導航:首頁 > 使用方法 > 誘變育種常用的三種方法

誘變育種常用的三種方法

發布時間:2022-04-21 13:39:13

1. 什麼是誘變育種常用的誘變劑有哪些

誘變育種是指用物理、化學因素誘導植物的遺傳特性發生變異,再從變異群體中選擇符合人們某種要求的單株,進而培育成新的品種或種質的育種方法。
誘變劑有兩大類:物理誘變劑和化學誘變劑。
常用的物理誘變劑有紫外線、x射線、γ射線(如Co60等)、等離子、快中子、α射線、β射線、超聲波等。常用的化學誘變劑有鹼基類似物、烷化劑、羥胺、吖定類化合物等。

2. 高中生物中常見的育種方法有哪些

1 誘變育種
原理:基因突變
優點:能提高變異頻率,加速育種進程,可大幅度改良某些性狀,創造人類需要的變異類型,從中選擇培育出優良的生物品種;變異范圍廣。
缺點:有利變異少,須大量處理材料;誘變的方向和性質不能控制。改良數量性狀效果較差,具有盲目性。
2 雜交育種
原理:基因重組
優點:使同種生物的不同優良性狀集中於同一個個體,具有預見性。
缺點:育種年限長,需連續自交才能選育出需要的優良性狀。
3 多倍體育種
原理:染色體變異
優點:可培育出自然界中沒有的新品種,且培育出的植物器官大,產量高,營養豐富。
缺點:結實率低,發育延遲。
4 單倍體育種
原理:染色體變異
優點:自交後代不發生性狀分離,能明顯縮短育種年限,加速育種進程。
缺點:技術相當復雜,需與雜交育種結合,其中的花葯離體培養過程需要組織培養技術手段的支持,多限於植物。
5 基因工程育種(轉基因育種)
原理:基因重組
優點:目的性強,可以按照人們的意願定向改造生物;育種周期短。
缺點:可能會引起生態危機,技術難度大。
6植物激素育種
原理:適宜濃度的生長素可以促進果實的發育
優點:由於生長素所起的作用是促進果實的發育,並不能導致植物的基因型的改變,所以該種變異類型是不遺傳的。
缺點:該種方法只適用於植物。
7細胞工程育種 (分三種)
1 方式 植物組織培養 原理 植物細胞的全能性 優點 快速繁殖、培育無病毒植株等
缺點 技術要求高、培養條件嚴格
2方式 植物體細胞雜交 原理 植物細胞膜的流動性 優點 克服遠緣雜交不親和的障礙,培育出作物新品種 缺點 技術復雜,難度大;需植物組織培養等技術
3 方式 細胞核移植 原理 動物細胞核的全能性 優點 繁殖優良品種,用於保存瀕危物種,有選擇地繁殖某性別的動物 缺點 導致生物品系減少,個體生存能力下降。
這么麻煩的問題也不多給點分

3. 人工誘變的常用方法

人工誘變的常用方法
1. 物理法:射線(紫外線、X光線、Y射線,中子線),激光微束,離子束,微波,超聲波,熱力等。

2. 化學誘變法:浸漬法、塗抹法、滴液法、注射法、施入法和熏蒸法。
化學誘變劑:鹼基類似物、烷化劑,移碼誘變劑,硫酸二乙酯(DFS)、5-溴尿嘧 啶(5-BU)、氮芥(Nm)、N'廣甲基N'亞硝基胍(NTG)。

3. 生物法:空間條件處理誘變,病原微生物誘變,轉基因誘變。

人工誘變
在人為的條件下,利用物理、化學等因素,誘發生物產生突變,從中選擇、培育動植物和微生物的新品種。誘變育種是指用物理、化學因素誘導植物的遺傳特性發生變異,再從變異群體中選擇符合人們某種要求的單株,進而培育成新的品種或種質的育種方法。它是繼選擇育種和雜交育種之後發展起來的一項現代育種技術。

我們知道,常規助雜交育種基本上是染色體的重新組合,這種技術一般並不引起染色體發生變異,更難以觸及到基因。而輻射的作用則不同,它們有的是與細胞中的原子、分子發生沖撞、造成電離或激發;有的則是以能量形式產生光電吸收或光電效應;還有的能引起細胞內的一系列理化過程。這些都會對細胞產生不同程度的傷害。對染色體的數目、結構等都會產生影響,使有的染色體斷裂了;有的丟失了一段,有的斷裂後在「自我修復」的過程中頭尾接倒了或是「張冠李戴」分別造成染色體的倒位和易位。當然射線也可作用在染色體核苷酸分子的鹼塞上,從而使基因(遺傳密碼)發生突變。至於化學誘變,有的葯劑是用其烷基置換其它分子中的氫原子,也有的本身是核苷酸鹼基的類似物,它可以「魚目混珠」,造成DNA復制中的錯誤。無疑這些都會使植物的基因發生突變。理、化因索的誘導作用;使得植物細胞的突變率比平時高出千百倍,有些變異是其它手段難以得到的。當然,所產生的變異絕大多數不能遺傳,所以,輻射後的早代一般不急於選擇。

