Ⅰ 納米拋光粉的制備方法
納米粉體在新技術領域的發展,很多學者也開始研究合成納米拋光粉,主要方法有固相法、液相法及氣相法等。液相法是目前制備納米粉體的最常用方法之一,包括沉澱法、溶膠凝膠法、水熱晶化法、微乳液法。
沉澱法的優點是:成核快,易控制,工藝設備簡單,並且產品成本低,該法可制備高純度的產品。缺點是納米粉體較難過濾和洗滌,粉體也容易團聚。科研人員在室溫下分別以硫酸飾和硝酸飾為原料,逐滴加入氨水並攪拌,可合成納米拋光粉,經XRD表徵晶粒大小為2nm和12nm。本文研究了以不同升溫速率鍛燒前驅體碳酸飾,在緩慢升溫至350℃鍛燒時可合成花狀的納米顆粒,350℃直接鍛燒前驅體,則合成了片層狀的納米粒子。
溶膠一凝膠法是指以金屬有機化合物或有機絡合物為原料,在低溫下經過聚合或水解,形成溶膠,然後熱處理,可制備比表面積大、分散性好的超微納米粉。溶膠一凝膠法的優點是:可在低溫條件下進行,產物粒徑較小,並且粒度分布窄,合成產物的純度高等。缺點是:成本較高,並且熱處理過程中,由於顆粒小比表面大,容易團聚,整個過程相對所需的時間較長。
科技人員利用檸檬酸將草酸飾水解,低溫下制備成溶膠,後經蒸發得到凝膠,於120℃乾燥12h,可得到干凝膠呈淡黃色,將烘乾的干凝膠在不同溫度下焙燒後可得到粒徑不同的納米拋光粉。侯文華、徐林[[37〕等也採用來溶膠一凝膠法制備出分散均勻的拋光粉超細粒子,平均粒徑l
Onm,表面積為57m2/g
o
微乳液法是指由經兩種互不相溶的液體混合後組成均勻混合物,其中分散相以微液滴的形式存在。反應有以下兩種:一是反應由包含兩種反應物的微乳液混合,反應後生成沉澱;另一種是一種反應物微乳液與另一種反應物相互反應生成沉澱。微乳液法的特點是:顆粒之間不易於團聚,是因為粒子的表麵包裹有一層表面活性劑分子,並且該法可選擇不同的表面活性劑修飾粒子,可達到控制粒子大小的作用。缺點是該法所需消耗較多的表面活性劑和溶劑,這些有機物較難去除。
科研人員首次以TrionN-101/n-C8Hi8/n-CsOH/H20體系的W/O微乳液為反應介質,研製出了粒徑小於40nm的拋光粉。由於微乳液法制備的沉澱顆粒非常微小,而且均勻,因此近年來大量研究集中在以微乳液作為反應介質制備超細拋光粉超細顆粒。來自:www.dgmingkang.com
Ⅱ 粉末的制備方法有哪些
粉末制備方法太多了吧:
1、沉澱法/共沉澱法;
2、溶液水解法/氣相水解法;
3、研磨法;
4、高溫固相法;
5、溶膠凝膠法;
6、噴霧乾燥法/噴霧冷凍法;
7、氣相反應法;
8、熱分解法;
9、溶液電解法/熔鹽電解法;
10、熔鹽合成法;
11、水熱合成法;
12、熔體高壓冷卻法;
13、氣體高壓冷卻法;
14、激光氣相分解法;
15、微乳液法;
16、氣相沉積法;
17、模板沉積法/模板還原法/模板氧化法;
18、光蝕刻法;
……
Ⅲ 粉體工程的資料
粉體材料的制備方法有幾種?各有什麼優缺點?(20分)
答:粉末的制備方法: 氣相合成、濕化學合成、機械粉碎.
