導航:首頁 > 使用方法 > 常用統計學方法及

常用統計學方法及

發布時間:2022-01-08 06:48:08

『壹』 寫出醫學科研中的常用統計學方法有哪些

常用的醫學科研統計方法有:計量資料的統計方法可分為參數檢驗法和非參數檢驗法。參數檢驗法主要為t檢驗和方差分析(ANOVN,即F檢驗)等,兩組間均數比較時常用t檢驗和u檢驗,兩組以上均數比較時常用方差分析;非參數檢驗法主要包括秩和檢驗等。t檢驗可分為單組設計資料的t檢驗、配對設計資料的;方差分析可用於兩個以上樣本均數的比較,應用該方法時,要求各個樣本是相互獨立的隨機樣本,各樣本來自正態總體且各處理組總體方差齊性

『貳』 常用統計學方法

感知機 二分類

二分類的線性分類模型,也是判別模型。
目的是求出把訓練數據進行線性劃分的分離超平面。
感知機是神經網路和支持向量機的基礎。
學習策略:極小化損失函數。損失函數對應於誤分類點到分離超平面的總距離。
基於隨機梯度下降法對損失函數的最優化演算法,有原始形式和對偶形式。

K近鄰法 K-nearest neighbor, K-NN 多分類和回歸

是一種分類和回歸方法,有監督學習。在訓練數據集中找到和新的輸入實例最接近的K個實例,這k個實例的多數類別就是這個新實例的類別。
三要素:K的選擇,距離度量,分類決策規則。
實現方法:kd樹(二叉樹)快速搜索K個最近鄰的點。
K值選擇:反映了對近似誤差和估計誤差的權衡。交叉驗證選擇最優的K值,K小,模型復雜,K大,模型簡答。

樸素貝葉斯法 多分類 用於NLP

樸素貝葉斯法是基於貝葉斯定理和特徵條件獨立假設的分類方法。首先學習輸入輸出的聯合概率分布,然後基於此模型,對給定的輸入x,利用貝葉斯定理求出後驗概率最大的輸出y。
後驗概率最大等價於0-1損失函數的期望風險最小化。
是典型的生成學習方法,由訓練數據求出聯合概率分布,再求出條件概率分布(後驗概率)。
概率估計方法是:極大似然估計或者貝葉斯估計。
基本假設是條件獨立性

決策樹 decision tree 多分類,回歸

是一種分類和回歸演算法。包括三個步驟:特徵選擇,決策樹生成和決策樹的修剪,常用演算法:ID3,C4.5,CART

邏輯斯地回歸和最大熵模型 多分類

本質就是給線性回歸添加了對數函數
它的核心思想是,如果線性回歸的結果輸出是一個連續值,而值的范圍是無法限定的,那我們有沒有辦法把這個結果值映射為可以幫助我們判斷的結果呢。
而如果輸出結果是 (0,1) 的一個概率值,這個問題就很清楚了。我們在數學上找了一圈,還真就找著這樣一個簡單的函數了,就是很神奇的sigmoid函數(如下):
邏輯回歸用於二分類和多分類
邏輯斯地分布是S型曲線
最大熵模型:熵最大的模型是最好的模型。
X服從均勻分布時候,熵最大
最大熵模型的學習等價於約束最優化問題。
對偶函數的極大化等價於最大熵模型的極大似然估計。
模型學習的最優化演算法有:改進的迭代尺度法IIS,梯度下降法,牛頓法,或者擬牛頓法

支持向量機 二分類

線性可分支持向量機利用間隔最大化求最優分離超平面。
函數間隔

『叄』 常用統計分析方法有哪些

1、對比分析法

對比分析法指通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。常見的對比有橫向對比和縱向對比。

橫向對比指的是不同事物在固定時間上的對比,例如,不同等級的用戶在同一時間購買商品的價格對比,不同商品在同一時間的銷量、利潤率等的對比。

縱向對比指的是同一事物在時間維度上的變化,例如,環比、同比和定基比,也就是本月銷售額與上月銷售額的對比,本年度1月份銷售額與上一年度1月份銷售額的對比,本年度每月銷售額分別與上一年度平均銷售額的對比等。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。

2、分組分析法

分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。

根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。

3、預測分析法

預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。

4、漏斗分析法

漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡。

最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。

5、AB測試分析法

AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。

例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。

除此之外,要想做好數據分析,讀者還需掌握一定的數學基礎,例如,基本統計量的概念(均值、方差、眾數、中位數等),分散性和變異性的度量指標(極差、四分位數、四分位距、百分位數等),數據分布(幾何分布、二項分布等),以及概率論基礎、統計抽樣、置信區間和假設檢驗等內容,通過相關指標和概念的應用,讓數據分析結果更具專業性。

『肆』 「統計學」的基本方法有哪幾種

「統計學」的基本方法有:

(一)大量觀察法。

(二)統計分組法。

(三)綜合指標法。

(四)時間數列分析法。

(五)指數分析法。

(六)相關分析法。

第三類是為了進行理論性推理而採用的例示性的數字。配第把這種運用數字和符號進行的推理稱之為「代數的演算法」。

從配第使用數據的方法看,「政治算數」階段的統計學已經比較明顯地體現了「收集和分析數據的科學和藝術」特點,統計實證方法和理論分析方法渾然一體,這種方法即使是現代統計學也依然繼承。

配第在書中使用的數字有三類:

第一類是對社會經濟現象進行統計調查和經驗觀察得到的數字。因為受歷史條件的限制,書中通過嚴格的統計調查得到的數據少,根據經驗得出的數字多;

第二類是運用某種數學方法推算出來的數字。其推算方法可分為三種:

(1)以已知數或已知量為基礎,循著某種具體關系進行推算的方法。

(2)通過運用數字的理論性推理來進行推算的方法。

(3)以平均數為基礎進行推算的方法」。

『伍』 常用的統計學方法有哪些

常用的統計方法:1、計量資料的統計方法:分析計量資料的統計分析方法可分為參數檢驗法和非參數檢驗法;2、計數資料的統計方法:計數資料的統計方法主要針對四格表和R×C表利用檢驗進行分析;3、等級資料的統計方法:等級資料(有序變數)是對性質和類別的等級進行分組,再清點每組觀察單位個數所得到的資料。統計資料豐富且錯綜復雜,要想做到合理選用統計分析方法並非易事。對於同一 個資料,若選擇不同的統計分析方法處理,有時其結論是截然不同的。

『陸』 常用統計分析方法

數據分析師針對不同業務問題可以製作各種具體的數據模型去分析問題,運用各種分析方法去探索數據,這里介紹最常用的三種分析方法,希望可以對您的工作有一定的的幫助

文中可視化圖表均使用DataFocus數據分析工具製作。

1.相關分析

相關分析顯示變數如何與另一個變數相關。例如,它顯示了計件工資是否會帶來更高的生產率。

2.回歸分析

回歸分析是對一個變數值與另一個變數值之間差異的定量預測。回歸模擬依賴變數和解釋變數之間的關系,這些變數通常繪制在散點圖上。您還可以使用回歸線來顯示這些關系是強還是弱。

