導航:首頁 > 使用方法 > 消除干擾常用方法

消除干擾常用方法

發布時間:2022-02-26 08:07:10

① 消除工作中的干擾有哪些方法

看你的干擾來自何處了,是源於你個人內心還是來自外界。心境,心靜。

② 簡述背景干擾消除方法及原理

主要有四大幹擾:光譜干擾、背景干擾、電離干擾、物理干擾、化學干擾.
干擾的消除:
1、光譜干擾是由於分析用的譜線與鄰近線不能完全分開而產生的.採取改換良好的空心陰極燈,減少狹縫寬度,增加燈電流,一般才能收到較好的抑制效果;
2、背景干擾是一種特殊的光譜干擾,背景吸收使吸收值增加而產生的正誤差.它包括分子吸收(可使用高溫火焰消除)、光散射可利用背景較正測量光散射的大小,求得被測元素的真實的吸收信號)、火焰氣體吸收(選擇合適的火焰);
3、電離干擾:當等測溶液進入火焰後,在火焰的作用下分子要解離成原子和部分原子失去電子而被電離成離子.發生電離的結果會使參與原子吸收的基態原子數減少,導致吸光度降低.如能控制火焰溫度和選擇適當的火焰類型,可大大減少電離干擾,也可加入消電離劑,但會產生基體效應,也容易堵塞燃燒縫隙;
4、物理干擾的消除:要求試樣溶液和標准溶液用相同溶劑、有相同的基體組成,還要求有相同溫度環境等,也可調節撞擊小球的位置消除.
5、化學干擾的消除:a使用高溫火焰;b加入釋放劑;c加入保護劑與待測溶液或干擾元素反應形成穩定配合物;d在石墨原子化中加入基體改進劑提高被測物質的灰化溫度或降低其原子化溫度以消除干擾;e化學分離干擾物質.

③ 常用的掩蔽干擾離子的辦法有哪些

配位掩蔽法、沉澱掩蔽法和氧化還原掩蔽法.配位掩蔽法,當溶液中存在其他金屬離子N時,由於N與Y發生副反應,降低了條件穩定常數,給M離子滴定帶來誤差。加上N離子還可能對指示劑有封閉作用。這時可採用配位掩蔽法,就是通過加入掩蔽劑,使掩蔽劑與干擾離子形成穩定配合物,降低溶液中游離N的濃度,從而減小,增大而使M可以單獨滴定。沉澱掩蔽法,就是加入沉澱劑,使干擾離子產生沉澱而降低N離子濃度。如在強鹼溶液中用EDTA滴定Ca(有Mg干擾),強鹼與Mg形成Mg(OH)↓,這樣Mg就不幹擾Ca的測定。氧化還原掩蔽法,就是利用氧化還原反應改變干擾離子的價態以消除干擾。例如Fe是一強的封閉劑,加入還原劑使溶液中Fe還原成Fe,可達到掩蔽作用。在實際應用中最常用的還是配位掩蔽法。氧化還原掩蔽法是指在EDTA滴定過程中加入氧化劑或還原劑,改變干擾離子價態以消除干擾的方式。 例如: Bi3+ 和 Fe3+ 共存時,測定Bi3+ 時Fe3+ 有干擾,可加抗壞血酸(維生素C)將Fe3+ 還原為Fe2+ ,大大降低了鐵離子和EDTA配合物的穩定性,從而消除Fe3+ 對Bi3+ 測定的干擾。

④ 消除干擾的方法有哪些哪種方法最簡便常用的掩蔽方法有哪些

抗干擾:用來對抗通訊或雷達運行的任何干擾的系統或技術 。學術定義:(1)抗干擾的定義是:結合電路的特點使干擾減少到最小。(2)所謂抗干擾:是指設備能夠防止經過天線輸入端,設備的外殼以及沿電源線作用於設備的電磁干擾。