1. 物理方法
(1)真空冷凝法
用真空蒸發、加熱、高頻感應等方法使原料氣化或形成等離子體,然後驟冷。其特點純度高、結晶組織好、粒度可控,但技術設備要求高。
(2)物理粉碎法
通過機械粉碎、電火花爆炸等方法得到納米粒子。其特點操作簡單、成本低,但產品純度低,顆粒分布不均勻。
(3)機械球磨法
採用球磨方法,控制適當的條件得到純元素納米粒子、合金納米粒子或復合材料的納米粒子。其特點操作簡單、成本低,但產品純度低,顆粒分布不均勻。
2. 化學方法
(1)氣相沉積法
利用金屬化合物蒸氣的化學反應合成納米材料。其特點產品純度高,粒度分布窄。
(2)沉澱法
把沉澱劑加入到鹽溶液中反應後,將沉澱熱處理得到納米材料。其特點簡單易行,但純度低,顆粒半徑大,適合制備氧化物。
(3)水熱合成法
高溫高壓下在水溶液或蒸汽等流體中合成,再經分離和熱處理得納米粒子。其特點純度高,分散性好、粒度易控制。
(4)溶膠凝膠法
金屬化合物經溶液、溶膠、凝膠而固化,再經低溫熱處理而生成納米粒子。其特點反應物種多,產物顆粒均一,過程易控制,適於氧化物和Ⅱ~Ⅵ族化合物的制備。
(5)微乳液法
兩種互不相溶的溶劑在表面活性劑的作用下形成乳液,在微泡中經成核、聚結、團聚、熱處理後得納米粒子。其特點粒子的單分散和界面性好,Ⅱ~Ⅵ族半導體納米粒子多用此法制備
2. 為什麼要對粉體材料的表面進行改性?什麼是物理吸附?什麼是化學吸附?試舉例說明。(20分)
答: 材料表面改性的目的
力學性能:表面硬化、防氧化、耐磨等
電學性能:表面導電、透明電極
光學性能:表面波導、鍍膜玻璃
生物性能:生物活性、抗菌性
化學性能:催化性
裝飾性能:塑料表面金屬化
材料表面改性的意義
通過較為簡單的方法使一個部件 部件或產品 產品具有更為綜合的性能第一節 材料表面結構的變化
粉體表面改性是指用物理、化學、機械等方法對粉體材料表面進行處理,根據應用的需要有目的改變粉體材料表面的物理化學性質,如表面組成、結構和官能團、表面能、表面潤濕性、電性能、光、吸附特性等等,以滿足現代新材料、新工藝和新技術發展的需要。
在使用無機填料的時候,由於無機粉體填料與有機高聚物的表面或界面性質不同,相容性較差,因而難以在基質中均勻分散。故而必須對無機粉體填料表面進行改性,以改善其表面的物理化學特性,增強其與有機高聚物或樹脂等的相容性和在有機基質中的分散性,以提高材料的機械強度及綜合性能。
基本目的是增加與基體的相容性和潤濕性,提高它在基體中的分散性,增強與基體的界面結合力。
在此基礎上還可賦予材料新功能,擴大其應用范圍和應用領域,如用氧化鋁、二氧化硅包覆鈦白粉可改善其耐候性。
物理吸附也稱范德華吸附,它是由吸附質和吸附劑分子間作用力所引起,此力也稱作范德華力。吸附劑表面的分子由於作用力沒有平衡而保留有自由的力場來吸引吸附質,由於它是分子間的吸力所引起的吸附,所以結合力較弱,吸附熱較小,吸附和解吸速度也都較快。被吸附物質也較容易解吸出來,所以物理吸附是可逆的。如:活性炭對許多氣體的吸附,被吸附的氣體很容易解脫出來而不發生性質上的變化。
吸附質分子與固體表面原子(或分子)發生電子的轉移、交換或共有,形成吸附化學鍵的吸附。由於固體表面存在不均勻力場,表面上的原子往往還有剩餘的成鍵能力,當氣體分子碰撞到固體表面上時便與表面原子間發生電子的交換、轉移或共有,形成吸附化學鍵的吸附作用。
3. 利用熱力學、動力學知識試分析FeC或WC生產過程的條件。(10分)
答:在WC生產過程中,其原理是W+C===WC,從熱力學角度看,因為W和C都是比較穩定的物質,所以通常條件下不會發生反應,G大於0,所以要在高溫條件下(1350-1550℃),當在這個溫度下,C比較活躍,就是W碳化,從而形成WC。