另請注意,散點圖上的異常值非常重要。例如,外圍數據點可能代表公司最關鍵供應商或暢銷產品的輸入。但是,回歸線的性質通常會讓您忽略這些異常值。

3.假設檢驗

假設檢驗是基於某些假設並從樣本到人口的數理統計中的統計分析方法。主要是為了解決問題的需要,對整體研究提出一些假設。通常,比較兩個統計數據集,或者將通過采樣獲得的數據集與來自理想化模型的合成數據集進行比較。提出了兩個數據集之間統計關系的假設,並將其用作理想化零假設的替代方案。建議兩個數據集之間沒有關系。

在掌握了數據分析的基本圖形和分析方法之後,數據分析師認為有一點需要注意:「在沒有確認如何表達你想要解決的問題之前,不要開始進行數據分析。」簡而言之,如果您無法解釋您試圖用數據分析解決的業務問題,那麼沒有數據分析可以解決問題。

『柒』 常用的統計方法

常用的數據統計方法與工具

統計方法:

1、聚類分析(Cluster Analysis)
聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,人們不必事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。聚類分析所使用方法的不同,常常會得到不同的結論。不同研究者對於同一組數據進行聚類分析,所得到的聚類數未必一致。
2、因子分析(Factor Analysis)
因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。
因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法、阿爾發抽因法、拉奧典型抽因法等等。這些方法本質上大都屬近似方法,是以相關系數矩陣為基礎的,所不同的是相關系數矩陣對角線上的值,採用不同的共同性□2估值。在社會學研究中,因子分析常採用以主成分分析為基礎的反覆法。
3、相關分析(Correlation Analysis)
相關分析(correlation analysis),相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。相關關系是一種非確定性的關系,例如,以X和Y分別記一個人的身高和體重,或分別記每公頃施肥量與每公頃小麥產量,則X與Y顯然有關系,而又沒有確切到可由其中的一個去精確地決定另一個的程度,這就是相關關系。
4、對應分析(Correspondence Analysis)
對應分析(Correspondence analysis)也稱關聯分析、R-Q型因子分析,通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。
5、回歸分析
研究一個隨機變數Y對另一個(X)或一組(X1,X2,…,Xk)變數的相依關系的統計分析方法。回歸分析(regression analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
6、方差分析(ANOVA/Analysis of Variance)
又稱「變異數分析」或「F檢驗」,是R.A.Fisher發明的,用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。這個 還需要具體問題具體分析。

統計工具:

一、 SAS統計軟體

SAS 是英文Statistical Analysis System的縮寫,翻譯成漢語是統計分析系統,最初由美國北卡羅來納州立大學兩名研究生開始研製,1976 年創立SAS公司, 2003年全球員工總數近萬人,統計軟體採用按年租用制,年租金收入近12億美元。SAS系統具有十分完備的數據訪問、數據管理、數據分析功能。 在國際上, SAS被譽為數據統計分析的標准軟體。SAS系統是一個模塊組合式結構的軟體系統,共有三十多個功能模塊。SAS是用匯編語言編寫而成的,通常使用SAS 需要編寫程序, 比較適合統計專業人員使,而對於非統計專業人員學習SAS比較困難。SAS最新版為9.0版。網址:http://www.sas.com/。

SAS是美國SAS(賽仕)軟體研究所研製的一套大型集成應用軟體系統,具有比較完備的數據存取、數據管理、數據分析和數據展現的系列功能。尤其是它的創業產品—統計分析系統部分,由於具有強大的數據分析能力,一直是業界中比較著名的應用軟體,在數據處理方法和統計分析領域,被譽為國際上的標准軟體和最具權威的優秀統計軟體包,SAS系統中提供的主要分析功能包括統計分析、經濟計量分析、時間序列分析、決策分析、財務分析和全面質量管理工具等。

SAS系統是一個組合的軟體系統,它由多個功能模塊配合而成,其基本部分是BASE SAS模塊。BASE SAS模塊是SAS系統的核心,承擔著主要的數據管理任務,並管理著用戶使用環境,進行用戶語言的處理,調用其他SAS模塊和產品。也就是說,SAS系統的運行,首先必須啟動BASE SAS模塊,它除了本身所具有數據管理、程序設計及描述統計計算功能以外,還是SAS系統的中央調度室。它除了可單獨存在外,也可與其他產品或模塊共同構成一個完整的系統。各模塊的安裝及更新都可通過其安裝程序比較方便地進行。

SAS系統具有比較靈活的功能擴展介面和強大的功能模塊,在BASE SAS的基礎上,還可以增加如下不同的模塊而增加不同的功能:SAS/STAT(統計分析模塊)、SAS/GRAPH(繪圖模塊)、SAS/QC(質量控制模塊)、SAS/ETS(經濟計量學和時間序列分析模塊)、SAS/OR(運籌學模塊)、SAS/IML(互動式矩陣程序設計語言模塊)、SAS /FSP(快速數據處理的互動式菜單系統模塊)、SAS/AF(互動式全屏幕軟體應用系統模塊)等等。

SAS提供的繪圖系統,不僅能繪各種統計圖,還能繪出地圖。SAS提供多個統計過程,每個過程均含有極豐富的任選項。用戶還可以通過對數據集的一連串加工,實現更為復雜的統計分析。此外,SAS還提供了各類概率分析函數、分位數函數、樣本統計函數和隨機數生成函數,使用戶能方便地實現特殊統計要求。

目前SAS軟體對Windows和Unix兩種平台都提供支持,最新版本分別為8.X和6.X。與以往的版本比較,6.X版的SAS系統除了在功能和性能方面得到增加和提高外,GUI界面也進一步加強。在6.12版中,SAS系統增加了一個PC平台和三個新的UNIX平台,使SAS系統這一支持多硬體廠商,跨平台的大家族又增加了新成員。SAS 6.12的另一個顯著特徵是通過對ODBC、OLE和MailAPIs等業界標準的支持,大大加強了SAS系統和其它軟體廠商的應用系統之間相互操作的能力,為各應用系統之間的信息共享和交流奠定了堅實的基礎。

雖然在我國SAS的逐步應用還是近幾年的事,但是隨著計算機應用的普及和信息事業的不斷發展,越來越多的單位採用了SAS軟體。尤其在教育、科研領域等大型機構,SAS軟體已成為專業研究人員實用的進行統計分析的標准軟體。

然而,由於SAS系統是從大型機上的系統發展而來,其操作至今仍以編程為主,人機對話界面不太友好,系統地學習和掌握SAS,需要花費一定的精力。而對大多數實際部門工作者而言,需要掌握的僅是如何利用統計分析軟體來解決自己的實際問題,因此往往會與大型SAS軟體系統失之交臂。但不管怎樣,SAS作為專業統計分析軟體中的巨無霸,現在鮮有軟體在規模系列上與之抗衡。