物理誘變
應用較多的是輻射誘變,即用α射線、β射線、γ射線、Χ射線、中子和其他粒子、紫外輻射以及微波輻射等物理因素誘發變異。當通過輻射將能量傳遞到生物體內時,生物體內各種分子便產生電離和激發,接著產生許多化學性質十分活躍的自由原子或自由基團。它們繼續相互反應,並與其周圍物質特別是大分子核酸和蛋白質反應,引起分子結構的改變。由此又影響到細胞內的一些生化過程,如 DNA合成的中止、各種酶活性的改變等,使各部分結構進一步深刻變化,其中尤其重要的是染色體損傷。由於染色體斷裂和重接而產生的染色體結構和數目的變異即染色體突變,而DNA分子結構中鹼基的變化則造成基因突變。那些帶有染色體突變或基因突變的細胞,經過細胞世代將變異了的遺傳物質傳至性細胞或無性繁殖器官,即可產生生物體的遺傳變異。

化學誘變
化學誘變除能引起基因突變外,還具有和輻射相類似的生物學效應,如引起染色體斷裂等,常用於處理遲發突變,並對某特定的基因或核酸有選擇性作用。
化學誘變劑:主要指某些烷化劑,鹼基類似物,抗生素等化學葯物。化學誘變劑在植物上的應用一般認為始於1943年,當時F·約克斯用馬來糖(脲烷)誘發了月見草、百合和風鈴草的染色體畸變。這些早期工作為確立誘變育種的地位奠定了基礎。

化學誘變劑
(一)、烷化劑
烷化劑是栽培作物誘發突變的最重要的一類誘變劑。葯劑帶有一個或多個活潑的烷基。通過烷基置換,取代其它分子的氫原子稱為"烷化作用"所以這類物質稱烷化劑。
烷化劑分為以下幾類:
1. 烷基磺酸鹽和烷基硫酸鹽
代表葯劑:甲基磺酸乙酯(EMS)、硫酸二乙酯(DES)
2. 亞硝基烷基化合物
代表葯劑:亞硝基乙基脲(NEH)、N-亞硝基-N-乙基脲烷(NEU)
3. 次乙胺和環氧乙烷類
代表葯劑:乙烯亞胺(EI)
4. 芥子氣類
氮芥類、硫芥類
烷化劑的作用機制--烷化作用重點是核酸,導致DNA斷裂、缺失或修補。

(二)、核酸鹼基類似物
這類化合物具有與DNA鹼基類似的結構。
代表葯劑:
5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BudR) 為胸腺嘧啶(T)的類似物
2-氨基嘌呤(AP) 為腺嘌呤(A)的類似物
馬來醯肼(MH) 為尿嘧啶(U)的異構體
作用機制:作為DNA的成份而滲入到DNA分子中去,使DNA復制時發生配對錯誤,從而引起有機體變異。
(三)、其它誘變劑
亞硝酸 能使嘌呤或嘧啶脫氨,改變核酸結構和性質,造成DNA復制紊亂。HNO2還能造成DNA雙鏈間的交聯而引起遺傳效應。
疊氮化鈉(NaN3) 是一種呼吸抑制劑,能引起基因突變,可獲得較高的突變頻率,而且無殘毒。

提醒:有些化學誘變劑是有劇毒的。

4. 生物技術育種的主要方法有哪些,技術手段有哪些

折疊一、誘變育種
誘變育種
誘變育種
誘變育種是指利用人工誘變的方法獲得生物新品種的育種方法。(這句話在中學領域來說應該是完全正確的,已經查閱相關資料。)其原理是基因突變。人工誘變的方法包括:物理方法(X射線、射線、紫外線、中子、激光、電離輻射等)、化學方法(鹼基類似物、硫酸二乙酯、亞硝酸、秋水仙素等)。所處理的生物材料必須是正在進行細胞分裂的細胞、組織、器官或生物。處理的時期是細胞分裂的間期。(這句話主要是針對中學生,為了讓學生能夠更好的理解;主要是考慮到學生從「細胞分裂知識」理解。)經處理的生物材料經選擇、培育才能獲得需要的生物新品種。該方法的優點是可以提高突變頻率,創造出人類需要的生物類型。缺點是必須處理大量的實驗材料。

優點:變異頻率高,育種技術簡單,速度快,可大幅度改良某些性狀;變異范圍廣。

局限性:誘發突變的方向難以掌握,誘變體難以集中多個理想性狀。要想克服這些局限性,可以擴大誘變後代的群體,增加選擇的機會。

折疊二、雜交育種
雜交育種
雜交育種
雜交育種是指利用具有不同基因組成的同種(或不同種)生物個體進行雜交,獲得所需要的表現型類型的育種方法。其原理是基因重組。過程為:用具有相對性狀的純合體作親本雜交獲得子一代,子一代自交(動物則用具有相同基因型的雌雄個體雜交)獲得子二代,從子二代中選擇符合要求的表現型個體。如果需要的表現型是隱性性狀育種就此結束,如果需要的表現型是顯性性狀則用子二代中選出的個體進行連續自交(動物同前),直至獲得能穩定遺傳的類型為止

優點:可定向培養需要的品種,操作簡單易懂。

不足:周期長,不能產生新性狀,工作量大。

折疊三、單倍體育種
單倍體育種是利用花葯離體培養技術獲得單倍體植株,再誘導其染色體加倍,從而獲得所需要的純系植株的育種方法。其原理是染色體變異。優點是可大大縮短育種時間;缺點是技術復雜,需要雜交育種配合。

優點:可縮短育種年限,並可得到純合子植株,保持後代性狀的穩定性,使得到人們所希望的品種.