措施
抗干擾措施的基本原則是:抑制干擾源,切斷干擾傳播路徑,提高敏感器件的抗干擾性能。
1、抑制干擾源
抑制干擾源就是盡可能的減小干擾源的/dt,di/dt。這是抗干擾設計中最優先考慮和最重要的原則,常常會起到事半功倍的效果。減小干擾源的/dt主要是通過在干擾源兩端並聯電容來實現。減小干擾源的di/dt則是在干擾源迴路串聯電感或電阻以及增加續流二極體來實現。抑制干擾源的常用措施如下:
⑴繼電器線圈增加續流二極體,消除斷開線圈時產生的反電動勢干擾。僅加續流二極體會使繼電器的斷開時間滯後,增加穩壓二極體後繼電器在單位時間內可動作更多的次數。
⑵在繼電器接點兩端並接火花抑制電路(一般是RC串聯電路,電阻一般選幾K到幾十K,電容選0.01uF),減小電火花影響。
⑶給電機加濾波電路,注意電容、電感引線要盡量短。
⑷電路板上每個IC要並接一個0.01μF~0.1μF高頻電容,以減小IC對電源的影響。注意高頻電容的布線,連線應靠近電源端並盡量粗短,否則,等於增大了電容的等效串聯電阻,會影響濾波效果。
⑸布線時避免90度折線,減少高頻雜訊發射。
⑹可控硅兩端並接RC抑制電路,減小可控硅產生的雜訊(這個雜訊嚴重時可能會把可控硅擊穿的)。
2、切斷干擾傳播路徑的常用措施
⑴充分考慮電源對單片機的影響。電源做得好,整個電路的抗干擾就解決了一大半。許多單片機對電源雜訊很敏感,要給單片機電源加濾波電路或穩壓器,以減小電源雜訊對單片機的干擾。比如,可以利用磁珠和電容組成π形濾波電路,當然條件要求不高時也可用100Ω電阻代替磁珠。
⑵如果單片機的I/O口用來控制電機等雜訊器件,在I/O口與雜訊源之間應加隔離(增加π形濾波電路)。控制電機等雜訊器件,在I/O口與雜訊源之間應加隔離(增加π形濾波電路)。
⑶注意晶振布線。晶振與單片機引腳盡量靠近,用地線把時鍾區隔離起來,晶振外殼接地並固定。此措施可解決許多疑難問題。
⑷電路板合理分區,如強、弱信號,數字、模擬信號。盡可能把干擾源(如電機,繼電器)與敏感元件(如單片機)遠離。
⑸用地線把數字區與模擬區隔離,數字地與模擬地要分離,最後在一點接於電源地。A/D、D/A晶元布線也以此為原則,廠家分配A/D、D/A晶元引腳排列時已考慮此要求。
⑹單片機和大功率器件的地線要單獨接地,以減小相互干擾。大功率器件盡可能放在電路板邊緣。
⑺在單片機I/O口,電源線,電路板連接線等關鍵地方使用抗干擾元件如磁珠、磁環、電源濾波器,屏蔽罩,可顯著提高電路的抗干擾性能。
⒊提高敏感器件的抗干擾性能
提高敏感器件的抗干擾性能是指從敏感器件這邊考慮盡量減少對干擾雜訊的拾取,以及從不正常狀態盡快恢復的方法。
提高敏感器件抗干擾性能的常用措施如下:
⑴布線時盡量減少迴路環的面積,以降低感應雜訊。
⑵布線時,電源線和地線要盡量粗。除減小壓降外,更重要的是降低耦合雜訊。
⑶對於單片機閑置的I/O口,不要懸空,要接地或接電源。其它IC的閑置端在不改變系統邏輯的情況下接地或接電源。
⑷對單片機使用電源監控及看門狗電路,如:IMP809,IMP706,IMP813,X25043,X25045等,可大幅度提高整個電路的抗干擾性能。
⑸在速度能滿足要求的前提下,盡量降低單片機的晶振和選用低速數字電路。
⑹IC器件盡量直接焊在電路板上,少用IC座。
4、軟體方面
⑴我習慣於將不用的代碼空間全清成"0",因為這等效於NOP,可在程序跑飛時歸位;
⑵在跳轉指令前加幾個NOP,目的同1;
⑶在無硬體WatchDog時可採用軟體模擬WatchDog,以監測程序的運行;
⑷涉及處理外部器件參數調整或設置時,為防止外部器件因受干擾而出錯可定時將參數重新發送一遍,這樣可使外部器件盡快恢復正確;⑸通訊中的抗干擾,可加數據校驗位,可採取3取2或5取3策略;
⑹在有通訊線時,如I^2C、三線制等,實際中我們發現將Data線、CLK線、INH線常態置為高,其抗干擾效果要好過置為低。5、硬體方面
⑴地線、電源線的布線肯定重要了!
⑵線路的去耦;
⑶數、模地的分開;
⑷每個數字元件在地與電源之間都要104電容;
⑸在有繼電器的應用場合,尤其是大電流時,防繼電器觸點火花對電路的干擾,可在繼電器線圈間並一104和二極體,在觸點和常開端間接472電容,效果不錯!
⑹為防I/O口的串擾,可將I/O口隔離,方法有二極體隔離、門電路隔離、光偶隔離、電磁隔離等;
⑺當然多層板的抗干擾肯定好過單面板,但成本卻高了幾倍。
⑻選擇一個抗干擾能力強的器件比之任何方法都有效,我想這點應該最重要。因為器件天生的不足是很難用外部方法去彌補的,但往往抗干擾能力強的就貴些,抗干擾能力差的就便宜,正如台灣的東東便宜但性能卻大打折扣一樣!主要看各位的應用場合了!