4. 什麼是均勻沉澱法、直接沉澱法、共沉澱法、各有什麼優缺點?(20分)
答:均勻沉澱法是利用某一化學反應使溶液中的構晶離子由溶液中緩慢均勻地釋放出來,通過控制溶液中沉澱劑濃度,保證溶液中的沉澱處於一種平衡狀態,從而均勻的析出。通常加入的沉液劑, 不立刻與被沉澱組分發生反應, 而是通過化學反應使沉澱劑在整個溶液中緩慢生成,克服了由外部向溶液中直接加入沉澱劑而造成沉澱劑的局部不均勻性。
直接沉澱法是制備超細微粒廣泛採用的一種方法,其原理是在金屬鹽溶液中加入沉澱劑,在一定條件下生成沉澱析出,沉澱經洗滌、熱分解等處理工藝後得到超細產物。不同的沉澱劑可以得到不同的沉澱產物,常見的沉澱劑為:NH3•H2O、NaOH、(NH4)2CO3、Na2CO3、(NH4)2C2O4等。
直接沉澱法操作簡單易行,對設備技術要求不高,不易引入雜質,產品純度很高,有良好的化學計量性,成本較低。缺點是洗滌原溶液中的陰離子較難,得到的粒子粒經分布較寬,分散性較差。
共沉澱法是指在溶液中含有兩種或多種陽離子,它們以均相存在於溶液中,加入沉澱劑,經沉澱反應後,可得到各種成分的均一的沉澱,它是制備含有兩種或兩種以上金屬元素的復合氧化物超細粉體的重要方法。
5. 試述溶膠—凝膠法制備粉體材料的基本原理。(20分)
答:溶膠-凝膠法的基本原理
溶膠—凝膠(簡稱Sol—Gel)法是以金屬醇鹽的水解和聚合反應為基礎的。其反應過程通常用下列方程式表示:
(1)水解反應: M(OR)4 + χ H2O = M(OR)4- χ OH χ + χ ROH
(2)縮合-聚合反應:
失水縮合 -M-OH + OH-M- =-M-O-M- +H2O
失醇縮合 -M-OR + OH-M-=-M-O-M- +ROH
縮合產物不斷發生水解、縮聚反應,溶液的粘度不斷增加。最終形成凝膠——含金屬—氧—金屬鍵網路結構的無機聚合物。正是由於金屬—氧—金屬鍵的形成,使Sol—Gel法能在低溫下合成材料。Sol—Gel技術關鍵就在控制條件發生水解、縮聚反應形成溶膠、凝膠
凝膠-溶膠(Sol-gel)技術是指金屬有機或無機化合物經過溶液、溶膠、凝膠而固化、在經過熱處理而成氧化物或其它化合物固體的方法。
6. 利用粉體材料的制備方法,設計一個粉體材料的制備(包括工藝路線、溫度、燒法時間),並說明原因。
答:制備工藝對鐵基粉末冶金航空剎車材料組織與性能的影響
摘要
該論文針對某種牌號鐵基粉末冶金航空剎車材料的制備工藝進
行研究,系統研究了制備工藝對其組織與性能的影響,系統分析了壓
制壓力、燒結溫度、燒結壓力、冷卻水流量等重要的工藝參數變化對
材料顯微組織、緻密化、力學性能的影響規律以及由此引起的材料摩
擦磨損性能和行為的改變。結果表明:
(1)壓制壓力增大,促使鐵粉重排,移動加速,塑性好的粉末
發生局部的塑性變形,塑性較差的硬質顆粒產生碎化,使得各組元的
接觸面積增大,這些因素的綜合作用,有效地減少了孔隙的數量及尺
寸,使得材料密度和硬度逐漸升高,進而,材料的耐磨性能得到有效
改善。
(2)燒結溫度由900℃升高到930℃時,銅粉和鐵粉的塑性得以
進一步提高,更容易產生塑性變形,促進緻密化過程的進行,同時,
異晶轉變的存在,使鐵的自擴散系數略有增加,然而,碳在鐵中的擴
散系數降低,這些因素的綜合作用使得密度緩慢增加,組織以軟韌相
的鐵素體為主,材料的耐磨性較差;燒結溫度由930℃增加至1020
℃,鐵粉和銅粉的變形程度更大,原子擴散系數顯著提高,材料緻密
化程度迅速增加,組織中珠光體數量增多且分布比較均勻,同時,顆
粒間的結合由機械嚙合轉變為冶金結合,提高了材料的強度,材料磨
損性能顯著提高。
(3)燒結壓力由1.6MPa增加到2.8MPa時,材料變形程度增
