⑴ 棘輪機構的工作原理是什麼
棘輪機構(ratchet and pawl),由棘輪和棘爪組成的一種單向間歇運動機構。棘輪機構常用在各種機床和自動機中間歇進給或回轉工作台的轉位上,也常用在千斤頂上。在自行車中棘輪機構用於單向驅動,在手動絞車中棘輪機構常用以防止逆轉。棘輪機構工作時常伴有雜訊和振動,因此它的工作頻率不能過高。
工作原理
圖示為機械中常用的外嚙合式棘輪機構,它由主動擺桿,棘爪,棘輪、止回棘爪和機架組成。主動件空套在與棘輪固連的從動軸上,並與驅動棘爪用轉動副相聯。當主動件逆時針方向擺動時,驅動棘爪便插入棘輪的齒槽中,使棘輪跟著轉過一定角度,此時,止回棘爪在棘輪的齒背上滑動。當主動件順時針方向轉動時,止回棘爪阻止棘輪發生順時針方向轉動,而驅動棘爪卻能夠在棘輪齒背上滑過,所以,這時棘輪靜止不動。因此,當主動件作連續的往復擺動時,棘輪作單向的間歇運動。
⑵ 棘輪機構的分類方式
棘輪機構的分類方式有以下幾種:
按結構形式
棘輪機構按結構形式分類可分為齒式棘輪機構和摩擦式棘輪機構。
齒式棘輪機構結構簡單,製造方便;動與停的時間比可通過選擇合適的驅動機構實現。該機構的缺點是動程只能作有級調節;噪音、沖擊和磨損較大,故不宜用於高速。摩擦式棘輪機構是用偏心扇形楔塊代替齒式棘輪機構中的棘爪,以無齒摩擦代替棘輪。特點是傳動平穩、無噪音;動程可無級調節。但因靠摩擦力傳動,會出現打滑現象,雖然可起到安全保護作用,但是傳動精度不高。適用於低速輕載的場合。
按嚙合方式
棘輪機構按嚙合方式分類可分為外嚙合棘輪機構和內嚙合棘輪機構。
外嚙合式棘輪機構的棘爪或楔塊均安裝在棘輪的外部,而內嚙合棘輪機構的棘爪或楔塊均在棘輪內部。
外嚙合式棘輪機構由於加工、安裝和維修方便,應用較廣。內嚙合棘輪機構的特點是結構緊湊,外形尺寸小。
按從動件運動形式
棘輪機構按從動件運動形式分類可分單動式棘輪機構、雙動式棘輪機構和雙向式棘輪機構。
單動式式棘輪機構當主動件按某一個方向擺動時,才能推動棘輪轉動。
雙動式棘輪機構,在主動搖桿向兩個方嚮往復擺動的過程中,分別帶動兩個棘爪,兩次推動棘輪轉動。
雙動式棘輪機構常用於載荷較大,棘輪尺寸受限,齒數較少,而主動擺桿的擺角小於棘輪齒距的場合。
以上介紹的棘輪機構,都只能按一個方向作單向間歇運動。雙向式棘輪機構可通過改變棘爪的擺動方向,實現棘輪兩個方向的轉動。圖示為兩種雙向式棘輪機構的形式,雙向式棘輪機構必須採用對稱齒形。
⑶ 棘輪機構和槽輪機構在結構和功能上有什麼差異
棘輪機構是一種常用的間歇機構, 其工作原理見圖5- 1。棘輪3與軸用鍵連接, 彈簧5用來使制動棘爪4和棘輪3保持接觸, 驅動棘爪2與連桿機構的搖桿1組成回轉副N。搖桿空套在軸上, 可自由擺動。 當搖桿逆時針擺動時, 驅動棘爪便插入棘輪的齒槽中, 推動棘輪轉過一定角度, 而制動棘爪則在棘輪的齒上滑過;當搖桿順時針擺動時, 驅動棘爪在棘輪的齒上滑過, 而制動棘爪將阻止棘輪作順時針轉動, 故棘輪靜止不動。 因此, 搖桿作連續的往復擺動時, 棘輪作單向間歇轉動。
棘輪機構結構簡單, 加工容易, 改變轉角大小方便, 可實現送進、 制動及超越等功能, 故廣泛應用於各種自動機械和儀表中。 其缺點是在運動開始和終止時, 棘輪和棘爪間都產生沖擊, 因此不宜用在具有很大質量的軸上。