不足:技術復雜,成本大

四、多倍體育種

原理:染色體變異(染色體加倍)

方法:秋水仙素處理萌發的種子或幼苗。

折疊五、細胞工程育種
細胞工程育種是指用細胞融合的方法獲得雜種細胞,利用細胞的全能性,用組織培養的方法培育雜種植株的方法。

物質基礎是:所有生物的DNA均由四種脫氧核苷酸組成。其結構基礎是:所有生物的DNA均為雙螺旋結構。一種生物的DNA上的基因之所以能在其他生物體內得以進行相同的表達,是因為它們共用一套遺傳密碼。在該育種方法中需兩種工具酶(限制性內切酶、DNA連接酶)和運載體(質粒),質粒上必須有相應的識別基因,便於基因檢測。如人的胰島素基因移接到大腸桿菌的DNA上後,可在大腸桿菌的細胞內指導合成人的胰島素;抗蟲棉植株的培育;將固氮菌的固氮酶基因移接到植物DNA分子上去,培育出固氮植物

5. 高中生物中常見的育種方法有哪些

高中生物中常見的育種方法:
1、誘變育種:(mutation breeding; selection by mutation)在人為的條件下,利用物理、化學等因素,誘發生物體產生突變,從中選擇,培育成動植物和微生物的新品種。誘變育種是指用物理、化學因素誘導動植物的遺傳特性發生變異,再從變異群體中選擇符合人們某種要求的單株/個體,進而培育成新的品種或種質的育種方法。它是繼選擇育種和雜交育種之後發展起來的一項現代育種技術。
2、雜種優勢育種:作物和家畜生產能力和強健性等一些對人類有利的性狀,通過利用提高雜種優勢,來對栽培作物和飼養動物的雜種進行育種稱為雜種優勢育種。由於雜種優勢並不是牢固的,所以一般必須通過雜交來制備雜種。因此在雜種優勢育種中,具備優良組合能力的親本品種的培育,選定它們的組合,以及有效的雜種生產方法等就成為主要的課題。在雜交中,除人工雜交外,可以有效地利用雄性不育、自交不親和性及雌性系等方法。根據親本的組合方法,可以分成品種間雜交、自交系間雜交(單雜交、三系雜交、雙雜交、多系雜交)品種和自交系之間的雜交(頂交)幾種。美國的玉米,日本的蠶等都是利用雜種優勢育種取得成果的代表性例子。
3、基因工程育種:隨著 DNA的內部結構和遺傳機制的秘密一點一點呈現在人們眼前,特別是當人們了解到遺傳密碼是由 RNA轉錄表達的以後,生物學家不再僅僅滿足於探索、提示生物遺傳的秘密,而是開始躍躍欲試,設想在分子的水平上去干預生物的遺傳特性。如果將一種生物的 DNA中的某個遺傳密碼片斷連接到另外一種生物的DNA鏈上去,將DNA重新組織一下,就可以按照人類的願望,設計出新的遺傳物質並創造出新的生物類型,這與過去培育生物繁殖後代的傳統做法完全不同。這種做法就像技術科學的工程設計,按照人類的需要把這種生物的這個「基因」與那種生物的那個「基因」重新「施工」,「組裝」成新的基因組合,創造出新的生物。這種完全按照人的意願,由重新組裝基因到新生物產生的生物科學技術,就稱為「基因工程」,或者說是「遺傳工程」。
4、單倍體育種:單倍體育種(haploid breeding)是植物育種手段之一。即利用植物組織培養技術(如花葯離體培養等)誘導產生單倍體植株,再通過某種手段使染色體組加倍(如用秋水仙素處理),從而使植物恢復正常染色體數。單倍體是具有體細胞染色體數為本物種配子染色體數的生物個體。
5、多倍體育種:多倍體(polyploid)是指由受精卵發育而來並且體細胞中含有三個或三個以上染色體組的個體。多倍體育種(polyploid breeding)利用人工誘變或自然變異等,通過細胞染色體組加倍獲得多倍體育種材料,用以選育符合人們需要的優良品種。
6、細胞融合:細胞融合(cell fusion),細胞遺傳學名詞,是在自發或人工誘導下,兩個不同基型的細胞或原生質體融合形成一個雜種細胞。基本過程包括細胞融合形成異核體(heterokaryon)、異核體通過細胞有絲分裂進行核融合、最終形成單核的雜種細胞。細胞融合可作為一種實驗方法被廣泛適用於單克隆抗體的制備,膜蛋白的研究。
7、核移植:核移植是將供體細胞核移入去核的卵母細胞中,使後者不經精子穿透等有性過程即可被激活、分裂並發育,讓核供體的基因得到完全復制。培養一段時間後,在把發育中的卵母細胞移植到人或動物體內的方法。核移植的細胞來源主要分為:供體細胞來源和受體細胞的來源兩種。核移植主要用於細胞移植和異種器官移植,細胞移植可以治療由於細胞功能缺陷所引起的各種疾病。

6. 誘變育種的基本步驟有哪些關鍵是什麼何故

誘變育種步驟主要包括誘變和篩選,其中誘變過程包括:出發菌株的選擇、單孢子或單細胞懸浮液的制備、誘變劑及誘變劑量的選擇、誘變處理等。

誘變育種(mutation breeding)在人為的條件下,利用物理、化學等因素,誘發生物體產生突變,從中選擇,培育成動植物和微生物的新品種。

(6)誘變育種常用的三種方法擴展閱讀:

誘變育種方法:

1、物理誘變

應用較多的是輻射誘變,即用α射線、β射線、γ射線、Χ射線、中子和其他粒子、紫外輻射以及微波輻射等物理因素誘發變異。當通過輻射將能量傳遞到生物體內時,生物體內各種分子便產生電離和激發,接著產生許多化學性質十分活躍的自由原子或自由基團[1]。