實現辦法
⒈干擾現象分析 干擾成因:現有的國內衛星廣播電視系統普遍採用的是透明轉發器和單波束賦形收發天線。並且,因為地球靜止軌道位置資源和無線頻率資源有限,所以衛星的空間位置和工作頻率必須向國際電聯申報並要符合國際規定,其參數包括電視信號的編碼方式都是公開的。抗干擾接頭另外,衛星廣播電視的頻帶利用方式通常由SCPC(單路單載波)和MCPC(多路單載波)兩種方式。採用SCPC方式,多套節目可以通過頻率分配共用同一衛星轉發器,節省大量的地面節目接收設施,但是由於多載波上行存在互調干擾,轉發器功率回退較多,功率利用率不高,而且由於每個載波間需要足夠的保護頻帶,頻帶利用率也不高,衛星轉發器較易受到其他載波信號的干擾,安全性較低。而MCPC方式下,多套節目共用一個完整的轉發器經由同一上行站上行,由於單一載波上行,衛星轉發器的功率資源可以得到充分利用,而且節省了多載波上行時的頻率保護間隔,轉發器可工作在飽和狀態,安全得到了最大限度的保護,但也相應增加了地面信號引接設施。
因此,現有的衛星廣播電視系統較易受到非法信號的干擾。並且傳輸體制採取SCPC較MCPC更易受到非法信號的干擾。
2、干擾類型及應對措施
從干擾來源上說,主要分為自然現象干擾、設備故障干擾、地面電磁環境干擾、鄰星干擾與人為原因造成的干擾等,有些干擾是相互交叉。
自然現象干擾主要包括日凌干擾、雨雪衰等。日凌干擾目前尚無有效的方法來避免,一般衛星公司會把各地的日凌時間通知用戶,以便用戶提前做好准備,地球站可通過增大天線口徑和接收靈敏度來縮短日凌干擾的持續時間。而雨(雪)衰所導致的接收信號的惡化有一個漸變過程,可以通過補償上行鏈路的雨(雪)衰損耗和留出足夠的下行鏈路的雨衰備餘量,來降低因雨(雪)衰造成的損失。
設備故障干擾主要包括衛星故障干擾和地面設備故障干擾兩大類。衛星設備故障干擾可以通過及時切換備份器件,嚴重時轉星或者更換轉發器來解決。而地面設備故障干擾又分為中頻轉發干擾、地面調頻廣播干擾、交調干擾、雜散干擾等。前兩者都是屬於中頻引入的干擾,可通過衛星公司協助排查干擾源以及地球站做好相應的系統或傳輸線路的電磁屏蔽工作來減小受干擾的可能性。雜散干擾可通過衛星公司改變受影響轉發器的增益檔設置、地球站相應提高上行功率來減少干擾影響。交調干擾可通過地球站嚴格控制上行功率以及確保數據機、上變頻器、發射機等有足夠的預留回退餘量來解決。
地面電磁環境干擾主要包括微波通信中繼信號干擾、雷達信號干擾等,可以通過電磁檢測和頻率協調,以及電磁屏蔽手段來解決問題。抗干擾電容3、地球站的抗干擾系統實現抗干擾地球站的抗干擾措施。通過以上對干擾現象的分析,目前,各地球站可以採取以下抗干擾措施。
⑴上行地球站應使用大功率發射機和大口徑高增益發射天線:一旦衛星受干擾時,減小星上接收機增益,加大上行功率,以增強轉發器輸入載噪比,減小干擾影響。
⑵上行地球站應使用大功率MCPC上行信號推至轉發器飽和點:傳送電視節目少用或不用SCPC信號,從而利用轉發器飽和點強信號對弱信號的抑製作用特性,進一步減小非法干擾影響。
⑶上行地球站應配備相應的抗干擾系統,通過對地球站所有設備的實時監控,對各類干擾及時發現、判斷和處理。
衛星通信抗干擾技術
隨著國民經濟的發展,無線通信已被廣泛地應用在國民經濟的各個領域和人們的日常生活中,特別是公用移動通信的迅速發展,社會上使用的各種無線通信設備的數量急劇上升。現代戰爭中,指揮通信、軍事情報、兵器控制都日益依賴於電子設備,特別是無線電設備的支持。信息戰和電子戰作為一種嶄新的作戰形式涉及軍事領域,開辟了繼陸海空戰場之後的第四維戰場--電磁戰場..為了提高通信系統信息傳輸的可靠性,對抗各種形式的干擾,人們採用了各種通信抗干擾技術,保護通信系統在干擾環境下能准確、實時、不間斷地傳輸信息。因此,對通信抗干擾原理和技術進行系統的介紹是很有必要的。一般說,通信抗干擾的基本體系、方法、措施可分為三類:
⑴信號處理。如直接序列擴頻技術(DS-SS),其關鍵參量是作為時間函數的相位;跳頻技術(FH-SS)其關鍵參量是作為時間函數的載頻;等等。
⑵空間處理。如採用自適應天線調零技術,當接收端受到干擾時,使其天線方向圖零點自動指向干擾方向,以提高通信接收機的信干比。
⑶時間處理。如猝發傳輸技術,由於通信信號在傳輸過程中暴露的時間很短暫,從而大大降低了被干擾方偵察、截獲的概率。