大,有效地消除了材料內部及晶界處的孔隙,材料密度和硬度顯著提
高,磨損性能得到改善;燒結壓力由2.8MPa提高到3.2MPa時,材
料密度和硬度變化不顯著,摩擦磨損性能變化不大,說明繼續提高燒
結壓力對材料的緻密化程度以及摩擦磨損性能影響不大。
(4)冷卻水流量由0增至0.04m3/s,冷卻速度出現先增大後減
小的趨勢,這與燒結爐的結構有關,水流量越大,內罩與冷卻水的接
觸面上的水花噴濺越劇烈,使材料的冷卻效果降低,當冷卻水流量為
0.027 n13/s時,冷卻速度最快,其組織以片狀珠光體和粒狀珠光體為
主,此時片狀珠光體的片間距最小,材料的硬度和摩擦磨損性能隨冷
卻速度的增加而提高。關鍵詞:粉末冶金,摩擦材料,鐵基,摩擦磨損,制備工藝
Ⅳ 固相,液相,氣相法合成陶瓷粉體的主要方法有哪些,各有什麼優缺點
用陶土燒制的器皿叫陶器,用瓷土燒制的器皿叫瓷器。陶瓷則是陶器,炻器和瓷器的總稱。凡是用陶土和瓷土這兩種不同性質的粘土為原料,經過配料、成型、乾燥、焙燒等工藝流程製成的器物都可以叫陶瓷。
Ⅳ 納米金屬粉末的特點有什麼,有哪些制備方法
納米金屬粉末的特點:
1.高效催化劑:納米粉末所具有的高活性、比表面積大的特點使其常適於用作為催化劑。實驗研究表明,納米鈷粉、粉、鋅粉等具有極強的催化效果。利用這些納米粉末製成的催化劑在一些有機物的化學合成方面,催化效率比傳統催化劑要高出數十倍,可用於有機物氫化反應、汽車尾氣處理等。(納米鈷粉,納米鎳粉,納米鋅粉)
2.高效助燃劑:納米粉末具有極強的儲能特性,將其作為添加劑加入燃料中可大大提高燃燒率。將一些納米粉末添加到火箭的固體燃料推進劑中, 可大幅度提高燃料的燃燒熱、燃燒效率,改善燃穩定性。有研究表明,向火箭固體燃料中加入0.5%納米鋁粉或鎳粉,可使燃燒效率提高10%-25%,燃燒速度加快數十倍。(納米鋁粉,納米鎳粉)
納米金屬粉末的制備方法:
1.傳統制備方法:氣相法、液相法、固相法。
2.新型制備方法:等離子氣化法、金屬噴霧燃燒法。
Ⅵ 化學高手進
固相法是指納米粉體是由固相原料製得,按其加工的工藝特點可分為機械粉碎法和固相反應法兩類。
3.1.1機械粉碎法
機械粉碎法主要過程是將基質粉末與納米粉體進行混合、球磨,然後燒結。普通粉碎法很難製得納米粉體,但高能球磨能為固相反應提供巨大的驅動力。將高能球磨法和固相反應結合起來,則可通過顆粒間的反應直接合成納米化合物粉體。如合成金屬碳化物、氟化物、氮化物、金屬一氧化物復合納米粉體等。義大利的Matteazzi P和澳大利亞的Calka等人,在高能球磨法制備上述納米陶瓷粉體方面做了大量研究工作。如在室溫下、N2氣氛中將鋁粉進行高能球磨,則可得到納米AlN粉[1]。
機械粉碎法存在一些問題,如粉體粒徑控制較難,使得工業化生產有一定的困難,球磨本身不能完全破壞納米顆粒之間的團聚,不能保證兩相組成的均勻分散,以致球磨之後分散顆粒團聚、沉降造成進一步的不均勻。另外球磨及氧化等帶來的污染也會降低納米陶瓷粉體的純度。如果在機械混合分散的基礎上使用大功率超聲波破壞團聚,調整體系的pH值使兩種粉末懸浮顆粒的雙電層結構具有靜電穩定性,可使最終的分散性有所改善。
3.2.2固相反應法
固相反應法又分為燃燒法和熱分解法。燃燒法是指把金屬鹽或金屬氧化物按配方充分混合,研磨後進行鍛燒,發生固相反應後,直接得到納米陶瓷粉體或再進行研磨得到納米陶瓷粉體。例如現在常見的BaTiO3的制備方法之一就是將TiO2和BaCO3等摩爾混合後鍛燒,發生固相反應,合成了BaTi03後再進行粉碎來獲得納米陶瓷粉[2]。熱分解法則是利用金屬化合物的熱分解來制備納米陶瓷材料。如草酸鹽、碳酸鹽熱分解都可製得納米氧化物。還可以加熱分解金屬與某些螯合劑(如檸檬酸、乳酸等)所形成的螯合物,製得高性能的納米陶瓷粉體。