二、 SPSS統計軟體

SPSS是英文Statistical package for the social science 的縮寫,翻譯成漢語是社會學統計程序包,20世紀60年代末由美國斯坦福大學的三位研究生研製,1975年在芝加哥組建SPSS總部。SPSS系統特點是操作比較方便,統計方法比較齊全,繪制圖形、表格較有方便,輸出結果比較直觀。SPSS是用FORTRAN語言編寫而成。適合進行從事社會學調查中的數據分析處理。最新版為13.0版。網址:http://www.spss.com/。

SPSS原名社會科學統計軟體包,現已改名為統計解決方案服務軟體。是世界著名的統計分析軟體之一。

20世紀60年代末,美國斯坦福大學的三位研究生研製開發了最早的統計分析軟體SPSS,同時成立了SPSS公司,並於1975年在芝加哥組建了 SPSS總部。20世紀80年代以前,SPSS統計軟體主要應用於企事業單位。1984年SPSS總部首先推出了世界第一套統計分析軟體微機版本 SPSS/PC+,開創了SPSS微機系列產品的先河,從而確立了個人用戶市場第一的地位。

同時SPSS公司推行本土化策略,目前已推出9個語種版本。SPSS/PC+的推出,極大地擴充了它的應用范圍,使其能很快地應用於自然科學、技術科學、社會科學的各個領域,世界上許多有影響的報刊雜志紛紛就SPSS的自動統計繪圖、數據深入分析、使用靈活方便、功能設計齊全等方面給予了高度的評價與稱贊。目前已經在國內廣泛流行起來。它使用Windows的窗口方式展示各種管理和分析數據方法的功能,使用對話框展示出各種功能選擇項,只要是掌握一定的 Windows操作技能,粗通統計分析原理,就可以使用該軟體進行各種數據分析,為實際工作服務。

SPSS for Windows是一個組合式軟體包,目前已經開發出SPSS12版本,它集數據整理、分析功能於一身。用戶可以根據實際需要和計算機的功能選擇模塊,以降低對系統硬碟容量的要求,有利於該軟體的推廣應用。SPSS的基本功能包括數據管理、統計分析、圖表分析、輸出管理等等。SPSS統計分析過程包括描述性統計、均值比較、一般線性模型、相關分析、回歸分析、對數線性模型、聚類分析、數據簡化、生存分析、時間序列分析、多重響應等幾大類,每類中又分好幾個統計過程,比如回歸分析中又分線性回歸分析、曲線估計、Logistic回歸、Probit回歸、加權估計、兩階段最小二乘法、非線性回歸等多個統計過程,而且每個過程中又允許用戶選擇不同的方法及參數。SPSS也有專門的繪圖系統,可以根據數據繪制各種統計圖形和地圖。

SPSS for Windows的分析結果清晰、直觀、易學易用,而且可以直接讀取EXCEL及DBF數據文件,現已推廣到多種操作系統的計算機上,最新的版採用 DAA(Distributed Analysis Architecture,分布式分析系統),全面適應互聯網,支持動態收集、分析數據和HTML格式報告,領先於諸多競爭對手。

方便易用是SPSS for Windows的主要優點,同時也是SPSS不夠全面的原因所在。

三、 BMDP統計軟體

BMDP是英文Biomedical computer programs 的縮寫,翻譯成漢語是生物醫學計算程序,美國加州大學於1961年研製,是世界上最早的統計分析軟體。特點是統計方法齊全,功能強大。但1991年的 7.0版後沒有新的版本推出,使用不太普及,最後被SPSS公司收購。

四、 Stata統計軟體

Stata統計軟體由美國計算機資源中心(Computer Resource Center)1985年研製。 特點是採用命令操作,程序容量較小,統計分析方法較齊全,計算結果的輸出形式簡潔,繪出的圖形精美。不足之處是數據的兼容性差,占內存空間較大,數據管理功能需要加強。最新版為8.0版。網址:http://www.stata.com/。

五、 EPINFO軟體

EPINFO是英文Statistics program for epidemiology on microcomputer 的縮寫,翻譯成漢語是流行病學統計程序。美國疾病控制中心CDC和WHO共同研製,為完全免費軟體。特點是數據錄入非常直觀,操作方便,並有一定的統計功能,但方法比較簡單,主要應用於流行病學領域中的數據錄入和管理工作。最新版為Epidata 2.0版及EPINFO2000版。

六、 Minitab

Minitab由美國賓州大學研製。其特點是簡單易懂,很方便進行試驗設計及質量控制功能。在國外大學統計學系開設的統計軟體課程中,Minitab與SAS、BMDP並列,根據沒有SPSS的份。最新版本為14.0版,網址:http://www.minitab.com/。

七、 Statistica

Statistica為一套完整的統計資料分析、圖表、資料管理、應用程式發展系統;美國StatSoft公司開發。能提供使用者所有需要的統計及制圖程序,制圖功能強大,能夠在圖表視窗中顯示各種統計分析和作圖技術。

八、 SPLM統計軟體

SPLM是英文Statistical program for linear modeling 的縮寫,翻譯成漢語是線性模型擬合統計軟體程序。1988年由解放軍第四醫學大學統計教研室研製。系統特點是採用線性模型的方法,實現各種統計方法的計算。統計方法比較齊全,功能比較強大。SPLM採用FORTRAN語言編寫完成。但1999年推出3.0版後無新的產品推出。

九、 CHISS統計軟體

CHISS 是英文Chinese High Intellectualized Statistical Software的縮寫,翻譯成漢語是中華高智統計軟體, 由北京元義堂科技公司研製,解放軍總醫院、首都醫科大學、中國中醫研究院等參加協作完成。1997年開始研發,2001年推出第一版。CHISS是一套具有數據信息管理、圖形製作和數據分析的強大功能,並具有一定智能化的中文統計分析軟體。CHISS的主要特點是操作簡單直觀,輸出結果簡潔。既可以採用游標點菜單式也可採用編寫程序來完成各種任務。CHISS用C++語言、 FORTRAN語言和delphi 開發集成,採用模塊組合式結構,已開發十個模塊。 CHISS可以用於各類學校、科研所等從事統計學的教學和科研工作。最新版為CHISS2004版。網址:http://www.chiss.cn。

十、 SASD統計軟體

SASD是英文package for Statistical analysis of stochastic data 的縮寫,翻譯成漢語是隨機數據統計分析程序包。它是由中國科學院計算中心研製。系統特點是以FORTRAN源程序形式向用戶提供大量的子程序可供用戶進行二次開發,統計方法比較齊全,功能比較強大。SASD採用FORTRAN語言編寫完成,比較適合從事統計專業人員使用。但無新版推出。

十一、 PEMS統計軟體

PEMS是英文package for encyclopaedia of medical statistics漢語是中國醫學網路全書-醫學統計學軟體包。它以<中國醫學網路全書>一書為藍本,開發的一套統計軟體。系統特點是實現各種統計方法的計算。統計方法比較齊全,功能比較強大。PEMS採用TURBOC和TURBOBASIC語言編寫完成,比較適合從事醫學工作的非統計專業人員使用。最新版為PEMS3.0版。網址:http://www.pems888.com/。

