『壹』 電流互感器的使用
電流互感器是組成二次迴路的電器,並不是串聯在主電路中的,一般來說,使用電流互感器的場合都是在主迴路電流大於電表承受能力的情況下。
一般電表承受的電流為5A,當主迴路電流大於5A時就使用電流互感器將主迴路電流等比例縮小——就是所謂的變比。
一般來說電流互感器中間的大的孔是穿過主迴路線路的,根據主迴路電流大小還可能進行幾次穿孔,而電流互感器的端子與測量電表直接串聯組成二次迴路。
像你所說的5A/25mA的電流互感器應該是把主迴路電流在二次迴路中進行放大的互感器,畢竟25mA的電流太小了。
你所說的一次輸出直接接大地,估計是測量的接地電流吧~~具體情況要看實際的東西才能確定。
『貳』 電流互感器的使用介紹
1)電流互感器的接線應遵守串聯原則:即一次繞阻應與被測電路串聯,而二次繞阻則與所有儀表負載串聯
2)按被測電流大小,選擇合適的變比,否則誤差將增大。同時,二次側一端必須接地,以防絕緣一旦損壞時,一次側高壓竄入二次低壓側,造成人身和設備事故
3)二次側絕對不允許開路,因一旦開路,一次側電流I1全部成為磁化電流,引起φm和E2驟增,造成鐵心過度飽和磁化,發熱嚴重乃至燒毀線圈;同時,磁路過度飽和磁化後,使誤差增大。電流互感器在正常工作時,二次側與測量儀表和繼電器等電流線圈串聯使用,測量儀表和繼電器等電流線圈阻抗很小,二次側近似於短路。CT二次電流的大小由一次電流決定,二次電流產生的磁勢,是平衡一次電流的磁勢的。若突然使其開路,則勵磁電動勢由數值很小的值驟變為很大的值,鐵芯中的磁通呈現嚴重飽和的平頂波,因此二次側繞組將在磁通過零時感應出很高的尖頂波,其值可達到數千甚至上萬伏,危及工作人員的安全及儀表的絕緣性能。
另外,二次側開路使二次側電壓達幾百伏,一旦觸及將造成觸電事故。因此,電流互感器二次側都備有短路開關,防止二次側開路。在使用過程中,二次側一旦開路應馬上撤掉電路負載,然後,再停電處理。一切處理好後方可再用。
4)為了滿足測量儀表、繼電保護、斷路器失靈判斷和故障濾波等裝置的需要,在發電機、變壓器、出線、母線分段斷路器、母線斷路器、旁路斷路器等迴路中均設2~8個二次繞阻的電流互感器。
5)對於保護用電流互感器的裝設地點應按盡量消除主保護裝置的不保護區來設置。例如:若有兩組電流互感器,且位置允許時,應設在斷路器兩側,使斷路器處於交叉保護范圍之中
6)為了防止支柱式電流互感器套管閃絡造成母線故障,電流互感器通常布置在斷路器的出線或變壓器側
7)為了減輕發電機內部故障時的損傷,用於自動調節勵磁裝置的電流互感器應布置在發電機定子繞組的出線側。為了便於分析和在發電機並入系統前發現內部故障,用於測量儀表的電流互感器宜裝在發電機中性點側。 電流互感器的接線方式按其所接負載的運行要求確定。最常用的接線方式為單相、三相星形和不完全星形三種,分別如圖4a、圖4b和圖4c。
額定變比和誤差:電流互感器的額定變比KN指電流互感器的額定電流比。即:KN=I1N/I2N
電流互感器原邊電流在一定范圍內變動時,一般規定為10~120%I1N,副邊電流應按比例變化,而且原、副邊電壓(或電流)應該同相位。但由於互感器存在內阻抗、勵磁電流和損耗等因素而使比值及相位出現誤差,分別稱為比差和角差。
比差為經折算後的二次電流與一次電流量值大小之差對後者之比,即fI 為電流互感器的比差。當KNI2>I1時,比差為正,反之為負。
對於沒有採取補償措施的電流互感器,比差為負值,角差為正值,比差的絕對值和角差均隨電流增大而減小。
採用補償的辦法可以減小互感器的誤差。一般通過在互感器上加繞附加繞組或增添附加鐵心,以及接入相應的電阻、電感、電容元件來補償。常用的補償法有匝數補償、分數匝補償、小鐵心補償、並聯電容補償等。 在進行電流互感器誤差試驗之前,通常需要檢查極性和退磁等試驗。