3.2液相法
液相法是目前廣泛採用的制備納米陶瓷粉體的方法,其基本過程原理是:選擇一種或多種合適的可溶性金屬鹽類,按所制備的材料組成計量配製成溶液,再選擇一種合適的沉澱劑或用蒸發、升華、水解等操作,使金屬離子均勻沉澱或結晶出來,最後將沉澱或結晶的脫水或者加熱分解而得到納米陶瓷粉體。
3.2.1沉澱法
沉澱法又分為直接沉澱法、共沉澱法和均勻沉澱法等,都是利用生成沉澱的液相反應來製取。共沉澱法可在制備過程中完成反應及摻雜過程,因此較多地應用於電子陶瓷的制備。BaTiO3是一種重要的電子陶瓷材料,具有高介電常數和優異的鐵電和壓電性能。用TiCl4,H2O2和BaCl2以共沉澱法制備過氧化鈦前驅體,經無水乙醇分散脫水,熱分解制備出顆粒直徑小於30 nm的BaTi03納米晶[3]。
3.2.2水熱法
水熱法是通過高溫高壓在水溶液或蒸汽中合成物質,再經分離和熱處理得到納米微粒。水熱條件下離子反應和水解反應可以得到加速和促進,使一些在常溫常壓下反應速度很慢的熱力學反應,在水熱條件下可以快速進行。依據反應類型不同可分為:水熱氧化、還原、沉澱、合成、水解、結晶等。利用超臨界的水熱合成裝置,可連續地獲得Fe203 ,鈦TiO2, ZrO2, BaO?6Fe2O3, Ce02等一系列納米氧化物粉體[4-5]。水熱法比較適合氧化物材料合成和少數對水不敏感的硫化物的制備。
3.2.3溶膠一凝膠法
溶膠一凝膠法是利用金屬醇鹽的水解和聚合反應制備金屬氧化物或金屬氫氧化物的均勻溶膠,然後利用溶劑、催化劑、配合劑等將溶膠濃縮成透明凝膠,凝膠經乾燥,熱處理可得到所需納米微粒。其中,控制溶膠凝膠化的主要參數有溶液的pH值、溶液濃度、反應溫度和時間等。通過調節工藝條件,可以制備出粒徑小、粒徑分布窄的納米微粉。採用溶膠一凝膠法工藝簡單,可實現顆粒粒徑的控制,制備出的納米粉體純度高,但成本相對較大。
3.2.4水解法
有很多化合物可用水解生成沉澱,其中有些還廣泛用來合成納米陶瓷粉體。水解反應的產物一般是氫氧化物或水合物。經過濾、乾燥、焙燒等過程就可以得到氧化物納米陶瓷粉體。
在制備納米陶瓷粉體過程中,通常採用金屬醇鹽水解法。該法是將醇鹽溶解於有機溶劑中,通過加人蒸餾水使醇鹽水解、聚合,形成溶膠。溶膠形成後,隨著水的加人轉變為凝膠,凝膠在真空狀態下低溫乾燥,得到疏鬆的干凝膠,再將干凝膠作高溫燃燒處理,即可得到氧化物納米陶瓷粉體。如Mazdiyashi等人利用此方法合成了粒徑在5-15nm的精細BaTiO3納米陶瓷粉末[6]。
3.3氣相法
氣相法是直接利用氣體,或者通過各種手段將物質轉變為氣體,使之在氣體狀態下發生物理變化或者化學反應,最後在冷卻過程中凝聚長大形成納米粒子的方法。用該法可制備純度高、顆粒分散性好、粒徑分布窄、粒徑小的納米陶瓷粉體。氣相法又可分為氣體中蒸發法、化學氣相反應法、濺射源法、流動油麵上真空沉積法和金屬蒸汽合成法。
3.3.1氣體中蒸發法
氣體中蒸發法是在惰性氣體(如He, Ar, Xe等)或活性氣體(如O2,CH4,NH3等)中將金屬、合金或化合物進行真空加熱蒸發氣化,然後在氣體介質中冷凝而形成納米陶瓷粉體。通過蒸發溫度、氣體種類和壓力控制顆粒的大小,一般製得顆粒的粒徑為10nm左右。其中蒸發源可用電阻加熱、高頻感應加熱,對高熔點物質則可採用等離子體、激光和電子束加熱等1987年美國的Argonne實驗室的Sicgel等採用此法制備了平均粒徑為12 nm的Ti02陶瓷粉體,而後該實驗室還用該方法制備了粒徑在4-8nm的ZrO2和中粒徑為4 nm的Y203等納米陶瓷粉體[7]。該方法適合制備熔點較低的粉體;對於高熔點的碳化物和氮化物等,則能量消耗太大,而且裝置龐大、結構復雜,設備也較昂貴。