通信抗干擾技術研究的就是在已知或預測敵方的干擾手段情況下,在上述技術基礎上(當然不排除以後有新的技術類別)選取適當的技術手段來消除或減輕敵方干擾,而使我方需要進行的通信能夠延續的一項技術。對敵方的干擾性質,強度、種類、手段、採用的體系,了解得越清楚,採取的措施越有針對性,取得的效果也越好。由於敵方的對抗手段往往是綜合的、多變的,有的可能是完全新穎的,所以抗干擾的手段也必須採取多種方式的結合才能取得較好的效果。
通信抗干擾技術的特點:
⑴對抗性強,技術綜合性強,難度高,發展快,某種程度上說是敵我雙方智慧和技術的斗爭。通信的成敗關系著戰爭的勝負,所以此技術對抗性很強。通信抗干擾有了新技術,搞對抗的就想新的對策,反過來也一樣,這樣就促進了技術的發展和難度的提高。
⑵對技術的實用性和可靠性的要求高,通信抗干擾必須在戰場上實際解決問題。指標高而不可靠或不實用是不能容忍的,其後果不堪設想。
軍用衛星通信抗干擾手段
⑴直接序列(DS)擴頻
所謂直接序列擴頻,就是直接用高碼率的擴頻碼序列(通常是偽隨機序列)在發射端去擴展信號的頻譜,使單位頻帶內的功率變小,即信號的功率譜密度變低,通信可在信道雜訊和熱雜訊的背景下,使信號淹沒在雜訊里,敵方很不容易發現有信號存在。而在接收端,用相同的擴頻碼去進行解擴(縮譜),即可把DS擴頻信號能量集中,恢復原狀,又能把干擾能量分散並抑制掉。因此,該體制的最大特點是信號隱蔽性好,被截收的概率小,抗干擾能力隨著碼序列的長度增加而加強。通常認為,直擴信號要隱蔽,其碼長不能低於32位。DS擴頻技術在軍事星(Milstar)、租賃衛星(LEASAT)和艦隊通信衛星(FLTSATCOM)等軍用通信衛星中得到應用。⑵跳頻(FH)
所謂跳頻,是指用一定碼序列去選擇的多頻率頻移鍵控,使載波頻率不斷跳變,這是一種以"躲避"方式為主的抗干擾體制。為了對付跟蹤式干擾,各國都力圖提高跳頻速度。20世紀80年代跳頻速度一般在200跳/秒左右,目前,跳速可達300~500跳/秒。美國的軍事星和艦隊通信衛星7號和8號上裝有的極高頻(EHF)組件,上下行均使用了跳頻技術。軍事星-2的跳頻范圍達2GHz帶寬。抗干擾器⑶跳時(TH)
跳時是用一定的碼序列進行選擇的多時片的時移鍵控,使發射信號在時間軸上跳變。從抑制干擾的角度來看,跳時得益甚少,唯一的優點是在於減少了占空比,一個干擾發射機為取得干擾效果就必須連續發射,因為干擾機不易識破跳時所使用的偽碼參數。
⑷各種混合方式
在上述幾種基本的抗干擾方式的基礎上,可以互相組合,構成各種混合方式。例如FH/DS、DS/TH、FH/TH或DS/FH/TH等。採用兩維甚至三維的混合式抗干擾技術體制是國外抗干擾通信發展的一個趨勢。例如,將跳頻信號用直擴碼進行調制的跳頻/直擴(FH/DS)混合抗干擾體制,這種體制每一跳頻率點均以直擴信號方式出現,直擴信號的特點是其功率譜密度低,敵方難以偵收,即使偵收出來,只要偵收時間超過跳頻所需時間,也無法進行跟蹤干擾。美國的軍事星和艦隊通信衛星採用了跳頻/直擴混合體制,美國的三軍聯合戰術信息發布系統(JTIDS)就採用跳時、跳頻加直擴的三維抗干擾技術體制。
⑸擴展頻段,發展微波、毫米波、光通信
美國的國防通信衛星系統(DSCS)、英國的天網(Skynet)和北約(NATO)衛星最初工作在超高頻(SHF)(約8GHz)。在90年代,DSCSⅢ為了適應移動通信的需要,增加了UHF頻段。而天網4(SkynetⅣ)和北約4(NATOⅣ)除了增加UHF頻段外,還增加了用於試驗提高抗干擾性的EHF(44GHz)上行信道。美國海軍的特高頻後續星(UFO)系列從第4顆衛星開始,星上增加了一個與軍事星兼容的EHF通信分系統,而且其艦隊廣播上行鏈路使用SHF頻段。美國的軍事星系統使用60GHz的星際鏈路,由於該頻率上大氣層的衰減很高,所以星際鏈路不受地基電子戰設備的截收和干擾,而其星地鏈路在EHF頻段(上行44GHz,下行20GHz)。衛星採用光通信時和電波之間不存在干擾問題,而且光通信能實現1Gbit/s以上的大容量衛星通信,美國NASA、歐洲ESA、日本等國正在大力研究光通信技術。
⑹多波束天線和干擾置零技術
美國的國防衛星通信系統(DSCSⅢ)的多波束天線(含19個發射波束和61個接收波束)能夠根據敏感器探測到的干擾源位置,通過波束形成網路控制每個波束的相對幅度和相位,使天線在干擾方向上的增益為零。軍事星和艦隊通信衛星EHF組件都有點波束天線,使點波束之處的干擾很難奏效。
⑺轉發器加限幅器抗飽和抗干擾未採用擴頻調制技術等上述技術的透明式線性轉發器,其抗干擾性是很弱的,使用常規的干擾樣式和與地球站的發射功率相當的干擾功率就可把它推入飽和區,而使它無法正常工作。帶有限幅器的轉發器,其抗干擾性優於線性轉發器。但由於它具有強信號抑制弱信號的作用,只要干擾功率足夠大,干擾仍可奏效。