極性檢查
電流互感器一次繞組標志為P1、P2,二次繞組標志為S1、S2。若P1、S1是同名端,則這種標志叫減極性。一次電流從P1進,二次電流從S1出。極性檢查很簡單,除了可以在互感器校驗儀上進行檢查外,還可以使用直流檢查法。
退磁檢查
電流互感器在電流突然下降的情況下,互感器鐵芯可能產生剩磁。如電流互感器在大電流情況下突然切斷電源、二次繞組突然開路等。互感器鐵芯有剩磁,使鐵芯磁導率下降,影響互感器性能。長期使用後的互感器都應該退磁。互感器檢驗前也要退磁。退磁就是通過一次或二次繞組以交變的勵磁電流,給鐵芯以交變的磁場。從0開始逐漸加大交變的磁場(勵磁電流)使鐵芯達到飽和狀態,然後再慢慢減小勵磁電流到零,以消除剩磁。
對於電流互感器退磁,一次繞組開路,二次繞組通以工頻電流,從零開始逐漸增加到一定的電流值(該電流值與互感器的設計測量上限有關,一般為額定電流的20-50%左右。可以這樣判斷,如果電流突然急劇變大,此時表示鐵芯以進入磁飽和階段)。然後再將電流緩慢降為零,如此重復2-3次。在斷開電源前,應將一次繞組短接,才斷開電源。鐵芯退磁完成。此方法稱開路退磁法。對於有些電流互感器,由於二次繞組的匝數都比較多。若採用開路退磁法,開路的繞組可能產生高電壓。因此可以在二次繞組接上較大的電阻(額定阻抗的10-20倍)。一次繞組通以電流,從零漸變到互感器一次繞組的允許的最大電流,再漸變到零,如此重復2-3次。由於接有負載鐵芯可能不能完全退磁。由於一次繞組的最大電流有限制,過大的話可能燒壞一次繞組。如果接有負載的二次繞組產生電壓不是過高的話,可以加大二次繞組的負載電阻。這樣可以提高退磁效果。
准確度檢查
互感器誤差試驗一般採用被測互感器與標准互感器進行比較,兩互感器的二次電流差即為被測互感器誤差。此種檢驗方法稱比較法。標准互感器要求比被測互感器高出二個等級,此時標准互感器誤差可忽略不計。若標准互感器比被測互感器只高一個等級,此時試驗結果誤差應考慮加上標准互感器誤差。
被測互感器與標准互感器的二次電流差一般採用互感器校驗儀進行量。直接從互感器校驗儀上讀出比值差fx(%),相位差δx(』)。由於互感器校驗儀測的是被測互感器與標准互感器電流差與二次電流的比值,所以對互感器校驗儀的要求不高。要能校驗什麼等級的互感器,基本由標准互感器決定。
標准互感器是互感器校驗系統的關鍵核心。對被測互感器進行校驗,除了標准互感器、互感器校驗儀還要有給互感器提供一次電流的升流器,可以調節升流器電流的調壓器,及負載。 電流互感器 - 使用注意事項電流互感器運行時,副邊不允許開路。因為一旦開路,原邊電流均成為勵磁電流,使磁通和副邊電壓大大超過正常值而危及人身和設備安全。因此,電流互感器副邊迴路中不許接熔斷器,也不允許在運行時未經旁路就拆下電流表、繼電器等設備。
電流互感器運行時,副邊不允許開路。原因如下:
⒈電流互感器一次被測電流磁勢I1N1在鐵芯產生磁通Φ1
⒉電流互感器二次測量儀表電流磁勢I2N2在鐵芯產生磁通Φ2
⒊電流互感器鐵芯合磁通:Φ = Φ1 + Φ2
⒋因為Φ1.Φ2方向相反,大小相等,互相抵消,所以 Φ = 0
⒌若二次開路,即 I2 = 0 ,則:Φ = Φ1,電流互感器鐵芯磁通很強,飽和,鐵心發熱,燒壞絕緣,產生漏電
⒍若二次開路,即 I2 = 0 ,則:Φ = Φ1,Φ在電流互感器二次線圈N2中產生很高的感生電勢e,在電流互感器二次線圈兩端形成高壓,危及操作人員生命安全
⒎電流互感器二次線圈一端接地,就是為了防止高壓危險而採取的保護措施。
『叄』 電流互感器如何使用