3.3.2化學氣相反應法
化學氣相反應法制備納米微粒是利用揮發性的金屬化合物的蒸汽,通過化學反應生成所需要的化合物,在保護氣體環境下快速冷凝,從而制備各類物質的納米微粒。該方法也叫化學氣相沉積法(chemical vapor deposition,簡稱CVD)。
自上世紀80年代起,CVD技術逐漸用於粉狀、快狀材料和纖維等的合成,成功制備了SiC, Si304和AlN等多種超細顆粒[8]。最初的CVD反應器是由電爐加熱,這種熱CVD技術雖可合成一些材料的超細顆粒,但由於反應器內溫度梯度小,合成的粒子不但粒度大,而且易團聚和燒結,這也是熱CVD合成納米顆粒的最大局限。在此基礎上,人們又開發了多種制備技術,如等離子體CVD法、激光CVD法等等。
3.3.3濺射源法
濺射源法用兩塊金屬板作為陽極和陰極,陰極為蒸發用的材料,在兩電極間充人惰性氣體Ar(40-250 Pa),兩電極間施加的電壓范圍為(0-31.5V)。由於兩極間的輝光放電使Ar離子形成,在電場的作用下Ar離子沖擊陰極靶材表面,使靶材原子從表面蒸發出來形成超微粒子,並在附著面上沉積下來。粒子的大小及尺寸分布主要取決於兩電極間的電壓、電流和氣體的壓力。靶材的面積愈大,原子的蒸發速度愈高,納米陶瓷粉體的獲得量就愈多[9]。商用磁控濺射裝置可用來制備7-50 nm直徑的納米陶瓷分子團,己用磁控濺射研究了TiO2, Zr02等陶瓷納米品的生成。
3.3.4流動油麵上真空沉積法
流動油麵上真空沉積法(VEROS法)的原理是在高真空中將原料用電子束加熱蒸發,讓蒸發物沉積到旋轉圓盤的下表面的流動油麵,在油中蒸發原子結合形成納米陶瓷粉體[10]。其優點是,平均粒徑很小,為3nm左右,而且粒度很整齊,另外,納米陶瓷粉體一形成就在油中分散,處於孤立狀態。其缺點是,生成的納米陶瓷粉體與油較難分離,且產率低。
總的說來氣相法所得的納米陶瓷粉體純度高、團聚較少、燒結性能也往往較好但設備昂貴、產量較低、不易普及;固相法所用設備簡單、操作方便,但所得粉體往往不夠純,粒度分布也較大,適用於要求比較低的場合;液相法介於氣相法與固相法之間,與氣相法相比,液相法具有設備簡單、無需真空等苛刻物理條件、易放大等優點,同時又比固相法製得的粉體純凈、團聚少,很容易實現工業化生產,因此很有發展前途。
4納米陶瓷的熱力學特性
4.1納米陶瓷的燒結
4.1.1燒結溫度的變化
納米陶瓷粉體的燒結溫度較低。研究表明,無團聚的含ZrO2納米粉體(顆粒尺寸為10-20nm)在1200℃時.即可燒結到理論密度的95%,且升溫速率可達500℃/min.保溫時間僅需2min,而微米級時燒結溫度為1650℃左右。文獻 [l4]通過對Y-TZP納米份體燒結初期動力學過程的研究,提出了晶界擴散是燒結初期導致收縮的主導因素並推導出如下燒結動力學方程:
其中為晶界擴散系數;Ω為空位體積;R為顆粒半徑;k為波爾茲曼常致;T為燒結溫度;t燒結時間。實驗表明:對於無團聚體的超細粉體,燒結初期素坯收縮量與燒結時間成線性關系。
4.1.2燒結動力學
超微粉體的巨大比表面,意味著作為粉體燒結的驅動力的表面能劇增,引起擴散速率增加,更兼擴散路徑變小.在有化學反應參與的燒結過程中,顆粒接觸表面增加,增加反應的機率,加快了反應速率;這些均引起燒結活化能變小,使整個燒結的速率加快,燒結溫度變低,燒結時間變短.但是整個燒結過程中的晶粒長大亦即重結晶過程亦會加速,而燒結溫度的降低和時間的縮短,會使重結晶過程減緩.這些相互促進和制約因素的作用,有必要加以重新認識和研究,以確立適應於超微顆粒燒結的動力學.