槽輪機構, 由帶圓(柱)銷的主動撥盤、 具有徑向槽的從動槽輪和機架組成。 撥盤作勻速轉動時, 驅動槽輪作時轉、 時停的單向間歇運動。
槽輪機構結構簡單、 工作可靠, 機械效率高, 在進入和脫離接觸時運動比較平穩, 能准確控制轉動的角度。 但槽輪的轉角不可調節, 故只能用於定轉角的間歇運動機構中, 如自動機床、 電影機械、 包裝機械等
⑷ 為了使棘輪轉角能作無級調節,可採用什麼棘輪機構
摩擦式棘輪機構
⑸ 常見的棘輪機構,槽輪機構有哪幾種形式,各有什麼特點,各適用於什麼場合
棘輪機構的驅動是往復運動;槽輪機構的驅動是旋轉運動。棘輪機構調整方便。槽輪機構頻率固定。
⑹ 棘輪機構的設計要點
棘輪機構的設計主要應考慮:棘輪齒形的選擇 、模數齒數的確定 、齒面傾斜角的確定 、行程和動停比的調節方法
現以齒式棘輪機構為例,說明其設計方法齒形的選擇
圖示為常用齒形,不對稱梯形用於承受載荷較大的場合;當棘輪機構承受的載荷較小時,可採用三角形或圓弧形齒形;矩形和對稱梯形用於雙向式棘輪機構。
模數、齒數的確定
與齒輪相同,棘輪輪齒的有關尺寸也用模數m作為計算的基本參數,但棘輪的標准模數要按棘輪的頂圓直徑da來計算。
m = da/z
棘輪齒數z一般由棘輪機構的使用條件和運動要求選定。對於一般進給和分度所用的棘輪機構,可根據所要求的棘輪最小轉角來確定棘輪的齒數(z ≤250,一般取z = 8~30),然後選定模數。
齒面傾斜角的確定
棘輪齒面與徑向線所夾α稱為齒面傾斜角。棘爪軸心O1與輪齒頂點A的連線O1A與過A點的齒面法線nn的夾角β稱為棘爪軸心位置角。
為使棘爪在推動棘輪的過程中始終緊壓齒面滑向齒根部,應滿足棘齒對棘爪的法向反作用力N對O1軸的力矩大於摩擦力Ff沿齒面)對O1軸的力矩,即N·O1Asinβ > Ff·O1Acosβ
則 Ff/N < tanβ
因為 f = tanψ = Ff/N
所以 tanβ > tanψ
即 β >ψ
式中f和分別為棘爪與棘輪齒面間的摩擦系數和摩擦角,一般f取0.13 ~0.2。
行程和動停比調節
1)採用棘輪罩
通過改變棘輪罩的位置,使部分行程棘爪沿棘輪罩表面滑過,從而實現棘輪轉角大小的調整。
2)改變擺桿擺角
通過調節曲柄搖桿機構中曲柄的長度,改變搖桿擺角的大小,從而實現棘輪機構轉角大小的調整。
3) 採用多爪棘輪機構
要使棘輪每次轉動的角度小於一個輪齒所對應的中心角γ時,可採用棘爪數為m的多爪棘輪機構。
如n=3的棘輪機構,三棘爪位置依次錯開γ/3 ,當擺桿轉角Ф1在γ≥Ф1≥γ/3 范圍內變化時,三棘爪依次落入齒槽,推動棘輪轉動相應角度Ф2為 γ≥Ф2≥γ/3 范圍內γ/3 整數倍。
⑺ 常用的棘輪機構主要由哪四部分組成
棘輪、棘爪、搖桿、止回棘爪
⑻ 棘輪機構的簡介
棘輪機構將連續轉動或往復運動轉換成單向步進運動。
棘輪輪齒通常用單向齒,棘爪鉸接於搖桿上,當搖桿逆時針方向擺動時,驅動棘爪便插入棘輪齒以推動棘輪同向轉動;當搖桿順時針方向擺動時,棘爪在棘輪上滑過,棘輪停止轉動。為了確保棘輪不反轉,常在固定構件上加裝止逆棘爪。搖桿的往復擺動可由曲柄搖桿機構、齒輪機構和擺動油缸等實現,在傳遞很小動力時,也有用電磁鐵直接驅動棘爪的。棘輪每次轉過的角度稱為動程。動程的大小可利用改變驅動機構的結構參數或遮齒罩的位置等方法調節,也可以在運轉過程中加以調節。如果希望調節的精度高於一個棘齒所對應的角度,可應用多棘爪棘輪機構。