利用變壓器原、副邊電流成比例的特點製成。其工作原理、等值電路也與一般變壓器相同,只是其原邊繞組串聯在被測電路中,且匝數很少;副邊繞組接電流表、繼電器電流線圈等低阻抗負載,近似短路。原邊電流(即被測電流)和副邊電流取決於被測線路的負載,而與電流互感器的副邊負載無關。由於副邊接近於短路,所以原、副邊電壓U1和都很小,勵磁電流I0也很小。 電流互感器運行時,副邊不允許開路。因為一旦開路,原邊電流均成為勵磁電流,使磁通和副邊電壓大大超過正常值而危及人身和設備安全。因此,電流互感器副邊迴路中不許接熔斷器,也不允許在運行時未經旁路就拆下電流表、繼電器等設備。 電流互感器的接線方式按其所接負載的運行要求確定。最常用的接線方式為單相,三相星形和不完全星形。 額定變比和誤差互感器的額定變比KN指電壓互感器的額定電壓比和電流互感器的額定電流比。前者定義為原邊繞組額定電壓U1N與副邊繞組額定電壓 U2N之比;後者則為額定電流I1N與I2N之比。即 KN=U1N/U2N (對電壓互感器) KN=I1N/I2N (對電流互感器) 電壓(或電流)互感器原邊電壓(或電流)在一定范圍內變動時,一般規定為0.85~1.15U1N(或10~120%I1N),副邊電壓(或電流)應按比例變化,而且原、副邊電壓(或電流)應該同相位。但由於互感器存在內阻抗、勵磁電流和損耗等因素而使比值及相位出現誤差,分別稱為比差和角差。 比差為經折算後的二次電壓(或二次電流)與一次電壓(或一次電流)量值大小之差對後者之比,即 fU 為電壓互感器的比差,fI 為電流互感器的比差。當KNU2>U1(或KNI2>I1)時,比差為正,反之為負。 角差為二次電壓(或二次電流)相量旋轉180°後與一次電壓(或一次電流)相量之間的夾角,以分為單位。並規定副邊的-妧2(或-夒2)超前於妧1(或夒1)時,角差為正,反之為負。 對沒有採取補償措施的電壓互感器,比差為負,角差一般為正值,比差的絕對值和角差均隨電壓的增大而減小;鐵心飽和時,比差與角差均隨電壓的增大而增大。 對於沒有採取補償措施的電流互感器,比差為負值,角差為正值,比差的絕對值和角差均隨電流增大而減小。 採用補償的辦法可以減小互感器的誤差。一般通過在互感器上加繞附加繞組或增添附加鐵心,以及接入相應的電阻、電感、電容元件來補償。常用的補償法有匝數補償、分數匝補償、小鐵心補償、並聯電容補償等。互感器在供配電系統中主要分為兩種:電壓互感器和電流互感器。
在供配電系統中,大電流、高電壓有時不能直接用電流表和電壓表來測量,必須通過互感器按比例減小後測量。
互感器的內部結構就是變壓器。按照變壓器的原理運行。
電流互感器的工作原理相當於2次側短路的變壓器,用來變流,在二次側接入電流表測量電流(可以串聯多個電流表)。電流互感器的二次側不能開路。
當運行中電流互感器二次側開路後,一次側電流仍然不變,二次側電流等於零,則二次電流產生的去磁磁通也消失了。這時,一次電流全部變成勵磁電流,使互感器鐵芯飽和,磁通也很高,將產生以下後果:
(1)由於磁通飽和,其二次側將產生數千伏高壓,且波形改變,對人身和設備造成危害。
(2)由於鐵芯磁通飽和,使鐵芯損耗增加,產生高熱,會損壞絕緣。
(3)將在鐵芯中產生剩磁,使互感器比差和角差增大,失去准確性,所以電流互感器二次側是不允許開路的。互感器和變壓器的工作原理相同,都是運用電磁感應原理來工作的.變壓器的作用是將一種等級的電壓變換成另一種等級的同頻率的電壓,它只能實現電壓的變換,不能實現功率的變換.互感器分為電壓互感器和電流互感器.電壓互感器的作用是供給測量儀表,繼電器等電壓,從而正確的反映一次電氣系統的各種運行情況.使測量儀表,繼電器等二次電氣系統與一次電氣系統隔離,以保證人員和二次設備的安全,將一次電氣系統的高電壓變換成同意標準的低電壓值(100伏,100/1.732伏,100/3伏). 電力互感器的作用與電壓互感器的作用基本相同,不同的就是電流互感器是將一次電氣系統的大電流變換成標準的5安或1安供給繼續電器,測量儀表的電流線圈.