2、化學誘變

化學誘變除能引起基因突變外,還具有和輻射相類似的生物學效應,如引起染色體斷裂等,常用於處理遲發突變,並對某特定的基因或核酸有選擇性作用。化學誘變主要用於處理種子,其次為處理植株。

7. 高中生物中,有幾種育種方法比如誘導育種

1、雜交育種(最簡捷的育種方法,育種年限長,利用基因重組的原理)
2、誘變育種 (人工誘導突變,利用人工方法提高突變頻率,從突變體中選擇符合生產要求的品種,原理基因突變)
3、單倍體育種 (通常採用花葯離體培養獲得單倍體,再用秋水仙素誘導染色體加倍成正常二倍體,明顯縮短育種年限,技術要求高,原理,染色體變異)
4、多倍體育種(誘導染色體加倍,多倍體莖稈粗壯、營養物質豐富等方面的優勢,原理染色體變異)
5、基因工程育種(通過基因工程技術,定向改變生物性狀,原理基因重組)

8. 誘變育種有幾種方法,

誘變育種
開放分類: 生物、自然科學、生物學、變異、遺傳

在人為的條件下,利用物理,化學等因素,誘發生物產生突變,從中選擇,培育成動植物和微生物的新品種.
誘變育種是指用物理、化學因素誘導植物的遺傳特性發生變異,再從變異群體中選擇符合人們某種要求的單株,進而培育成新的品種或種質的育種方法。它是繼選擇育種和雜交育種之後發展起來的一項現代育種技術。

誘發突變的物理因素主要指某些射線,如α射線、β射線、γ射線、X射線和中子流等;化學誘變劑主要指某些亞硝酸鹽、烷化劑,鹼基類似物,抗生素等化學葯物。 物理誘變方法應用於植物始干1928年。 L.J·斯德勒首先證實了X射線對玉米和大麥有誘變效應。1930年和1924年H.尼爾遜·愛爾和D.托倫納分別用輻射誘變技術獲得了有實用價值的大麥突變體和煙草突變體。化學誘變劑在植物上的應用一般認為始於1943年,當時F·約克斯用馬來糖(脲烷)誘發了月見草、百合和風鈴草的染色體畸變。這些早期工作為確立誘變育種的地位奠定了基礎。

通過近幾十年的研究人們對誘變原理的認識也逐步加深。 我們知道,常規助雜交育種基本上是染色體的重新組合,這種技術一般並不引起染色體發生變異,更難以觸及到基因。而輻射的作用則不同,它們有的是與細胞中的原子、分子發生沖撞、造成電離或激發;有的則是以能量形式產生光電吸收或光電效應;還有的能引起細胞內的一系列理化過程。這些都會對細胞產生不同程度的傷害。對染色體的數目、結構等都會產生影響,使有的染色體斷裂了;有的丟失了一段,有的斷裂後在「自我修復」的過程中頭尾接倒了或是「張冠李戴」分別造成染色體的倒位和易位。當然射線也可作用在染色體核苷酸分子的鹼塞上,從而使基因(遺傳密碼)發生突變。至於化學誘變,有的葯劑是用其烷基置換其它分子中的 氫原子,也有的本身是核苷酸鹼基的類似物,它可以「魚目混珠」,造成DNA復制中的錯誤。無疑這些都會使植物的基因發生突變。 理、化因索的誘導作用;使得植物細胞的突變率比平時高出千百倍,有些變異是其它手段難以得到的。當然,所產生的變異絕大多數不能遺傳,所以,輻射後的早代一般不急 於選擇。

但是,可遺傳的好性狀一經獲得便可育成品種或種質資源。 據世界原子能機構1985年統計,當時世界各國通過誘變已育成500多個品種,還有大量有價值的種質資源o 我國的 誘變育種同樣成績斐然,在過去的幾十年中,經誘變育成的 品種數一直佔到同期育成品種總數的10%左右。如水稻品種 原豐早,小麥品種山農輻63,還有玉米的魯原單4號、大豆的鐵豐18、棉花的魯棉I號等都是通過誘變育成的。 當然與其它技術一樣,誘變育種也有自身的弱點:一是誘變產生的有益突變體頻率低;二是還難以有效地控制變異 的方向和性質;另外,誘發並鑒定出數量性狀的微突變比較困難。因此,誘變育種應該與其它技術相結合,同時謀求技術上的自我完善。

9. 誘變育種的類型有哪些

一、誘變育種:

誘變育種是指利用人工誘變的方法獲得生物新品種的育種方法。(這句話在中學領域來說應該是完全正確的,已經查閱相關資料。)其原理是基因突變。人工誘變的方法包括:物理方法(X射線、射線、紫外線、中子、激光、電離輻射等)、化學方法(鹼基類似物、硫酸二乙脂、亞硝酸、秋水仙素等)。所處理的生物材料必須是正在進行細胞分裂的細胞、組織、器官或生物。處理的時期是細胞分裂的間期。(這句話主要是針對中學生,為了讓學生能夠更好的理解;主要是考慮到學生從「細胞分裂知識」理解。)經處理的生物材料經選擇、培育才能獲得需要的生物新品種。該方法的優點是可以提高突變頻率,創造出人類需要的生物類型。缺點是必須處理大量的實驗材料。
二、雜交育種:

雜交育種是指利用具有不同基因組成的同種(或不同種)生物個體進行雜交,獲得所需要的表現型類型的育種方法。其原理是基因重組。過程為:用具有相對性狀的純合體作親本雜交獲得子一代,子一代自交(動物則用具有相同基因型的雌雄個體雜交)獲得子二代,從子二代中選擇符合要求的表現型個體。如果需要的表現型是隱性性狀育種就此結束,如果需要的表現型是顯性性狀則用子二代中選出的個體進行連續自交(動物同前),直至獲得能穩定遺傳的類型為止
三、單倍體育種:

單倍體育種是利用花葯離體培養技術獲得單倍體植株,再誘導其染色體加倍,從而獲得所需要的純系植株的育種方法。其原理是染色體變異。優點是可大大縮短育種時間。
四、多倍體育種:

原理:染色體變異(染色體加倍)

方法:秋水仙素處理萌發的種子或幼苗。

五、細胞工程育種:

細胞工程育種是指用細胞融合的方法獲得雜種細胞,利用細胞的全能性,用組織培養的方法培育雜種植株的方法。

物質基礎是:所有生物的DNA均由四種脫氧核苷酸組成。其結構基礎是:所有生物的DNA均為雙螺旋結構。一種生物的DNA上的基因之所以能在其他生物體內得以進行相同的表達,是因為它們共用一套遺傳密碼。在該育種方法中需兩種工具酶(限制性內切酶、DNA連接酶)和運載體(質粒),質粒上必須有相應的識別基因,便於基因檢測。如人的胰島素基因移接到大腸桿菌的DNA上後,可在大腸桿菌的細胞內指導合成人的胰島素;抗蟲棉植株的培育;將固氮菌的固氮酶基因移接到植物DNA分子上去,培育出固氮植物
七、有關育種要注意的問題

1、育種的根本目的是培育具有優良性狀(抗逆性好、品質優良、產量高)的新品種,以便更好地為人類服務。

2、選擇育種方法要視具體育種目標要求、材料特點、技術水平和經濟因素,進行綜合考慮和科學決策:

①一般作物育種可選雜交育種和單倍體育種;

②為得到特殊性狀可選擇誘變育種(如航天育種)或多倍體育種;

③若要將特殊性狀組合到一起,但又不能克服遠緣雜交不親和性,可考慮運用基因工程和細胞工程育種,如培育各種用於生物制葯的工程菌。

3、從基因組成上看,育種目標基因型可能是:

①純合體,便於制種、留種和推廣; ②雜交種,充分利用雜種優勢。

10. 何謂誘變育種

人為地利用物理、化學等因素誘導生物發生遺傳性的變異,依據育種目標選擇培育新品種的方法叫誘變育種。按照引起變異的因素不同,又可分為物理誘變和化學誘變兩種。

物理誘變是利用超聲波、高溫、激光、各種射線等物理因素誘導生物發生變異的方法,其中應用最廣的是輻射育種。

一、輻射育種

輻射育種是用放射線對植物種子、幼苗、花粉或營養體進行照射,使之發生遺傳性變異,經人工選擇培育新品種的方法。

輻射育種的射線,按其性質可分電磁波輻射和粒子輻射兩大類。前者常用的有X射線、γ射線和無線電微波等;後者,帶電的有α、β射線,不帶電的有中子。上述各種射線中,以中子射線的誘變率最高,β射線次之,γ射線和X射線更低。但由於射線來源、設備條件及安全等多種原因,目前最常用的還是γ射線。

輻射之所以能引起變異,是因為生物體受到電離輻射,其體內的分子或原子也直接或間接地發生電離和激發,生物組織中的化學鍵可發生斷裂,從而使分子結構或化學活性發生改變。有些射線如中子等還能和一些元素產生核反應,或者由於放射性元素的衰變而產生新的元素加入到有機體內改變了原有分子的組成。再者,生物細胞內的大量水分,在電離作用下,產生強烈的氧化還原反應,使新陳代謝發生變化,從而產生變異。

(一)葯用植物輻射育種的發展概況

自從1895年倫琴發現X射線,1896年貝克勒爾發現天然放射性物質以後,生物工作者開始用電離輻射對微生物、昆蟲和葯用植物進行研究。1921年Blakesles首先用射線照射曼陀羅(Datura stramonium L.)的種子,獲得了各種形態上的突變型。70年代以後Michalski用20kR劑量的γ射線照射毛花洋地黃(Digitalis lanata Ehrh.),獲得了毛花樣地黃有效成分含量高的品系。Parimoo用X射線處理羅芙木(Rauwolfia serpentina Benth.)的種子,所得突變體生物鹼含量特別高。Deril等用γ射線照射一葉萩(Securinega ramiflora Muell.-Arg.)的種子,選育出了高產的一葉萩突變品系。Getsadze用10—11kR的γ射線照射香羅勒(Ocimum gratissimum L.)的種子得到的突變體,不但具有高精油含量,而且具有抗尖鐮孢菌的能力。

我國的輻射育種開始於1957年,目前全國幾乎每個省、市、自治區都安裝了60Co-γ射線源,有的還安裝了137CS源、中子源和γ圃,為輻射育種提供了物質基礎,並取得了一定的成績。例如,用提純的紫皮阿城大蒜為材料,用60Co-γ射線照射,育成了阿輻4號大蒜新品種,其蒜頭平均鮮重是對照品種的2倍以上,不僅抗病耐貯,而且提前成熟8天。四川省中葯研究所用CO2激光照射薏苡種子,育成四激薏78—1號新品種,具有植株矮、分櫱多、千粒重大等優點。其它葯用植物如人參、元胡等的輻射育種工作已經開始。

(二)輻射的劑量單位和照射劑量

1.輻射的劑量單位

居里(Ci)

是表示放射性物質的放射強度單位,1Ci表示放射性同位素每秒鍾有3.7×1010次核衰變。

克鐳當量

是放射物放出的γ射線強度一定重量的鐳放出γ射線強度之比所得的放射強度單位。

倫琴(R)