⑤ 在分光光度分析中,消除干擾的方法有哪些

1、控制酸度
2、加入掩蔽劑
3、氧化還原掩蔽
4、校正
5、選擇適宜的參比溶液
6、選擇適宜的波長
7、增加顯色即用量
8、分離干擾物質

⑥ 怎樣消除常見干擾信號

1 對干擾源進行屏蔽並接地,衰減干擾信號對外部的影響;
2 對容易被干擾的元件進行屏蔽,或者採用防干擾設備及材料。

⑦ 在分光光度分析中,消除干擾的方法有哪些

主要有四大幹擾:光譜干擾,背景干擾,電離干擾,物理干擾,化學干擾.干擾的消除:1、光譜干擾是由於分析用的譜線與鄰近線不能完全分開而產生的.採取改換良好的空心陰極燈,減少狹縫寬度,增加燈電流,一般才能收到較好的抑制效果;2、背景干擾是一種特殊的光譜干擾,背景吸收使吸收值增加而產生的正誤差.它包括分子吸收(可使用高溫火焰消除)、光散射可利用背景較正測量光散射的大小,求得被測元素的真實的吸收信號)、火焰氣體吸收(選擇合適的火焰);3電離干擾:當等測溶液進入火焰後,在火焰的作用下分子要解離成原子和部分原子失去電子而被電離成離子.發生電離的結果會使參與原子吸收的基態原子數減少,導致吸光度降低.如能控制火焰溫度和選擇適當的火焰類型,可大大減少電離干擾,也可加入消電離劑,但會產生基體效應,也容易堵塞燃燒縫隙;4、物理干擾的消除:要求試樣溶液和標准溶液用相同溶劑、有相同的基體組成,還要求有相同溫度環境等,也可調節撞擊小球的位置消除.5、化學干擾的消除:a使用高溫火焰;b加入釋放劑;c加入保護劑與待測溶液或干擾元素反應形成穩定配合物;d在石墨原子化中加入基體改進劑提高被測物質的灰化溫度或降低其原子化溫度以消除干擾;e化學分離干擾物質.

