用函數解析式的結構特點,分析和發現自變數與函數間的依存關系,猜想或推導函數的性質(如對稱性,增減性等),探求函數的應用等.不足之處是有些變數與函數關系很難或不能用解析式表示,求x與y的對應值需要逐個計算,有時比較繁雜. (2)通過列表給出y與x的對應數值,表示y是x的函數的方法叫做列表法.列表法的優點是能鮮明地顯現出自變數與函數值之間的數量關系,於是一些數學用表應運而生. (3)利用圖象表示y是x的函數的方法叫做圖象法.用圖象表示函數的優點是形象直觀,清晰呈現函數的增減變化,點的對稱,最大(或小)值等性質.圖象法的不足之處是所畫出的圖象是近似的,局部的,觀察或由圖象確定的函數值往往不夠准確. 由於函數關系的三種表示方法各具特色,優點突出,但大都存在著缺點,不盡人意,所以在應用中本著物盡其用,揚長避短,優勢互補的精神,通常表示函數關系是把這三種方法結合起來運用,先確定函數的解析式,即用解析法表示函數;再根據函數解析式,計算自變數與函數的各組對應值,列表;最後是畫出函數的圖象.
⑥ 函數關系常用的三種表示方法是______,______,______.
函數關系常用的三種表示方法是列表法,解析法,圖象法,
故答案為列表法,解析法,圖象法.
⑦ 函數常見的三種表示方法
解析式法 列表法 圖像法