十二、 EXCEL電子表格與統計功能

EXCEL電子表格是Microsoft公司推出的Office系列產品之一,是一個功能強大的電子表格軟體。特點是對表格的管理和統計圖製作功能強大,容易操作。Excel的數據分析插件XLSTAT,也能進行數據統計分析,但不足的是運算速度慢,統計方法不全。

十三、 DAS統計軟體

DAS是英文Drug and Statistics的縮寫,翻譯成漢語是葯理學計算軟體,由孫瑞元等開發。特點是內容涵蓋基礎葯理學、臨床葯理學,葯學,醫學統計學。能多種處理結果同時顯現。EXCEL平台使用方便,智能化,圖表直接插入文檔。網址:http://www.drugchina.net/。

十四、 SDAS統計軟體

DAS是英文Statisticaldesign and analysis system的縮寫,翻譯成漢語是統計設計和分析系統。1992年由解放軍總醫院醫學統計教研室開發。特點是窗口操作,操作方便,圖表簡明,與國內醫學統計學教材一致。但只有DOS版,1995年後沒新的版本。

十五、 Nosa統計軟體

Nosa是非典型數據分析系統,1999年由解放軍四軍醫大學醫學統計教研室夏結來教授開發。特點是採用廣義線性模型建模,從數據錄入與管理、統計分析、繪圖,到結果管理嵌入了當代數據處理技術。但只有DOS系統下使用。

十六 S-PLUS(此部分摘自廠家的軟體宣傳資料)

Insightful公司是世界著名的商務智能軟體提供商,產品涵蓋分析統計、數據挖掘、知識獲取、決策支持等多個領域。公司總部設在美國西雅圖。

S-PLUS作為一個工業數據分析工具與數據分析應用開發平台,在各行各業已經有較長的使用歷史。並曾獲得著名的「美國計算機協會優秀軟體獎。

S-PLUS提供了方便、靈活、交互、可視化的操作環境,幫助您找出數據之間的關系和趨勢,讓您做出更好地決策。在科學研究、市場營銷、產品研發、質量保證、財務分析、金融證券、資料統計等各個方面,S-PLUS都有廣泛的應用。

S-PLUS有流暢、直觀的操作界面,廣泛的輸入輸出功能,不論您的數據在何處、數據的格式如何,都可以輕松地存取,生成的結果可以以任意格式進行輸出 (圖形、文檔、表格、網頁)。特別是:S-PLUS的操作界面與Microsoft Office完全一致,用滑鼠輕松點擊,就可以把S-PLUS 的分析結果嵌入到Word文檔和PowerPoint文檔中;S-PLUS與Excel無縫集成,您可以在S-PLUS 環境中隨意操作Excel數據,也可以在Excel環境中使用S-PLUS功能,無需花時間在Excel及S-PLUS之間,將數據來回轉換;S- PLUS可以在Internet環境中進行數據分析和結果發布。

S-PLUS領先於業界的探索式圖形技術,使得您可以直觀地展現隱藏在數據中的關系和趨勢,不致迷失在簡單的統計數值及文字報表中。S-PLUS提供超過80種的二維和三維圖形庫,您可以輕松修改每一層圖形的細節,包括線條、顏色、字體等,產生您想要的圖形。

S-PLUS提供超過4200種統計分析函數,包含了傳統和現代的統計分析、數據挖掘、預測分析的演算法。軟體所有的分析功能都是向導式的,使您輕松完成數據的分析任務。S-PLUS的開放性,允許您自己開發新的演算法,集成到S-PLUS軟體中。您也可以從S-PLUS網站或者其它統計網站上免費下載演算法,集成到S-PLUS軟體中。

通過S-PLUS的腳本語言,可以記錄和存儲分析過程;或者,用滑鼠拖拉對象(如按鈕、菜單等等)到命令窗口,會立即產生相應的執行指令;反之,拖拉指令到工具列上,會產生相應的功能按鈕。使得您的分析過程可以進行存儲、共享和重復執行,大大減少您的重復工作量。

S-PLUS還提供強大的編程語言——S語言,您可以使用它來開發專門適合於您的個性化系統,也可以建立企業級的應用系統。而且,S-PLUS幾乎可以集成到其它任何系統中,如:在Unix系統上,S-PLUS的CONNECT/Java介面,可以讓S-PLUS集成到Java程序中。在Windows系統上,S-PLUS的CONNECT/C++介面,可以在您開發的C++程序內使用全部的S-PLUS分析方法。另外S-PLUS的DDE及OLE介面,可以讓您集成S-PLUS到其他Windows應用程序中,允許您從Excel或Visual Basic應用程序中執行S-PLUS功能。

『捌』 統計學方法有哪些

一、描述統計

描述統計是通過圖表或數學方法,對數據資料進行整理、分析,並對數據的分布狀態、數字特徵和隨機變數之間關系進行估計和描述的方法。描述統計分為集中趨勢分析和離中趨勢分析和相關分析三大部分。

集中趨勢分析:集中趨勢分析主要靠平均數、中數、眾數等統計指標來表示數據的集中趨勢。例如被試的平均成績多少?是正偏分布還是負偏分布?

離中趨勢分析:離中趨勢分析主要靠全距、四分差、平均差、方差(協方差:用來度量兩個隨機變數關系的統計量)、標准差等統計指標來研究數據的離中趨勢。例如,我們想知道兩個教學班的語文成績中,哪個班級內的成績分布更分散,就可以用兩個班級的四分差或百分點來比較。

相關分析:相關分析探討數據之間是否具有統計學上的關聯性。這種關系既包括兩個數據之間的單一相關關系——如年齡與個人領域空間之間的關系,也包括多個數據之間的多重相關關系——如年齡、抑鬱症發生率、個人領域空間之間的關系;既包括A大B就大(小),A小B就小(大)的直線相關關系,也可以是復雜相關關系(A=Y-B*X);既可以是A、B變數同時增大這種正相關關系,也可以是A變數增大時B變數減小這種負相關,還包括兩變數共同變化的緊密程度——即相關系數。實際上,相關關系唯一不研究的數據關系,就是數據協同變化的內在根據——即因果關系。獲得相關系數有什麼用呢?簡而言之,有了相關系數,就可以根據回歸方程,進行A變數到B變數的估算,這就是所謂的回歸分析,因此,相關分析是一種完整的統計研究方法,它貫穿於提出假設,數據研究,數據分析,數據研究的始終。

例如,我們想知道對監獄情景進行什麼改造,可以降低囚徒的暴力傾向。我們就需要將不同的囚舍顏色基調、囚舍綠化程度、囚室人口密度、放風時間、探視時間進行排列組合,然後讓每個囚室一種實驗處理,然後用因素分析法找出與囚徒暴力傾向的相關系數最高的因素。假定這一因素為囚室人口密度,我們又要將被試隨機分入不同人口密度的十幾個囚室中生活,繼而得到人口密度和暴力傾向兩組變數(即我們討論過的A、B兩列變數)。然後,我們將人口密度排入X軸,將暴力傾向分排入Y軸,獲得了一個很有價值的圖表,當某典獄長想知道,某囚舍擴建到N人/間囚室,暴力傾向能降低多少。我們可以當前人口密度和改建後人口密度帶入相應的回歸方程,算出擴建前的預期暴力傾向和擴建後的預期暴力傾向,兩數據之差即典獄長想知道的結果。