⑧ 干擾效應及消除方法

原子吸收光譜法的主要干擾有物理干擾、化學干擾、電離干擾、光譜干擾和背景干擾等。

5.3.2.1 物理干擾

物理干擾是指試液與標准溶液物理性質之間有差異而產生的干擾。如黏度、表面張力或溶液的密度等的變化,影響樣品的霧化或氣溶膠到達火焰等引起原子吸收強度的變化而引起的干擾。為了消除物理干擾可採用配製與被測試樣組成相近的標准溶液或採用標准加入法的辦法。若試樣溶液的濃度高,還可採用稀釋法。

5.3.2.2 化學干擾

化學干擾是由於被測元素原子與共存組分發生化學反應生成穩定的化合物,因而影響被測元素的原子化而引起的干擾。消除化學干擾的方法有以下幾種。

(1)選擇合適的原子化方法

提高原子化溫度,減小化學干擾。使用高溫火焰或提高石墨爐原子化溫度,可使難離解的化合物分解。採用還原性強的火焰與石墨爐原子化法,可使難離解的氧化物還原、分解。

(2)加入釋放劑

釋放劑與干擾物質能生成比被測元素更穩定的化合物,使被測元素釋放出來。例如,磷酸根干擾鈣的測定,可在試液中加入鑭、鍶鹽,鑭、鍶與磷酸根首先生成比鈣更穩定的磷酸鹽,使得鈣被釋放出來。

(3)加入保護劑

保護劑可與被測元素生成易分解的或更穩定的配合物,防止被測元素與干擾組分生成難離解的化合物。保護劑一般是有機配合劑,如EDTA、8-羥基喹啉。

(4)加入基體改進劑

對於石墨爐原子化法,在試樣中加入基體改進劑,使其在乾燥或灰化階段與試樣發生化學變化,可以增加基體的揮發性或改變被測元素的揮發性,以消除干擾。

5.3.2.3 電離干擾

在高溫條件下,原子會電離,使基態原子數減少,吸光度下降,這種干擾稱為電離干擾。消除電離干擾的方法是加入過量的消電離劑。消電離劑是比被測元素電離電位低的元素,相同條件下消電離劑首先電離,產生大量的電子,抑制被測元素的電離。例如,測鈣時可加入過量的KCl溶液,以消除電離干擾,鈣的電離電位為6.1eV,鉀的電離電位為4.3 eV,由於鉀電離產生大量的電子,使得鈣離子得到電子而生成原子。

5.3.2.4 光譜干擾

共存元素吸收線與被測元素分析線波長很接近時,兩譜線重疊或部分重疊會使結果偏高。非吸收線可能是被測元素的其他共振線與非共振線,也可能是光源中雜質的譜線,一般通過減小狹縫寬度與燈電流或另選譜線消除非吸收線的干擾。

5.3.2.5 背景干擾

背景干擾也是一種光譜干擾。分子吸收與光散射是形成光譜背景的主要因素。

(1)分子吸收與光散射

分子吸收是指在原子化過程中生成的分子對輻射的吸收。分子吸收是帶狀光譜,會在一定的波長范圍內形成干擾。例如,鹼金屬鹵化物在紫外區有吸收;不同的無機酸會產生不同的影響,在波長小於250nm時,H2SO4和H3PO4有很強的吸收帶,而HNO3和HCl的吸收帶很弱。因此,原子吸收光譜分析中多用HNO3和HCl配製溶液。

光散射是指原子化過程中產生的微小的固體顆粒使光發生散射,導致透過光減小,吸收值增加。

(2)背景校正方法

A.鄰近非共振線背景校正法

背景吸收是寬頻吸收。分析線測量是原子吸收與背景吸收的總吸光度AT,AT在分析線鄰近選一條非共振線,非共振線不會產生共振吸收,此時測出的吸收為背景吸收AB。兩次測量吸光度相減,所得吸光度值即為扣除背景後的原子吸收吸光度值A。

AT=A+AB

A=AT-AB=kc

本法適用於分析線附近背景吸收變化不大的情況,否則准確度較差。

B.連續光源背景校正法

目前原子吸收分光光度計上一般都配有連續光源自動扣除背景裝置。連續光源在紫外區用氘燈;在可見區用碘鎢燈、氙燈。

氘燈產生的連續光譜進入單色器狹縫,通常是原子吸收線寬度的100倍左右。氘燈對原子吸收的信號為空心陰極燈原子信號的0.5%。由此,可以認為氘燈測出的主要是背景吸收信號,空心陰極燈測的是原子吸收和背景信號,兩者相減得到原子吸收值。氘燈校正法已廣泛應用於原子吸收光譜儀器中,氘燈校正的波長和原子吸收波長相同,校正效果顯然比非共振線法好。