『肆』 電流互感器干什麼用的
電流互感器是用來測量交流電的設備,如發電或輸電過程中,可將不同設備的交流電轉換成所需的幾十安到幾萬安的電流,不僅能監控測量這些線路的電流大小,還能避免高壓危險。
在發電、變電、輸電、配電和用電的線路中電流大小懸殊,從幾安到幾萬安都有。為便於測量、保護和控制需要轉換為比較統一的電流,另外線路上的電壓一般都比較高如直接測量是非常危險的。電流互感器就起到電流變換和電氣隔離作用。
(4)電流互感器使用方法擴展閱讀:
使用電流互感器注意事項
1、首先電流互感器都是按減極性來標識的,如果極性連接錯誤,不僅影響電流計量值,還會導致線路出現短路情況。
2、其次使用電流互感器時,二次迴路中要設置接地點,並確保良好連接,一般可設置在箱體端子處,避免繞組間絕緣擊穿形成高壓而傷及人身安全。此外二次繞組不可開路,否則會出現過熱或高壓危險,既會燒壞繞組,又會危及人身安全。
3、最後使用電流互感器時,要查看它的額定電流的標准值,沒有達到使用標准范圍會導致互感器發生燒壞現象。反之也不能選擇電流過大的互感器,這樣會影響它的測量精度。最好根據具體情況來選擇使用,安裝前可多了解一下它的安裝方法和使用注意事項,避免發生意外。
『伍』 電流互感器怎麼測電流我實在不知道怎麼去測了,有誰知道怎麼去測的嗎
電流互感器首先要知道匝數比是多少,對應的比如500:5或者1000:5,那就是說輸出每1A對應實際是100A,或者200A
剛好看到你的問的這個問題,我自己是做高壓配件采購這一塊的 經常會買一些 10KV 35KV 的互感器啊 斷路器啊等等,
我自己經常會去一家買, 合作好幾年了,也很放心。我把他們家的截圖給你看下吧,你要有興趣 也可以去看看的。
『陸』 電流互感器的接線方式有哪些兩相式接線適用於什麼場合
電氣維修專家通意達提醒,電流互感器的接法不復雜,只有四種接線形式。
1、是單台電流互感器的接線形式。
只能反映單相電流的情況,適用於需要測量一相電流或三相負荷平衡,測量一相就可知道三相的情況,大部分接用電流表。
4、兩相差電流接線形式。
也僅用於三相三線制電路中,中性點不接地,也無中性線,這種接線的優點是不但節省一塊電流互感器,而且也可以用一塊繼電器反映三相電路中的各種相間短路故障,亦即用最少的繼電器完成三相過電流保護,節省投資。但故障形式不同時,其靈敏度不同。這種接線方式常用於 10kV 及以下的配電網作相間短路保護。由於此種保護靈敏度低,現代已經很少用了。
『柒』 電流互感器和電壓互感器使用時注意事項
電壓互感器使用注意事項:
1、電壓互感器的二次側在工作時不能短路。在正常工作時,其二次側的電流很小,近於開路狀態,當二次側短路時,其電流很大(二次側阻抗很小)將燒毀設備。
2、電壓互感器的二次側必須有一端接地,防止一、二次側擊穿時,高壓竄入二次側,危及人身和設備安全。
3、電壓互感器接線時,應注意一、二次側接線端子的極性。以保證測量的准確性。
電壓互感器的工作原理:
電壓互感器本身的阻抗很小,一旦副邊發生短路,電流將急劇增長而燒毀線圈。為此,電壓互感器的原邊接有熔斷器,副邊可靠接地,以免原、副邊絕緣損毀時,副邊出現對地高電位而造成人身和設備事故。