推論統計:

推論統計是統計學乃至於心理統計學中較為年輕的一部分內容。它以統計結果為依據,來證明或推翻某個命題。具體來說,就是通過分析樣本與樣本分布的差異,來估算樣本與總體、同一樣本的前後測成績差異,樣本與樣本的成績差距、總體與總體的成績差距是否具有顯著性差異。例如,我們想研究教育背景是否會影響人的智力測驗成績。可以找100名24歲大學畢業生和100名24歲初中畢業生。採集他們的一些智力測驗成績。用推論統計方法進行數據處理,最後會得出類似這樣兒的結論:「研究發現,大學畢業生組的成績顯著高於初中畢業生組的成績,二者在0.01水平上具有顯著性差異,說明大學畢業生的一些智力測驗成績優於中學畢業生組。」

其中,如果用EXCEL 來求描述統計。其方法是:工具-載入宏-勾選"分析工具庫",然後關閉Excel然後重新打開,工具菜單就會出現"數據分析"。描述統計是「數據分析」內一個子菜單,在做的時候,記得要把方格輸入正確。最好直接點選。

2、正態性檢驗:很多統計方法都要求數值服從或近似服從正態分布,所以之前需要進行正態性檢驗。常用方法:非參數檢驗的K-量檢驗、P-P圖、Q-Q圖、W檢驗、動差法。

二、假設檢驗

1、參數檢驗

參數檢驗是在已知總體分布的條件下(一股要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗。

1)U驗 :使用條件:當樣本含量n較大時,樣本值符合正態分布

2)T檢驗 使用條件:當樣本含量n較小時,樣本值符合正態分布

A 單樣本t檢驗:推斷該樣本來自的總體均數μ與已知的某一總體均數μ0 (常為理論值或標准值)有無差別;

B 配對樣本t檢驗:當總體均數未知時,且兩個樣本可以配對,同對中的兩者在可能會影響處理效果的各種條件方面扱為相似;

C 兩獨立樣本t檢驗:無法找到在各方面極為相似的兩樣本作配對比較時使用。

2、非參數檢驗

非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一股性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。

適用情況:順序類型的數據資料,這類數據的分布形態一般是未知的。

A 雖然是連續數據,但總體分布形態未知或者非正態;

B 體分布雖然正態,數據也是連續類型,但樣本容量極小,如10以下;

主要方法包括:卡方檢驗、秩和檢驗、二項檢驗、遊程檢驗、K-量檢驗等。

三、信度分析

介紹:信度(Reliability)即可靠性,它是指採用同樣的方法對同一對象重復測量時所得結果的一致性程度。信度指標多以相關系數表示,大致可分為三類:穩定系數(跨時間的一致性),等值系數(跨形式的一致性)和內在一致性系數(跨項目的一致性)。信度分析的方法主要有以下四種:重測信度法、復本信度法、折半信度法、α信度系數法。

方法:(1)重測信度法編輯:這一方法是用同樣的問卷對同一組被調查者間隔一定時間重復施測,計算兩次施測結果的相關系數。顯然,重測信度屬於穩定系數。重測信度法特別適用於事實式問卷,如性別、出生年月等在兩次施測中不應有任何差異,大多數被調查者的興趣、愛好、習慣等在短時間內也不會有十分明顯的變化。如果沒有突發事件導致被調查者的態度、意見突變,這種方法也適用於態度、意見式問卷。由於重測信度法需要對同一樣本試測兩次,被調查者容易受到各種事件、活動和他人的影響,而且間隔時間長短也有一定限制,因此在實施中有一定困難。

(2)復本信度法編輯:讓同一組被調查者一次填答兩份問卷復本,計算兩個復本的相關系數。復本信度屬於等值系數。復本信度法要求兩個復本除表述方式不同外,在內容、格式、難度和對應題項的提問方向等方面要完全一致,而在實際調查中,很難使調查問卷達到這種要求,因此採用這種方法者較少。

(3)折半信度法編輯:折半信度法是將調查項目分為兩半,計算兩半得分的相關系數,進而估計整個量表的信度。折半信度屬於內在一致性系數,測量的是兩半題項得分間的一致性。這種方法一般不適用於事實式問卷(如年齡與性別無法相比),常用於態度、意見式問卷的信度分析。在問卷調查中,態度測量最常見的形式是5級李克特(Likert)量表(李克特量表(Likert scale)是屬評分加總式量表最常用的一種,屬同一構念的這些項目是用加總方式來計分,單獨或個別項目是無意義的。它是由美國社會心理學家李克特於1932年在原有的總加量表基礎上改進而成的。該量表由一組陳述組成,每一陳述有"非常同意"、"同意"、"不一定"、"不同意"、"非常不同意"五種回答,分別記為5、4、3、2、1,每個被調查者的態度總分就是他對各道題的回答所得分數的加總,這一總分可說明他的態度強弱或他在這一量表上的不同狀態。)。進行折半信度分析時,如果量表中含有反意題項,應先將反意題項的得分作逆向處理,以保證各題項得分方向的一致性,然後將全部題項按奇偶或前後分為盡可能相等的兩半,計算二者的相關系數(rhh,即半個量表的信度系數),最後用斯皮爾曼-布朗(Spearman-Brown)公式:求出整個量表的信度系數(ru)。

(4)α信度系數法編輯:Cronbach
α信度系數是目前最常用的信度系數,其公式為:

α=(k/(k-1))*(1-(∑Si^2)/ST^2)

其中,K為量表中題項的總數, Si^2為第i題得分的題內方差, ST^2為全部題項總得分的方差。從公式中可以看出,α系數評價的是量表中各題項得分間的一致性,屬於內在一致性系數。這種方法適用於態度、意見式問卷(量表)的信度分析。

總量表的信度系數最好在0.8以上,0.7-0.8之間可以接受;分量表的信度系數最好在0.7以上,0.6-0.7還可以接受。Cronbach 's alpha系數如果在0.6以下就要考慮重新編問卷。

檢査測量的可信度,例如調查問卷的真實性。

分類:

1、外在信度:不同時間測量時量表的一致性程度,常用方法重測信度

2、內在信度;每個量表是否測量到單一的概念,同時組成兩表的內在體項一致性如何,常用方法分半信度。

四、列聯表分析

列聯表是觀測數據按兩個或更多屬性(定性變數)分類時所列出的頻數表。

簡介:一般,若總體中的個體可按兩個屬性A、B分類,A有r個等級A1,A2,…,Ar,B有c個等級B1,B2,…,Bc,從總體中抽取大小為n的樣本,設其中有nij個個體的屬性屬於等級Ai和Bj,nij稱為頻數,將r×c個nij排列為一個r行c列的二維列聯表,簡稱r×c表。若所考慮的屬性多於兩個,也可按類似的方式作出列聯表,稱為多維列聯表。