是只用於X射線和γ射線的照射單位,它表示入射的輻射量。在1g空氣中能產生83Gy的射線能量即為1R。

拉特(rad)

是任何輻射都適用的單位。它表示被照射物吸收劑量的單位。任何1g被照射的物質吸收照射能100Gy時的劑量稱為1rad。

積分流量

即單位平方厘米的中子數(中子數/cm2)。中子的單位一般用它或用拉特來表示。

2.輻射的劑量

半致死照射劑量

即經過照射後植株成活率佔50%的照射量。

致死照射量

即經過照射後,引起植株全部死亡的照射量。

臨界照射量

即照射後植株成活率佔40%的照射量。一般採用臨界照射劑量作為輻射育種的適宜照射量。但也有用「半致死照射量」或更高照射量的。

照射劑量率

表示單位時間內的照射劑量。常用單位為R/h,R/min,R/s。

輻射育種的適宜照射劑量及劑量率隨不同植物而異,一般說來十字花科有較高的耐輻射能力,豆科耐輻射能力較低。同一物種中,多倍體比二倍體耐輻射,二倍體比單倍體耐輻射。植物的不同發育階段其耐輻射能力不同,分裂旺盛的細胞和組織對輻射比老化細胞和組織敏感。細胞核比細胞質敏感。

在一定的照射范圍內,突變數隨照射劑量的增加而增高,但是損傷效應也隨之提高,因此一定要選用適宜的照射劑量和劑量率,以便達到既有較高的突變率又有足夠的植株供選擇。例如中國醫學科學院葯用植物資源開發研究所1979—1982年在北京和吉林省集安縣國營一參場,經多次試驗摸索出用60Co-γ射線照射人參裂口種子,在50R/min劑量率下,照射劑量以1500—2000R為好。在此劑量下出苗率為對照的83.3%和37.5%,一年生幼苗的葉片幾乎都有不同程度的變異。正常情況為三小葉,照射後多變為一小葉、二小葉、長尾葉或很不規則的三小葉,有的葉面凸出,有的葉緣缺刻,有變異的植株占出苗株數的79%以上(表8—3)。試驗表明,高於10000R不出苗,低於500R葉片的變異率很低。

表8—3 人參種子用60Co-γ射線照射試驗

(三)輻射育種的基本方法

1.輻射材料的選擇輻射育種是在常規育種的基礎上發展起來的新技術,因此對材料的要求應該高些。輻射育種最適於改變一、二個不良性狀,只有選用綜合性狀優良、需要克服的缺點明確的材料,才能收到預期的效果。

2.輻射的處理方法

(1)外照射

用X射線、γ射線和中子照射植物的種子、花粉、子房及營養器官。

(2)內照射

其方法有多種。

①將82P、35S等放射性同位素配成適當比強的溶液浸泡種子或營養器官。

②將放射性同位素施放於土壤中,讓植物吸收。

③將放射性同位素溶液注射到植物的有關部位。

④供給植物帶14C的CO2,將14C同位素同化到代謝產物中去。

⑤將放射性同位素通過一定方式貼在植物的花芽或生長點上,使之產生芽變。

採用上述方法需要一定的防護設備,嚴防放射性物質的污染。處理過的材料不能食用或飼用。

3.輻射後代的選育

輻射育種的選擇方法和雜交育種大致相同,但由於輻射後代遺傳特性和雜種後代不完全一樣,因此後代的處理方法也有區別。

(1)輻射一代的處理

輻射後代一般用M表示,輻射的一、二、三代分別用M1、M2、M3表示;也可用射線名稱的第一個字母表示,如用X1、γ1、n1分別表示X、γ、中子照射的第一代。

由於M1代的性狀多呈隱性不能表現出來,因此一般不進行選擇。如果人力、物力不足,可一株留一至數粒種子,但供M2代選擇的個體一般情況下不能少於1000株。

(2)M2代的選擇

M2代是分離最大的一個世代,能遺傳的變異大多在M2代表現出來,因此M2代應大量選擇單株,淘汰不良的個體。

(3)M3代的選育

M3代仍有分離,但分離較小,因此M3代以選擇優良系統為主,在優良系統中可繼續選單株,供下一代繼續鑒定評選。

(4)M4代以後性狀基本穩定,以後的選育程序同常規育種。

(5)輻射營養器官的選育

無性繁殖的葯用植物,其遺傳基礎大多是異質結合的,輻射變異一經發生M1代就表現出來,因此M1代就要選擇,以後繼續無性繁殖不會發生分離。但是無性繁殖的器官如果發生了變異,細胞分裂較慢,生活力弱,生長發育不如正常細胞,為了給變異細胞創造生長發育的良好條件,可採用多次剪頂芽、剪側枝的辦法,促使變異莖部多長側枝,然後將其扦插或嫁接繁殖,以增加選擇的機會。

二、化學誘變育種

(一)發展概況

某些化學葯劑有誘導遺傳變異的作用,早在1910年就有過少量的研究。1911年麥克頓高爾(Mcdongl),1916年鮑爾(Baur),1936年薩哈洛夫(Sacharov)等人都發現化學物質能提高動植物的突變率,但在植物中一般認為利用化學物質誘發突變的工作應從約克斯(Oehlkers)1943年用烏來糖(Urethane脲烷)誘發月見草、百合及風鈴草染色體畸變的工作開始。