4.2納米陶瓷的力學性能
4.2.1力學性能的改善
研究表明在材料基體中引入納米分散相進行復合,可使材料的力學性能得到極大的改善。主要表現為大幅度提高了斷裂強度及斷裂韌性,材料的耐高溫性能得到了明顯的改善。圖1為A1203/SiC納米復合材料中SiC含量對復合陶瓷強度和韌性的影響[11]。圖2表示Si3N4/SiC復合陶瓷強度和斷裂韌性隨納米SiC含量的變化[12]。
圖1 SiC含量對強度和韌性
的影響(A1203/SiC系統)
SiC(體積分數,下同)%<25%時均可使力學性能得到改善,同時材料的硬度、彈性模量和抗熱震、抗高溫性能均得到提高。新原皓一等在Si3N4納米粒子中摻入25 % SiC納米粒子,可將Si3N4納米陶瓷的斷裂韌性從4.5MPa?m1/2提高到6.5 MPa?m1/2,強度從850 MPa增加到1550MPa[16]。
4.2.2超塑性
超塑性是指在應力作用下產生異常大的拉伸形變而不發生破壞的能力。陶瓷材料是具有方向性的離子鍵和共價鍵的過渡鍵型,位錯密度小,晶界難以滑移,使得陶瓷硬度大,脆性高,普通陶瓷材料在常溫下幾乎不產生塑性形變。只有當溫度達到1000℃以上,晶質與晶界的熱運動加速,陶瓷才具有一定的塑性。
最近研究發現,隨著粒徑的減少,納米Ti02和Zn0陶瓷的形變率敏感度明顯提高,主要是試樣中氣孔減少,可以認為這種趨勢是細晶陶瓷所固有的。最細晶粒處的形變率敏感度大約為0. 04,表明這些陶瓷具有延展性,盡管沒有表現出室溫超塑性,但隨著晶粒的進一步減小,這一可能是存在的。通過原子力顯微鏡發現納米3Y -T7P陶瓷( 100nm左右)在經室溫循環拉伸實驗後,其樣品的斷口區域發生了局部超塑性形變,並從斷口側面觀察到了大量通常出現在金屬斷口的滑移線。
4.2.3強化增韌機理
一般認為陶瓷具有超塑性應該具有兩個條件:(1)較小的粒徑;(2)快速的擴散途徑(增強的晶格、晶界擴散能力)。目前已知的強化增韌機理大致可分為5種類型:彌散增韌、裂紋增韌、延性相增韌、陶瓷顯微(晶須)增韌及相變增韌。根據新原皓一的研究[14],認為納米復合陶瓷的強化增韌主要通過以下幾種效應得以實現:1)彌散相可有效抑制基質晶粒的生長及異常長大;2)存在於彌散相或彌散相周圍的局部應力,是由基體與彌散相之間膨脹失配而產生,並在冷卻階段產生位錯,納米粒子釘扎或進入位錯區使基體晶粒內產生潛晶界,晶粒發生細化而減弱了主晶界的作用;3)納米級粒子周圍的局部拉伸應力誘發穿晶斷裂,並由於A1203硬粒子對裂紋尖端的反射作用而產生韌化;4)納米粒子高溫牽制位錯運動,使高溫力學性能如硬度、強度及抗蠕變性能得到改善。研究[15]通過對A1203/SiC納米復合材料熱壓合成實驗後認為:晶內粒子對裂紋的偏析和微裂紋及加工引起的壓縮表面應力都不是強化增韌的主要機理;斷裂模式的改變,即從純基體的沿晶斷裂至復合材料的穿晶斷裂,可能是使材料韌性增強的主要原因,穿晶斷裂的發生與結構中存在的納米化效應有關。
Ⅶ 制備納米粉體的方法
納米粒子的制備方法很多,可分為物理方法和化學方法。
1.
物理方法
(1)真空冷凝法
用真空蒸發、加熱、高頻感應等方法使原料氣化或形成等離子體,然後驟冷。其特點純度高、結晶組織好、粒度可控,但技術設備要求高。
(2)物理粉碎法
通過機械粉碎、電火花爆炸等方法得到納米粒子。其特點操作簡單、成本低,但產品純度低,顆粒分布不均勻。
(3)機械球磨法
採用球磨方法,控制適當的條件得到純元素納米粒子、合金納米粒子或復合材料的納米粒子。其特點操作簡單、成本低,但產品純度低,顆粒分布不均勻。
2.