⑼ 減速機棘輪裝置結構及作用
棘輪機構的類型(Types of Ratchet Mechanism)
常用棘輪機構可分為輪齒式與摩擦式兩大類:
1、輪齒式棘輪機構(Tooth Ratchet Mechanism)
按嚙合方式可分成外嚙合(externally meshed,如圖7-1所示)和內嚙合(internally meshed,如圖7-2所示)棘輪機構。根據棘輪的運動又可分為兩種情況:
(1) 單向式棘輪機構
單向式棘輪機構的特點是擺桿向一個方向擺動時,棘輪沿同一方向轉過某一角度;而擺桿向另一個方向擺動時,棘輪靜止不動(如圖7-1)。雙動式棘輪機構,擺桿的往復擺動,都能使棘輪沿單一方向轉動,棘輪轉動方向是不可改變的(如圖7-3)。
圖 7-2 圖 7-3
(2)雙向式棘輪機構
若將棘輪輪齒做成短梯形或矩形時,變動棘爪的放置位置或方向後,可改變棘輪的轉動方向。棘輪在正、反兩個轉動方向上都可實現間歇轉動。
圖 7-4
2、摩擦式棘輪機構(Friction Ratchet Mechanism or Silent Ratchet Mechanism)
(1) 偏心楔塊式棘輪機構
偏心楔塊式棘輪機構的工作原理與輪齒式棘輪機構相同,只是用偏心扇形楔塊代替棘爪,用摩擦輪代替棘輪。利用楔塊與摩擦輪間的摩擦力與楔塊偏心的幾何條件來實現摩擦輪的單向間歇轉動。
a)
b)
圖 7-5
(2) 滾子楔緊式棘輪機構
圖7-6為常用的摩擦式棘輪機構,構件1逆時針轉動或構件3順時針轉動時,在摩擦力作用下能使滾子2楔緊在構件1、3形成的收斂狹隙處,則構件1、3成一體,一起轉動;運動相反時,構件1、3成脫離狀態。
圖 7-6
三、棘輪機構的特點和應用(Features and Application of Ratchet Mechanism)
輪齒式棘輪機構結構簡單,易於製造,運動可靠,從動棘輪轉角容易實現有級調整,但棘爪在齒面滑過引起雜訊與沖擊,在高速時尤為嚴重。故常於低速、輕載的場合用作間歇運動控制。
摩擦式棘輪機構傳遞運動較平穩,無噪音,從動件的轉角可作無級調整。但難以避免打滑現象,因而運動准確性較差,不適合用於精確傳遞運動的場合。
四、棘輪機構設計中的主要問題(Main Problems in Ratchet Mechanism Design)
1、棘輪齒形的選擇
最常見的棘輪齒形為不對稱梯形,如圖7-12所示。為了便於加工,當棘輪機構承受載荷不大時,可採用三角形棘輪輪齒(見圖7-1和圖7-9),三角形輪齒的非工作齒面可作成直線型和圓弧形。雙向式棘輪機構,由於需雙向驅動,因此常採用矩形或對稱梯形作為棘輪齒形(圖7-4)。
2、棘輪轉角大小的調整
(1) 採用棘輪罩
採用棘輪罩,使棘爪的部分行程沿棘輪罩表面滑過,若改變棘輪罩位置,即可調整棘輪轉角的大小,如圖7-9所示。
(2) 改變擺桿擺角