氘燈校正背景是商品化儀器最普遍使用的技術,為了提高背景扣除能力,從電路和光路設計上都做了許多改進,自動化程度越來越高。

此法的缺點在於氘燈是一種氣體放電燈,而空心陰極燈屬於空心陰極濺射放電燈。兩者放電性質不同,能量分布不同,光斑大小不同,再加上兩個燈的光斑不易完全重疊,急劇的原子化又引起石墨爐中原子和分子濃度在時間和空間上的分布不均勻,因而造成背景扣除的誤差。

C.塞曼效應背景校正法

1886年荷蘭物理學家塞曼發現光源在強磁場作用下產生光譜線分裂的現象,這種現象稱為塞曼效應。與磁場施加於光源產生的塞曼效應(稱正向塞曼效應)相同,當磁場施加在吸收池時,同樣可觀測到吸收線的磁致分裂,即逆向塞曼效應,亦稱吸收線塞曼效應。

塞曼效應按觀察光譜線的方向不同又分為橫向塞曼效應及縱向塞曼效應,垂直於磁場方向觀察的是橫向塞曼效應,平行於磁場方向觀察的是縱向塞曼效應。橫向塞曼效應得到三條具有線偏振的譜線,譜線的波數分別為ν-Δν、ν、ν+Δν,中間波數未變化的譜線,其電向量的振動方向平行於磁場方向,稱為π成分;其他兩條譜線的波數變化分別為-Δν及+Δν,其電向量的振動方向垂直於磁場方向,稱為σ±成分。而縱向塞曼效應則觀察到波數分別為ν+Δν和ν-Δν的兩條圓偏振光,前者為順時針方向的圓偏振稱左旋偏振光,後者為反時針方向的圓偏振稱右旋偏振光,而中間頻率不變的π成分消失。

塞曼效應應用於原子吸收進行背景校正可有多種方法。可將磁場施加於光源,也可將磁場施加於原子化器;可利用橫向效應,也可利用縱向效應;可用恆定磁場,也可用交變磁場,交變磁場又分固定磁場強度和可變磁場強度。

由於條件限制,不是以上所有組合均可應用於原子吸收光譜儀。例如:縱向恆定磁場,由於沒有π成分而無法測量樣品的共振吸收;施加於光源的塞曼效應在前期的研究中做了大量的工作,但由於需要的特殊光源目前也不普及,只應用於某些專用裝置中。如塞曼測汞儀,因為汞燈可以製作得很小,能夠獲得較高的磁場強度。光源調制的另一個缺點是很難保證基線的長期穩定。目前商品化儀器應用較廣的多為施加於原子化器的塞曼效應背景校正裝置,主要有3種調制形式,分別為橫向恆定磁場、橫向交變磁場和縱向交變磁場。圖5.9為三種塞曼效應背景校正裝置的示意圖。

圖5.9 塞曼效應背景校正裝置

a—橫向恆定磁場;b—橫向交變磁場;c—縱向交變磁場

圖5.9a為橫向恆定磁場裝置,利用永久磁鐵產生強磁場,既可以應用於火焰原子化器,也可以應用於石墨爐原子化器。

圖5.9b為橫向交變磁場裝置,利用電磁鐵產生交變磁場。為產生高強度磁場,磁場尺寸一般製作得較小,因此在石墨爐原子化器應用較廣。橫向磁場施加於原子化器,當原子化器中有被測元素原子蒸氣時,其吸收線輪廓發生分裂(逆向塞曼效應),產生π成分及σ±成分。

利用光的矢量特性(只有偏振特性相同的光才能產生相互作用),引入旋轉起偏器將光源發出的共振輻射變成線偏振光。假定磁場方向平行於紙面,當旋轉起偏器轉動到共振輻射偏振特性平行於紙面時,形成樣品光,測量分析原子吸收及背景吸收,因為原子吸收線的π成分的偏振特性與其相同,產生分析原子吸收;當旋轉起偏器轉動到共振輻射偏振特性垂直於紙面時,形成參考光,測量背景吸收,因為原子吸收線的σ±成分與參考光的波長不同,不產生吸收,π成分的偏振特性與參考光不同,也不產生樣品吸收,而背景吸收通常是寬頻的,不產生塞曼分裂,對樣品及參考光束的吸收相同,兩個光束產生的吸光度相減即得凈分析原子吸收產生的吸光度,這是橫向塞曼效應校正背景的原理。