化學方法
(1)氣相沉積法
利用金屬化合物蒸氣的化學反應合成納米材料。其特點產品純度高,粒度分布窄。
(2)沉澱法
把沉澱劑加入到鹽溶液中反應後,將沉澱熱處理得到納米材料。其特點簡單易行,但純度低,顆粒半徑大,適合制備氧化物。
(3)水熱合成法
高溫高壓下在水溶液或蒸汽等流體中合成,再經分離和熱處理得納米粒子。其特點純度高,分散性好、粒度易控制。
(4)溶膠凝膠法
金屬化合物經溶液、溶膠、凝膠而固化,再經低溫熱處理而生成納米粒子。其特點反應物種多,產物顆粒均一,過程易控制,適於氧化物和ⅱ~ⅵ族化合物的制備。
(5)微乳液法
兩種互不相溶的溶劑在表面活性劑的作用下形成乳液,在微泡中經成核、聚結、團聚、熱處理後得納米粒子。其特點粒子的單分散和界面性好,ⅱ~ⅵ族半導體納米粒子多用此法制備
Ⅷ 粉末樣品制備有幾種方法,應注意什麼問題
方法:
有固體溶劑壓片和直接使用粉末壓片。
注意:
使用固體溶劑壓片是其溶劑的性質不能與待 測物質相近,然後就是溶劑的使用量的問題。直接壓片時晶粒要細小,試樣取向無規則。
Ⅸ 什麼是混合混合過程存在哪三種機理粉體物料混合方法常用的有哪兩種
混合,就是在外力的作用下,各種物料組分互相摻合,其在任何容積里各種組分的微粒均勻分布。它是確保配合物料質量和提高物料效果的重要環節。
混合的方法有多種,如機械式混合、氣動式混合、沖動式混合等,其中機械式混合較為常見。
以機械式攪拌混合為例,其混合過程可分為3個階段:首先以散狀物料小塊運動形成的對流混合為主,混合均勻度迅速提高;其次,粒子問的相互滑動與沖擊,或槳葉與壁面之間的壓縮與伸延的剪切作用,混合速度平穩;第三,粒子位置交換的擴散作用與分離作用達到平衡狀態,即混合均勻性保持穩定或稍有波動。完成上述過程一般只需2~6分鍾,但不同的混合機有不同的均勻混合的時間要求。
分類
混合一般分為分批混合和連續混合。
1、分批混合
就是將各種物料組分根據配方的比例配成一定數量的一個批量,將這批量物料送入間隙工作的混合機分批地進行混合。混合一個周期,即生產出一個批量物料。這種混合可以迅速地改變配料的比例和品種,換批比較方便,每批之間的相互混雜較少,但操作比較頻繁。
2、連續混合
就是將各種物料組分分別連續計量,連續地送入連續混合機或相應的混合設備進行混合。這種工藝適應於比較固定地生產某一種品種和配方的物料,換批較麻煩,並且由於殘留物料多,造成兩批問的互混較重。
Ⅹ 怎麼將有機聚合物(如聚乙烯,聚羥丁酸酯)打成粉末
目前國內外通常將超細粉體制備方法分為物理法與化學法兩大類。顆粒度為微米級的多用物理法即顆粒從大到小的粉碎過程;對納米級的多用化學合成法即顆粒從小到大的生成過程。物理法派生出了粉碎法與構築法兩類,即用機械粉碎法、蒸發,凝縮法和熔融法等;化學法也派生出了沉澱法(溶液反應法)、水解法、噴霧法及氣象反應法等。
現在粉碎有機聚合物國際最先進工藝是:超臨界快速膨脹技術法
超臨界溶液快速膨脹(RESS)是由兩個互為相反的步驟構成,即先將溶質溶解在超臨界流體中,然後使超臨界流體在非常短的時間內,經過特製的噴嘴噴出至低壓或常壓環境中進行減壓膨脹,形成以音速傳遞的機械攪動,使溶質在瞬間形成大量晶核,並在短時間內形成晶體的生長,從而形成大量粒徑及形態均一的亞微米以至納米級微細顆粒。
由於壓力的傳遞幾乎在瞬間完成,形成的顆粒無溶劑殘留、粒徑小而均勻,且可通過溫度和壓力的控制來調控粒度尺寸的分布,有效解決了傳統方法制備微細顆粒所不能解決的問題。要想獲得粒度理想的超細粉產品,超臨界快速膨脹技術是最合適的方法。其特點是產品的純度高,幾何形狀均一,尺寸分布范圍窄;製造工藝簡單,操作溫度較低,適用材料范圍廣等。