葯用植物上的化學誘變育種在70年代才發展起來。Kaul等用0.025%和0.05%的次乙亞胺處理顛茄種子所得的突變體植株高,分枝多,產量顯著提高,生物鹼含量提高47.3—72.7%。Kohgpatehko用0.05%的亞硝基乙基脲(NEU)處理歐茜草(Rubia tinctorum L.)的種子獲得了根中蒽醌衍生物的含量比對照組增加0.38%的品系。Arinshtein用亞硝基甲基脲(NMU)在歐丹參(Salvia sclarea L.)上誘發出早開花、遲開花、單位葉面積油腺多、抗病強等各類突變體。還獲得了適於機械化收獲的重衣草及高產精油的薔薇突變體。

(二)常用的葯用植物育種化學誘變劑

近年來化學誘變劑的發展很快,只要濃度適當,化學葯品誘發的突變率較高。加之化學葯品較各種射線源容易得到,且使用方便,故應用者較多。

目前在葯用植物育種中主要使用烷化劑,它們都有活躍的烷基,藉助於磷酸基、嘌呤基的烷化,與DNA或RNA起作用,引起基因的突變。例如,硫芥的產物能在DNA雙螺旋的兩條鏈之間形成「交聯」,阻止DNA雙鏈的分開,妨礙正常復制的進行而導致遺傳密碼的改良。常用的化學誘變劑有以下幾類:

1.芥子氣類,如氮芥類、硫芥類的許多化合物。

2.次乙亞胺(EI)、環氧乙烷。

3.烷基磺酸鹽類和烷基硫酸鹽類,如甲基磺酸乙烷(EMS)、乙基磺酸乙烷(EES)、硫酸二甲酯(DMS)、硫酸二乙酯(DES)、硫酸甲乙酯(MES)等。

4.亞硝基烷基化合物,如亞硝基甲基脲(NMU)、亞硝基乙基脲(NEU)等。

農作物上使用的種類尚有與核酸類似的鹼基化合物、簡單的無機化合物、各種麻醉劑、抗生素及某些中草葯中的高分子化合物如長春花鹼、石蒜鹼等。

(三)化學誘變的處理方法

植株的各部分都可用適當的方法進行處理,處理最多的是種子,其次是營養器官。植株的處理可將劈開一半的莖插入含有誘變溶液的管子內使它慢慢吸收,或者用棉團把誘變劑溶液引入植物體內,還可注射或塗抹在植物器官內外。當歸的同源四倍體就是選用儲存越冬中等大小的栽子,用刀片縱切栽子頂端中部3—5mm至頂端生長點,然後浸於0.01%富民農溶液中浸泡72小時誘導而成。

種子處理一般用浸泡法。葯劑濃度和浸泡時間對不同葯劑及不同處理對象來說是不同的,一般都要通過試驗找出最佳條件。

花粉的處理可在密閉系統內,把花粉鋪成單層用誘變劑蒸汽進行熏蒸。

使用化學誘變劑一定要小心謹慎,有些是致癌物,切忌接觸皮膚或吸入體內,並防止環境污染。

三、多倍體育種

多倍體育種是誘變育種中使細胞染色體加倍以後,再經選擇培育而成為新品種的方法。自從1937年有人首先利用秋水仙素處理曼陀羅一舉獲85%的四倍體以來,葯用植物的多倍體育種得到了蓬勃的發展。我國葯用植物資源豐富,多倍體育種具有廣闊的前景,目前已獲得牛膝和當歸的多倍體。

(一)多倍體的概念

各種生物的染色體數目是相對穩定的,任何植物的細胞染色體數與該物種的染色體基數(X)呈倍數性關系。一般植物體細胞的染色體數目為染色體基數的2倍,稱為「二倍體」;染色體數目為基數的3倍或3倍以上的稱為「多倍體」。配子細胞的染色體因減數分裂而減半,因此體細胞染色體數目是配子細胞染色體數目的2倍。通常用X表示物種的染色體基數,n表示配子細胞的染色體數。2n表示體細胞的染色體數。例如曼陀羅的染色體n=x=12,2n=2x=24。當歸的染色體n=x=11,2n=2x=22。染色體多倍化的現象廣泛存在於植物界,被子植物中有一半以上是多倍體。目前栽培的經濟作物大多數為多倍體。葯用植物的多倍體也不少,例如分布在北美的委陵菜屬中就存在這種以種的形式發生的多倍化系列,區域委陵菜(Potentilla finifima 2n=2x=14)是二倍體;賓洲委陵菜(P.pensylvanica 2n=4x=28)為四倍體;二回羽狀委陵菜(P.bripinnatifida 2n=8x=56)為八倍體。據觀察,我國葯用元胡的染色體也存在多倍化系列,全葉延胡(Corydalis repens Mandl.et Muchld.)、齒辦延胡索(C.turtschaninovii Bess.)為二倍體,2n=2x=16;延胡索(C.yanhusuo W.T.Wang)夏天無〔C.decumbens(Thunb)Pers.〕為四倍體,2n=4x=32;圓齒辦延胡索(C.remota var.rotundiloba Maxim.)為六倍體,2n=6x=48。

在多倍體中,根據染色體組的來源和性質分為同源多倍體和異源多倍體兩大類。

1.同源多倍體

染色體組的來源相同,並超過二個染色體組以上的多倍體稱為同源多倍體。正常二倍體細胞的染色體加倍以後就成為同源四倍體。同源四倍體和正常的二倍體雜交則可產生同源三倍體。三倍體植物因減數分裂時染色體混亂,不能配對,表現高度不育。