列聯表又稱交互分類表,所謂交互分類,是指同時依據兩個變數的值,將所研究的個案分類。交互分類的目的是將兩變數分組,然後比較各組的分布狀況,以尋找變數間的關系。

用於分析離散變數或定型變數之間是否存在相關。

列聯表分析的基本問題是,判明所考察的各屬性之間有無關聯,即是否獨立。如在前例中,問題是:一個人是否色盲與其性別是否有關?在r×с表中,若以pi、pj和pij分別表示總體中的個體屬於等級Ai,屬於等級Bj和同時屬於Ai、Bj的概率(pi,pj稱邊緣概率,pij稱格概率),「A、B兩屬性無關聯」的假設可以表述為H0:pij=pi·pj,(i=1,2,…,r;j=1,2,…,с),未知參數pij、pi、pj的最大似然估計(見點估計)分別為行和及列和(統稱邊緣和)

為樣本大小。根據K.皮爾森(1904)的擬合優度檢驗或似然比檢驗(見假設檢驗),當h0成立,且一切pi>0和pj>0時,統計量的漸近分布是自由度為(r-1)(с-1) 的Ⅹ分布,式中Eij=(ni·nj)/n稱為期望頻數。當n足夠大,且表中各格的Eij都不太小時,可以據此對h0作檢驗:若Ⅹ值足夠大,就拒絕假設h0,即認為A與B有關聯。在前面的色覺問題中,曾按此檢驗,判定出性別與色覺之間存在某種關聯。

需要注意:

若樣本大小n不很大,則上述基於漸近分布的方法就不適用。對此,在四格表情形,R.A.費希爾(1935)提出了一種適用於所有n的精確檢驗法。其思想是在固定各邊緣和的條件下,根據超幾何分布(見概率分布),可以計算觀測頻數出現任意一種特定排列的條件概率。把實際出現的觀測頻數排列,以及比它呈現更多關聯跡象的所有可能排列的條件概率都算出來並相加,若所得結果小於給定的顯著性水平,則判定所考慮的兩個屬性存在關聯,從而拒絕h0。

對於二維表,可進行卡方檢驗,對於三維表,可作Mentel-Hanszel分層分析。

列聯表分析還包括配對計數資料的卡方檢驗、行列均為順序變數的相關檢驗。

五、相關分析

研究現象之間是否存在某種依存關系,對具體有依存關系的現象探討相關方向及相關程度。

1、單相關: 兩個因素之間的相關關系叫單相關,即研究時只涉及一個自變數和一個因變數;

2、復相關 :三個或三個以上因素的相關關系叫復相關,即研究時涉及兩個或兩個以上的自變數和因變數相關;

3、偏相關:在某一現象與多種現象相關的場合,當假定其他變數不變時,其中兩個變數之間的相關關系稱為偏相關。

六、方差分析

使用條件:各樣本須是相互獨立的隨機樣本;各樣本來自正態分布總體;各總體方差相等。

分類

1、單因素方差分析:一項試驗只有一個影響因素,或者存在多個影響因素時,只分析一個因素與響應變數的關系

2、多因素有交互方差分析:一頊實驗有多個影響因素,分析多個影響因素與響應變數的關系,同時考慮多個影響因素之間的關系

3、多因素無交互方差分析:分析多個影響因素與響應變數的關系,但是影響因素之間沒有影響關系或忽略影響關系

4、協方差分祈:傳統的方差分析存在明顯的弊端,無法控制分析中存在的某些隨機因素,使之影響了分祈結果的准確度。協方差分析主要是在排除了協變數的影響後再對修正後的主效應進行方差分析,是將線性回歸與方差分析結合起來的一種分析方法,

七、回歸分析

分類:

1、一元線性回歸分析:只有一個自變數X與因變數Y有關,X與Y都必須是連續型變數,因變數y或其殘差必須服從正態分布。

2、多元線性回歸分析

使用條件:分析多個自變數與因變數Y的關系,X與Y都必須是連續型變數,因變數y或其殘差必須服從正態分布 。

1)變呈篩選方式:選擇最優回歸方程的變里篩選法包括全橫型法(CP法)、逐步回歸法,向前引入法和向後剔除法

2)橫型診斷方法:

A 殘差檢驗: 觀測值與估計值的差值要艱從正態分布

B 強影響點判斷:尋找方式一般分為標准誤差法、Mahalanobis距離法

C 共線性診斷:

• 診斷方式:容忍度、方差擴大因子法(又稱膨脹系數VIF)、特徵根判定法、條件指針CI、方差比例

• 處理方法:增加樣本容量或選取另外的回歸如主成分回歸、嶺回歸等

3、Logistic回歸分析

線性回歸模型要求因變數是連續的正態分布變里,且自變數和因變數呈線性關系,而Logistic回歸模型對因變數的分布沒有要求,一般用於因變數是離散時的情況

分類:

Logistic回歸模型有條件與非條件之分,條件Logistic回歸模型和非條件Logistic回歸模型的區別在於參數的估計是否用到了條件概率。

4、其他回歸方法 非線性回歸、有序回歸、Probit回歸、加權回歸等

八、聚類分析

聚類與分類的不同在於,聚類所要求劃分的類是未知的。

聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。

從統計學的觀點看,聚類分析是通過數據建模簡化數據的一種方法。傳統的統計聚類分析方法包括系統聚類法、分解法、加入法、動態聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。採用k-均值、k-中心點等演算法的聚類分析工具已被加入到許多著名的統計分析軟體包中,如SPSS、SAS等。

從機器學習的角度講,簇相當於隱藏模式。聚類是搜索簇的無監督學習過程。與分類不同,無監督學習不依賴預先定義的類或帶類標記的訓練實例,需要由聚類學習演算法自動確定標記,而分類學習的實例或數據對象有類別標記。聚類是觀察式學習,而不是示例式的學習。

聚類分析是一種探索性的分析,在分類的過程中,人們不必事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。聚類分析所使用方法的不同,常常會得到不同的結論。不同研究者對於同一組數據進行聚類分析,所得到的聚類數未必一致。

從實際應用的角度看,聚類分析是數據挖掘的主要任務之一。而且聚類能夠作為一個獨立的工具獲得數據的分布狀況,觀察每一簇數據的特徵,集中對特定的聚簇集合作進一步地分析。聚類分析還可以作為其他演算法(如分類和定性歸納演算法)的預處理步驟。

定義:

依據研究對象(樣品或指標)的特徵,對其進行分類的方法,減少研究對象的數目。

各類事物缺乏可靠的歷史資料,無法確定共有多少類別,目的是將性質相近事物歸入一類。

各指標之間具有一定的相關關系。

聚類分析(cluster
analysis)是一組將研究對象分為相對同質的群組(clusters)的統計分析技術。聚類分析區別於分類分析(classification
analysis) ,後者是有監督的學習。