由於旋轉起偏器的加入,光源的光強至少減少50%,吸收線塞曼分裂的產生也對共振光的吸收減弱,因此這種背景校正裝置的主要不足之處就是靈敏度損失。

圖5.9c為縱向交變磁場裝置,由於縱向塞曼效應沒有π成分產生,也不需要旋轉起偏器,因此很好地解決了校正背景與靈敏度損失的矛盾。

為實施縱向塞曼效應,美國Perkin-Elmer公司對石墨爐體結構進行了改造,改縱向加熱石墨管為橫向加熱石墨管,改橫向磁場為縱向磁場,生產了4100ZL型橫向加熱縱向塞曼效應原子吸收光譜儀,並在其最新的Aanalyst800及SIMAA6100等儀器上推廣應用,取得了很好的效果。

背景校正裝置的一個主要缺點是比常規儀器的線性動態范圍小、靈敏度低。為克服線性動態范圍小的缺點,德國Jena公司開發了一種3磁場塞曼效應背景校正技術,可使測量的線性動態范圍擴充一個數量級。澳大利亞GBC科學儀器公司的Avanta UltraZ原子吸收分光光度計磁場強度為0.6~1.1 T(1T=1V·s·m-2),可以任意設定,對不同元素的不同背景干擾使用不同的磁場強度,可有效地提高儀器的靈敏度和測試精度。

⑨ 抑制小區間干擾有幾種幾種方法

小區間干擾消除的原理,是對干擾小區的干擾信號進行某種程度的解調甚至解碼,然後利用接收機的處理增益從接收信號中消除干擾信號分量。在LTE早期研究中,考慮過兩種干擾消除方法。

(1)基於多天線接收終端的空間干擾壓制技術
這種技術又稱為干擾抑制合並(Interference Reiection Combining,IRC)接收技術。它不依賴任何額外的發射端配置,只是利用從兩個相鄰小區到UE的空間信道差異區分服務小區和干擾小區的信號。理論 上說,配置雙接收天線的LIE應可以分辨兩個空間信道。這項技術雖然不需要對發射端做任何額外的標准化工作,但不依賴任何額外的信號區分手段(如頻分、碼 分、交織器分),而僅依靠空分(Space Division)手段,很難取得滿意的干擾消除效果。而且這項技術是接收機實現技術,並不需要進行標准化。
(2)基於干擾重構/減去的干擾消除技術
這種技術是通過將干擾信號解調/解碼後,對該干擾信號進行重構(Reconstruction),然後從接收信號中 減去。如果能將干擾信號分量准確減去,剩下的就是有用信號和雜訊。這無疑是一種更為有效的干擾消除技術,當然由於需要完全解調甚至解碼干擾信號,因此也對 系統的設計如資源塊分配、信道估計、同步、信令等提出了更高要求或帶來了更多限制。在LTE中得到深入研究的干擾消除技術主要是基於IDMA的迭代干擾消除技術。

⑩ 絡合滴定中,消除干擾的方法有哪些,舉例說明

1。控制溶液的酸度
如:在PH=1時,滴定Bi3+,然後再控制PH=5---6,滴定Pb2+
2。掩蔽方法
如測定 Ca2+ Mg2+時,Fe3+ Al3+ 干擾測定,可加三乙醇胺,使之與Fe3+ Al3+形成更穩定的配合物,消除干擾
3。 沉澱掩蔽法
如測鈣離子時,鎂離子干擾,可調溶液的PH=12,使鎂離子生成氫氧化鎂沉澱,消除干擾

閱讀全文

與消除干擾常用方法相關的資料

熱點內容
信息分析方法與應用哪裡有答案 瀏覽:577
pmd微晶磨皮使用方法 瀏覽:997
防暴叉使用方法連環圖片 瀏覽:167
乳腺多發性囊腫很好的方法怎麼治 瀏覽:892
泰拉瑞亞如何獲得方法 瀏覽:964
合肥行業市場調研方法有哪些 瀏覽:284
初一賞析句子的方法技巧 瀏覽:94
手機和電視數據線連接的方法 瀏覽:692
怎麼洗茶杯茶漬用什麼方法 瀏覽:135
簡單方法眼袋 瀏覽:402
紅牛奶茶製作方法視頻 瀏覽:775
電腦換顯卡怎麼設置在哪裡設置方法 瀏覽:535
怎麼種植葫蘆育苗方法 瀏覽:510
華為修復手機閃退的最簡便方法 瀏覽:373
智力菇的食用方法 瀏覽:993
左手正確握筆方法圖片 瀏覽:249
百合干作用及食用方法 瀏覽:360
鼻癤腫症狀和治療方法 瀏覽:391
有啥方法快速睡覺的 瀏覽:989
法士特中間軸安裝方法 瀏覽:94