圖7-10所示棘輪機構中,通過改變曲柄搖桿機構曲柄長度OA的方法來改變搖桿擺角的大小,從而調整棘輪機構轉角的大小。
圖 7-9 圖 7-10
(3) 多爪棘輪機構
要使棘輪每次轉動小於一個輪齒所對的中心角γ時,可採用棘爪數為n的多爪棘輪機構。如圖7-11所示n=3的棘輪機構,三棘爪位置依次錯開γ/3,當擺桿轉角1在[γ/3,γ] 范圍內變化時,三棘爪依次落入齒槽,推動棘輪轉動相應角度2為[γ/3,γ] 范圍內γ/3整數倍,即棘輪轉角為γ/3或2γ/3。
圖 7-11
3、棘輪機構的可靠工作條件
(1) 棘爪可靠嚙合條件
圖7-12中,θ為棘輪齒工作齒面與徑向線間的夾角,稱齒面角,L為棘爪長,O1為棘爪軸心,O2為棘輪軸心,嚙合力作用點為P(為簡便起見,設P點在棘輪齒頂),當傳遞相同力矩時,O1位於O2P的垂線上,棘爪軸受力最小。
為使棘爪能順利地滑入棘輪齒根,要求齒面角θ大於摩擦角,即是棘爪受的總反作用力FR的作用線必須在棘爪軸心O1和棘輪軸心O2之間穿過。
圖 7-12
(2) 偏心塊楔緊條件
對於圖7-5a 所示的偏心楔塊式棘輪機構,擺桿逆時針轉動時,輪3對楔塊2在接觸點A作用正壓力FN與摩擦力fFN。正壓力FN有松開楔塊的作用,要使楔塊楔緊棘輪3,應使FN與fFN對O2的矩滿足
故 tan < f = tan
即
圖 7-5 a)
式中,為摩擦角;為楔塊廓線升角。因此偏心塊楔緊條件為:楔塊廓線升角小於摩擦角。也可用摩擦輪對偏心楔塊總反力FR的作用線必須通過兩回轉中心O1和O2的連接線段來判定。
(3) 滾子楔緊條件
圖7-6所示滾子楔緊式棘輪機構,滾子受力情況如圖7-13所示。圖中當套筒1逆時針方向轉動時,在摩擦力FA作用下,滾子2有逆時針滾動的趨勢,因此星輪3在接觸點B對滾子有圖示摩擦力FB。摩擦力FA與FB使滾子楔緊,其夾角為楔緊角β,而滾子2在接觸點A、B的正壓力FNA和FNB欲將滾子擠向楔形大端而松開。因此滾子楔緊條件為:楔緊角小於兩倍的摩擦角。但β角選擇過小,反向運動時滾子將不易退出楔緊狀態。即:
回答人的補充 2009-08-02 12:11 減速機是一種動力傳達機構,利用齒輪的速度轉換器,將電機(馬達)的回轉數減速到所要的回轉數,並得到較大轉矩的機構。在目前用於傳遞動力與運動的機構中,減速機的應用范圍相當廣泛。幾乎在各式機械的傳動系統中都可以見到它的蹤跡,從交通工具的船舶、汽車、機車,建築用的重型機具,機械工業所用的加工機具及自動化生產設備,到日常生活中常見的家電,鍾表等等.其應用從大動力的傳輸工作,到小負荷,精確的角度傳輸都可以見到減速機的應用,且在工業應用上,減速機具有減速及增加轉矩功能。因此廣泛應用在速度與扭矩的轉換設備。減速機的作用主要有:
1)降速同時提高輸出扭矩,扭矩輸出比例按電機輸出乘減速比,但要注意不能超出減速機額定扭矩。
2)減速同時降低了負載的慣量,慣量的減少為減速比的平方。大家可以看一下一般電機都有一個慣量數值。
減速機的工作原理
減速機一般用於低轉速大扭矩的傳動設備,把電動機.內燃機或其它高速運轉的動力通過減速機的輸入軸上的齒數少的齒輪嚙合輸出軸上的大齒輪來達到減速的目的,普通的減速機也會有幾對相同原理齒輪達到理想的減速效果,大小齒輪的齒數之比,就是傳動比。