變數類型:定類變數、定量(離散和連續)變數

樣本個體或指標變數按其具有的特性進行分類,尋找合理的度量事物相似性的統計量。

1、性質分類:

Q型聚類分析:對樣本進行分類處理,又稱樣本聚類分祈使用距離系數作為統計量衡量相似度,如歐式距離、極端距離、絕對距離等

R型聚類分析:對指標進行分類處理,又稱指標聚類分析使用相似系數作為統計量衡量相似度,相關系數、列聯系數等

2、方法分類:

1)系統聚類法:適用於小樣本的樣本聚類或指標聚類,一般用系統聚類法來聚類指標,又稱分層聚類

2)逐步聚類法:適用於大樣本的樣本聚類

3)其他聚類法:兩步聚類、K均值聚類等

九、判別分析

1、判別分析:根據已掌握的一批分類明確的樣品建立判別函數,使產生錯判的事例最少,進而對給定的一個新樣品,判斷它來自哪個總體

2、與聚類分析區別

1)聚類分析可以對樣本逬行分類,也可以對指標進行分類;而判別分析只能對樣本

2)聚類分析事先不知道事物的類別,也不知道分幾類;而判別分析必須事先知道事物的類別,也知道分幾類

3)聚類分析不需要分類的歷史資料,而直接對樣本進行分類;而判別分析需要分類歷史資料去建立判別函數,然後才能對樣本進行分類

3、進行分類 :

1)Fisher判別分析法 :

以距離為判別准則來分類,即樣本與哪個類的距離最短就分到哪一類,適用於兩類判別;

以概率為判別准則來分類,即樣本屬於哪一類的概率最大就分到哪一類,適用於

適用於多類判別。

2)BAYES判別分析法 :

BAYES判別分析法比FISHER判別分析法更加完善和先進,它不僅能解決多類判別分析,而且分析時考慮了數據的分布狀態,所以一般較多使用;

十、主成分分析

介紹:主成分分析(Principal
Component Analysis,PCA), 是一種統計方法。通過正交變換將一組可能存在相關性的變數轉換為一組線性不相關的變數,轉換後的這組變數叫主成分。

在實際課題中,為了全面分析問題,往往提出很多與此有關的變數(或因素),因為每個變數都在不同程度上反映這個課題的某些信息。

主成分分析首先是由K.皮爾森(Karl Pearson)對非隨機變數引入的,爾後H.霍特林將此方法推廣到隨機向量的情形。信息的大小通常用離差平方和或方差來衡量。

將彼此梠關的一組指標變適轉化為彼此獨立的一組新的指標變數,並用其中較少的幾個新指標變數就能綜合反應原多個指標變數中所包含的主要信息。

原理:在用統計分析方法研究多變數的課題時,變數個數太多就會增加課題的復雜性。人們自然希望變數個數較少而得到的信息較多。在很多情形,變數之間是有一定的相關關系的,當兩個變數之間有一定相關關系時,可以解釋為這兩個變數反映此課題的信息有一定的重疊。主成分分析是對於原先提出的所有變數,將重復的變數(關系緊密的變數)刪去多餘,建立盡可能少的新變數,使得這些新變數是兩兩不相關的,而且這些新變數在反映課題的信息方面盡可能保持原有的信息。

設法將原來變數重新組合成一組新的互相無關的幾個綜合變數,同時根據實際需要從中可以取出幾個較少的綜合變數盡可能多地反映原來變數的信息的統計方法叫做主成分分析或稱主分量分析,也是數學上用來降維的一種方法。

缺點: 1、在主成分分析中,我們首先應保證所提取的前幾個主成分的累計貢獻率達到一個較高的水平(即變數降維後的信息量須保持在一個較高水平上),其次對這些被提取的主成分必須都能夠給出符合實際背景和意義的解釋(否則主成分將空有信息量而無實際含義)。

2、主成分的解釋其含義一般多少帶有點模糊性,不像原始變數的含義那麼清楚、確切,這是變數降維過程中不得不付出的代價。因此,提取的主成分個數m通常應明顯小於原始變數個數p(除非p本身較小),否則維數降低的「利」可能抵不過主成分含義不如原始變數清楚的「弊」。

十一、因子分析

一種旨在尋找隱藏在多變數數據中、無法直接觀察到卻影響或支配可測變數的潛在因子、並估計潛在因子對可測變數的影響程度以及潛在因子之間的相關性的一種多元統計分析方法

與主成分分析比較:

相同:都能夠起到治理多個原始變數內在結構關系的作用

不同:主成分分析重在綜合原始變適的信息.而因子分析重在解釋原始變數間的關系,是比主成分分析更深入的一種多元統計方法

用途:

1)減少分析變數個數

2)通過對變數間相關關系探測,將原始變數進行分類

十二、時間序列分析

動態數據處理的統計方法,研究隨機數據序列所遵從的統計規律,以用於解決實際問題;時間序列通常由4種要素組成:趨勢、季節變動、循環波動和不規則波動。

主要方法:移動平均濾波與指數平滑法、ARIMA橫型、量ARIMA橫型、ARIMAX模型、向呈自回歸橫型、ARCH族模型

時間序列是指同一變數按事件發生的先後順序排列起來的一組觀察值或記錄值。構成時間序列的要素有兩個:其一是時間,其二是與時間相對應的變數水平。實際數據的時間序列能夠展示研究對象在一定時期內的發展變化趨勢與規律,因而可以從時間序列中找出變數變化的特徵、趨勢以及發展規律,從而對變數的未來變化進行有效地預測。

時間序列的變動形態一般分為四種:長期趨勢變動,季節變動,循環變動,不規則變動。

時間序列預測法的應用:

系統描述:根據對系統進行觀測得到的時間序列數據,用曲線擬合方法對系統進行客觀的描述;

系統分析:當觀測值取自兩個以上變數時,可用一個時間序列中的變化去說明另一個時間序列中的變化,從而深入了解給定時間序列產生的機理;

預測未來:一般用ARMA模型擬合時間序列,預測該時間序列未來值;

決策和控制:根據時間序列模型可調整輸入變數使系統發展過程保持在目標值上,即預測到過程要偏離目標時便可進行必要的控制。

特點:

假定事物的過去趨勢會延伸到未來;

預測所依據的數據具有不規則性;

撇開了市場發展之間的因果關系。

①時間序列分析預測法是根據市場過去的變化趨勢預測未來的發展,它的前提是假定事物的過去會同樣延續到未來。事物的現實是歷史發展的結果,而事物的未來又是現實的延伸,事物的過去和未來是有聯系的。市場預測的時間序列分析法,正是根據客觀事物發展的這種連續規律性,運用過去的歷史數據,通過統計分析,進一步推測市場未來的發展趨勢。市場預測中,事物的過去會同樣延續到未來,其意思是說,市場未來不會發生突然跳躍式變化,而是漸進變化的。