2.異源多倍體

染色體組來源不同,並超過二個染色體組以上的多倍體稱為異源多倍體。異源多倍體一般是由不同種屬間雜交所產生的雜種再通過染色體加倍而成。

多倍體和二倍體植物相比,在形態和生理上都有許多優點,一般具有較大的細胞和營養器官,抗病力較強,生物合成能力較高,因而有較高的有效成分含量。但並不是染色體增加的倍數越高越好,而是有一定的限度。一般認為三倍體和四倍體有最大的優勢。

(二)多倍體育種的應用方式

人們掌握了多倍體形成和控制其發生的規律以後,多倍體育種已成為培育良種的重要手段。目前主要有以下幾個方面的應用。

(1)通過遠緣雜交,對不孕雜種進行染色體加倍,克服遠緣雜種不育不孕性。我國小麥和黑麥雜交培育出世界著名的抗逆性強、產量和蛋白質含量都高的小黑麥新品種,就是一個典型的例子。葯用植物澳洲茄兩個變種雜交(Solanum aviculare var.albiflorum XS.aviculare var.brisbanense)也獲得人工異源多倍體。

(2)將二倍體葯用植物誘導成同源多倍體加以利用。例如鈴鹿等對曼陀羅(D.stramonium)的腋芽,用秋水仙素進行點滴處理,育成四倍體植株(2n=4x=48),其生葯葉重約為二倍體的1.7倍。光崗祐彥對含有消炎作用成分甘菊環的母菊(Matricaria thamomilla 2n=18)育成的四倍體(2n=36)花的大小和有效成分含量上均優於2倍體。由胡椒薄荷誘發出的多倍體(2n=144)品系不但精油含量高,而且抗旱、耐寒、抗病。

我國梁可均等用秋水仙鹼誘導的牛膝多倍體和二倍體相比,根肥大,木質化輕,產量高。

(3)利用三倍體的雜種優勢及無子性,三倍體植物具有明顯的雜種優勢,由於不孕而沒有種子。經濟作物甜菜和無籽西瓜是三倍體應用的典型例子。在葯用植物上,Trease等認為在罌粟的各倍性水平中,三倍體含嗎啡因的量最高。Jankulov報道毛曼陀羅的三倍體雜種平均生物鹼的得率超過二倍體的4倍,四倍體的3倍。

(三)人工誘導多倍體的方法和原則

1.常用葯品及使用方法

目前應用最普遍、效果好的多倍體誘變劑是0.05—0.2%的秋水仙素水溶液,其次是0.01—0.03%的富民隆水溶液。秋水仙易溶於水,毒性很大,少量葯液進入眼睛會導致失明,應特別小心。秋水仙素誘變的作用在於阻止細胞分裂中期紡錘絲的形成,染色體不能分配到兩個細胞中而形成多倍體。富民隆效果好,價格低,容易推廣,但不溶於水,使用時可稱取純的葯粉1g,倒入25ml丙酮中,放80℃水浴上加熱,搖動容器促使溶解,趁熱將已溶解的葯液倒入1000ml蒸餾水中,不斷攪拌即得0.1%富民隆原液,然後稀釋到需要的濃度使用。

處理方法一般採用浸漬法,也可用點滴、注射、塗抹、噴霧等方法。

2.人工誘變多倍體的原則

(1)誘變材料

同一類植物,染色體少的比染色體多的種類容易產生多倍體,而且所產生的多倍體在形態和生理上容易表現出優勢。已經是多倍體了,進一步多倍化有可能表現不良。因此,宜選擇染色體數較少的種類作誘變材料。

(2)處理時間

處理時間長短要根據不同葯用植物種類及所處狀態而定。處於休眠狀態的種子或種栽處理時間宜長,已發芽的種子或生長期的幼苗要適當縮短時間。由於植物的嫩芽或幼根對毒性和缺氧耐受力弱,可在葯液中浸泡一段時間(如12小時),在空氣中保濕一段時間(如12小時),如此共3—4天效果較好。

(3)處理溫度

以植物細胞分裂最適溫度下處理為好,如人參裂口種子以10℃左右為好,黃芪、枸杞等以20℃左右為好。在處理後的恢復時期以低溫、高濕為宜。

(四)多倍體的鑒定

多倍體的特點是植株、葉片、花器官、花粉粒等都較大,葉片較厚,表皮細胞單位面積內氣孔及葉綠體數與二倍體有區別,這些特徵都可作鑒別多倍體的依據,但最可靠的方法是觀察細胞的染色體數目。

閱讀全文

與誘變育種常用的三種方法相關的資料

熱點內容
如何簡單說出兩直線平行方法 瀏覽:951
怎樣快速熟悉電腦使用方法 瀏覽:99
紅茶泡法正確方法圖片 瀏覽:758
綠呂洗發水使用方法 瀏覽:645
貴州爐子製作方法視頻 瀏覽:304
舞蹈潛質訓練方法 瀏覽:454
性格優缺點分析方法 瀏覽:125
有什麼方法降低滑鼠聲音嗎 瀏覽:320
紅包跳包排序解決方法 瀏覽:444
情志焦慮病的中醫治療方法 瀏覽:78
鐵鍋首次使用方法 瀏覽:270
湖北松花粉食用方法 瀏覽:554
早上美聲快速開聲的方法 瀏覽:801
萬能表使用方法說明書 瀏覽:750
聚類分析相對於主成分分析方法 瀏覽:817
電子表格怎麼選擇求和方法 瀏覽:826
小米手機亮屏時間在哪裡設置方法 瀏覽:538
馬桶堵了的解決方法視頻 瀏覽:408
嘴皰疹怎麼治療方法 瀏覽:963
培智教育教學方法書籍推薦 瀏覽:335