測量用電壓互感器一般都做成單相雙線圈結構,其原邊電壓為被測電壓(如電力系統的線電壓),可以單相使用,也可以用兩台接成V-V形作三相使用。
實驗室用的電壓互感器往往是原邊多抽頭的,以適應測量不同電壓的需要。供保護接地用電壓互感器還帶有一個第三線圈,稱三線圈電壓互感器。三相的第三線圈接成開口三角形,開口三角形的兩引出端與接地保護繼電器的電壓線圈聯接。
以上內容參考網路—電壓互感器
『捌』 電流互感器的使用方法
電流互感器的使用方法
1、電流互感器極性檢查 :
電流互感器一次繞組標志為P1、P2,二次繞組標志為S1、S2。若P1、S1是同名端,則這種標志叫減極性。一次電流從P1進,二次電流從S1出。極性檢查很簡單,除了可以在互感器校驗儀上進行檢查外,還可以使用直流檢查法。[1]
2、電流互感器退磁檢查
電流互感器在電流突然下降的情況下,互感器鐵芯可能產生剩磁。如電流互感器在大電流情況下突然切斷電源、二次繞組突然開路等。互感器鐵芯有剩磁,使鐵芯磁導率下降,影響互感器性能。長期使用後的互感器都應該退磁。互感器檢驗前也要退磁。退磁就是通過一次或二次繞組以交變的勵磁電流,給鐵芯以交變的磁場。從0開始逐漸加大交變的磁場(勵磁電流)使鐵芯達到飽和狀態,然後再慢慢減小勵磁電流到零,以消除剩磁。
對於電流互感器退磁,一次繞組開路,二次繞組通以工頻電流,從零開始逐漸增加到一定的電流值(該電流值與互感器的設計測量上限有關,一般為額定電流的20-50%左右。可以這樣判斷,如果電流突然急劇變大,此時表示鐵芯以進入磁飽和階段)。然後再將電流緩慢降為零,如此重復2-3次。在斷開電源前,應將一次繞組短接,才斷開電源。鐵芯退磁完成。此方法稱開路退磁法。對於有些電流互感器,由於二次繞組的匝數都比較多。若採用開路退磁法,開路的繞組可能產生高電壓。因此可以在二次繞組接上較大的電阻(額定阻抗的10-20倍)。一次繞組通以電流,從零漸變到互感器一次繞組的允許的最大電流,再漸變到零,如此重復2-3次。由於接有負載鐵芯可能不能完全退磁。由於一次繞組的最大電流有限制,過大的話可能燒壞一次繞組。如果接有負載的二次繞組產生電壓不是過高的話,可以加大二次繞組的負載電阻。這樣可以提高退磁效果。
3、電流互感器誤差試驗
互感器誤差試驗一般採用被測互感器與標准互感器進行比較,兩互感器的二次電流差即為被測互感器誤差。此種檢驗方法稱比較法。標准互感器要求比被測互感器高出二個等級,此時標准互感器誤差可忽略不計。若標准互感器比被測互感器只高一個等級,此時試驗結果誤差應考慮加上標准互感器誤差。
被測互感器與標准互感器的二次電流差一般採用互感器校驗儀進行量。直接從互感器校驗儀上讀出比值差fx(%),相位差δx(』)。由於互感器校驗儀測的是被測互感器與標准互感器電流差與二次電流的比值,所以對互感器校驗儀的要求不高。要能校驗什麼等級的互感器,基本由標准互感器決定。
標准互感器是互感器校驗系統的關鍵核心。對被測互感器進行校驗,除了標准互感器、互感器校驗儀還要有給互感器提供一次電流的升流器,可以調節升流器電流的調壓器,及負載。
『玖』 電流互感器正確的使用方法是什麼
c 電流互感器副邊不允許開路 會產生高電壓 有可能損壞儀器 和造成事故 電壓互感器副邊不允許短路 電壓互感器副邊短路相當於線路直接短路