時間序列分析預測法的哲學依據,是唯物辯證法中的基本觀點,即認為一切事物都是發展變化的,事物的發展變化在時間上具有連續性,市場現象也是這樣。市場現象過去和現在的發展變化規律和發展水平,會影響到市場現象未來的發展變化規律和規模水平;市場現象未來的變化規律和水平,是市場現象過去和現在變化規律和發展水平的結果。

需要指出,由於事物的發展不僅有連續性的特點,而且又是復雜多樣的。因此,在應用時間序列分析法進行市場預測時應注意市場現象未來發展變化規律和發展水平,不一定與其歷史和現在的發展變化規律完全一致。隨著市場現象的發展,它還會出現一些新的特點。因此,在時間序列分析預測中,決不能機械地按市場現象過去和現在的規律向外延伸。必須要研究分析市場現象變化的新特點,新表現,並且將這些新特點和新表現充分考慮在預測值內。這樣才能對市場現象做出既延續其歷史變化規律,又符合其現實表現的可靠的預測結果。

②時間序列分析預測法突出了時間因素在預測中的作用,暫不考慮外界具體因素的影響。時間序列在時間序列分析預測法處於核心位置,沒有時間序列,就沒有這一方法的存在。雖然,預測對象的發展變化是受很多因素影響的。但是,運用時間序列分析進行量的預測,實際上將所有的影響因素歸結到時間這一因素上,只承認所有影響因素的綜合作用,並在未來對預測對象仍然起作用,並未去分析探討預測對象和影響因素之間的因果關系。因此,為了求得能反映市場未來發展變化的精確預測值,在運用時間序列分析法進行預測時,必須將量的分析方法和質的分析方法結合起來,從質的方面充分研究各種因素與市場的關系,在充分分析研究影響市場變化的各種因素的基礎上確定預測值。

需要指出的是,時間序列預測法因突出時間序列暫不考慮外界因素影響,因而存在著預測誤差的缺陷,當遇到外界發生較大變化,往往會有較大偏差,時間序列預測法對於中短期預測的效果要比長期預測的效果好。因為客觀事物,尤其是經濟現象,在一個較長時間內發生外界因素變化的可能性加大,它們對市場經濟現象必定要產生重大影響。如果出現這種情況,進行預測時,只考慮時間因素不考慮外界因素對預測對象的影響,其預測結果就會與實際狀況嚴重不符。

『玖』 統計學比較方法

為了更深入更系統地了解統計比較的真實涵義,以便更好地通過統計比較進行統計綜合分析,統計比較可以從許多不同的角度來進行分類。一般說,主要有以下幾種分類:

1、按其時間狀況不同,可以分為靜態比較和動態比較。

靜態比較——也叫橫向比較,是同一時間(時期或時點)條件下的數量比較,如不同地區的比較,不同部門的比較,實際完成情況和計劃目標的比較。

動態比較——也叫縱向比較,是同一統計指標不同時間上統計數值的比較,它反映隨歷史發展而發生的數量上的變化。根據統計綜合分析的需要,這兩種比較可以單獨使用,但在實際應用中常常要把二者結合使用。數量比較的結果統稱為比較指標,分別稱為靜態比較指標和動態比較指標。

2、按比較方式不同,分為相比(除)比較和相差(減)比較。

相比(除)比較——是將比較對象和比較標准相除而進行的,比較的結果表現為相對數,如系數、倍數、分數、成數、百分數、千分數、萬分數等。相比比較表明靜態差別的比率或者動態變化的程度。

相差(減)比較——是將比較對象和比較標准相減而進行的,相減的結果表明兩者相差的絕對量。這兩種比較方式給人們不同的感受。有時可以單獨使用,但以結合使用為好。結合使用可使人們認識比較完整,既可了解差別或變化的程度,也可了解相差的絕對量。

3、按比較對象內容範圍不同,可分為單項比較和綜合比較。

單項比較——是指比較某種總體現象某一方面、某一局部,它可以使用單獨一個統計指標,也可以將反映某一方面、某一局部的若干指標聯系起來進行比較分析。

綜合比較——是指對總體或若干方面的全面評價比較,通常稱為綜合評價。例如,宏觀方面的國民經濟和社會發展情況的全面評價和比較;微觀方面的同類企業經濟效益的綜合評價和比較;對某種產品質量的綜合評價和比較,等等。
統計比較是統計綜合分析研究中基本的、常用的方法,其作用主要有以下幾個方面:

1、可以更深入、更明確地認識事物

一個單獨的統計指標數值或一群指標數值只能說明總體的實際數量狀況,只靠它是得不到明確而深刻的認識的。只有經過綜合分析比較,從數量的差別和變化中,才可更深入、更明確地認識事物,幫助人們做出評價。

2、可以進行監督查檢,深入分析原因,找出解決辦法。

將某種事物的存在和發展狀況同有關政策規定進行比較,看其是否符合要求標准規定,進行某些監督檢查。並據此進一步深入分析其原因,進而找出解決的辦法。

3、可以發揮更大、更廣泛的促進作用

監督也會起促進作用,但統計比較的促進作用比監督更廣泛。應用統計指標在各地區、各單位之間進行比較,在單位內部進行比較,會發現它們之間的差別,產生促後進趕先進的作用。使用規定若干統計指標進行比較,有組織的進行評比競賽,能發揮更大的促進作用。

統計比較是統計分析中經常使用的方法,在許多情況下,統計分析往往是從比較開始 的;而且,在統計分析的許多其他方法中,都包含著比較的內容。例如,統計指數實際是一種綜合比較方法,相關分析要通過比較才能判明相關程度,等等。

統計比較看起來簡單易行,但要使用得好也是不容易的,要注意到這種方法的局限性。

『拾』 統計學常用的方法有那些

excle本身的匯總功能
專業的SAS和SPSS軟體
方法有多元回歸,一元回歸,正態分析,假設檢驗,置信分析等等很多,主要看你作什麼,想要什麼樣的結果了

閱讀全文

與常用統計學方法及相關的資料

熱點內容
流行病學的調查最常採用什麼方法 瀏覽:526
燃燒不穩定的解決方法 瀏覽:294
手有點麻一招解決方法 瀏覽:465
快速推理解決問題方法 瀏覽:654
空間向量研究方法 瀏覽:562
床車折疊方法視頻 瀏覽:301
聲光報警安裝接線方法 瀏覽:79
電阻器的標稱值有哪些方法 瀏覽:607
感官動詞教學方法 瀏覽:684
怎麼挖紅薯的方法 瀏覽:659
廢舊卡片手機架自己製作方法 瀏覽:165
水質檢測方法標准 瀏覽:808
金魚苗怎麼喂養方法 瀏覽:596
陰將陽江日計算方法 瀏覽:540
哪些方法可以減肚子 瀏覽:97
老式洗衣機怎麼清洗方法教程 瀏覽:300
各種鋼管的重量計算方法 瀏覽:453
蘋果手機音量哪裡設置方法 瀏覽:849
小孩子身上起斑有什麼治療的方法 瀏覽:223
融安滑皮金桔食用方法 瀏覽:969