導航:首頁 > 使用方法 > 標題總結常用求極限的方法

標題總結常用求極限的方法

發布時間:2022-02-24 11:48:22

Ⅰ 總結求極限的方法

大學里用到的方法主要有:
1、四則運演算法則(包括有理化、約分等簡單運算);
2、兩個重要極限(第二個重要極限是重點);
3、夾逼准則,單調有界准則;
4、等價無窮小代換(重點);
5、利用導數定義;
6、洛必達法則(重點);
7、泰勒公式(考研數學1需要,其它考試不需要這個方法);
8、定積分定義(考研);
9、利用收斂級數(考研)
每個方法中可能都會有相應的公式,全總結就太多了,你自己去看吧。

希望可以幫到你,不明白可以追問,如果解決了問題,請點下面的"選為滿意回答"按鈕,謝謝。

Ⅱ 求極限最常用的方法

極限最常用的方法:
1、夾逼定理

主要對付的是數列極限 !這個主要是看見極限中的函數是方程相除的形式,放縮和擴大。
2、等比等差數列公式應用
對付數列極限 (q 絕對值符號要小於1)
3、各項的拆分相加(對付數列極限 )
例如知道 Xn 與 Xn+1 的關系,已知 Xn 的極限存在的情況下,xn 的極限與 xn+1 的極限時一樣的,因為極限去掉有限項目極限值不變化。
4、求左右極限的方式
(對付數列極限 )例如知道 Xn 與 Xn+1 的關系,已知 Xn 的極限存在的情況下,xn 的極限與 xn+1 的極限時一樣的,因為極限去掉有限項目極限值不變化。
5、兩個重要極限的應用
這兩個很重要 !對第一個而言是 X 趨近 0 時候的 sinx 與 x 比值。第 2 個就如果 x 趨近無窮大,無窮小都有對有對應的形式 (第 2 個實際上是用於函數是 1 的無窮的形式 )(當底數是 1 的時候要特別注意可能是用地兩個重要極限 )
6、趨近於無窮大
還有個方法,非常方便的方法 ,就是當趨近於無窮大時候 ,不同函數趨近於無窮的速度是不一樣的 !x 的 x 次方快於 x!快於指數函數, 快於冪數函數, 快於對數函數(畫圖也能看出速率的快慢 )!!當 x 趨近無窮的時候,他們的比值的極限一眼就能看出來了。

Ⅲ 求極限的方法誰給我總結一下。

如圖所示:

特別注意:

1、函數在一點有極限與這點是否有定義無關.但是函數在這點的鄰域一定要有定義;

2、一般地,函數在一點有極限,是指函數在這點存在雙側極限,且相等,只有區間端點,是單側極限。

對數法。此法適用於指數函數的極限形式,指數越是復雜的函數,越能體現對數法在求極限中的簡便性,計算到最後要注意代回以e為底,不能功虧一簣。

定積分法。此法適用於待求極限的函數為或者可轉化為無窮項的和與一個分數單位之積,且這無窮項為等差數列,公差即為那個分數單位。


(3)標題總結常用求極限的方法擴展閱讀:

極限性質:

1、唯一性:若數列的極限存在,則極限值是唯一的,且它的任何子列的極限與原數列的相等。

2、有界性:如果一個數列』收斂『(有極限),那麼這個數列一定有界。

但是,如果一個數列有界,這個數列未必收斂。例如數列 :「1,-1,1,-1,……,(-1)n+1」

3、保號性:若 (或<0),則對任何 (a<0時則是 ),存在N>0,使n>N時有 (相應的xn<m)。

Ⅳ 總結求極限的方法,謝謝

如圖所示:

利用極限四則運演算法則求極限:

函數極限的四則運演算法則:設有函數,若在自變數f(x),g(x)的同一變化過程中,有limf(x)=A,limg(x)=B,則

lim[f(x)±g(x)]=limf(x)±limg(x)=A±B

lim[f(x)・g(x)]=limf(x)・limg(x)=A・B

lim==(B≠0)。

(4)標題總結常用求極限的方法擴展閱讀:

注意事項:

1、分式中,分子分母同除以最高次,化無窮大為無窮小計算,無窮小直接以0代入;

2、無窮大根式減去無窮大根式時,分子有理化。

3、運用兩個特別極限;

4、運用洛必達法則,但是洛必達法則的運用條件是化成無窮大比無窮大,或無窮小比無窮小,分子分母還必須是連續可導函數。它不是所向無敵,不可以代替其他所有方法,一樓言過其實。

5、用Mclaurin(麥克勞琳)級數展開,而國內普遍誤譯為Taylor(泰勒)展開。

Ⅳ 總結一下求極限的方法

極限分為 一般極限 , 還有個數列極限, (區別在於數列極限時發散的, 是一般極限的一種)

2解決極限的方法如下:(我能列出來的全部列出來了!!!!!你還能有補充么???)
1 等價無窮小的轉化, (只能在乘除時候使用,但是不是說一定在加減時候不能用 但是前提是必須證明拆分後極限依然存在) e的X次方-1 或者 (1+x)的a次方-1等價於Ax 等等 。 全部熟記
(x趨近無窮的時候還原成無窮小)

2落筆他 法則 (大題目有時候會有暗示 要你使用這個方法)
首先他的使用有嚴格的使用前提!!!!!!
必須是 X趨近 而不是N趨近!!!!!!!(所以面對數列極限時候先要轉化成求x趨近情況下的極限, 當然n趨近是x趨近的一種情況而已,是必要條件
(還有一點 數列極限的n當然是趨近於正無窮的 不可能是負無窮!)
必須是 函數的導數要存在!!!!!!!!(假如告訴你g(x), 沒告訴你是否可導, 直接用無疑於找死!!)
必須是 0比0 無窮大比無窮大!!!!!!!!!
當然還要注意分母不能為0
落筆他 法則分為3中情況
1 0比0 無窮比無窮 時候 直接用
2 0乘以無窮 無窮減去無窮 ( 應為無窮大於無窮小成倒數的關系)所以 無窮大都寫成了無窮小的倒數形式了。通項之後 這樣就能變成1中的形式了
3 0的0次方 1的無窮次方 無窮的0次方
對於(指數冪數)方程 方法主要是取指數還取對數的方法, 這樣就能把冪上的函數移下來了, 就是寫成0與無窮的形式了 , ( 這就是為什麼只有3種形式的原因, LNx兩端都趨近於無窮時候他的冪移下來趨近於0 當他的冪移下來趨近於無窮的時候 LNX趨近於0)

3泰勒公式 (含有e的x次方的時候 ,尤其是含有正余旋 的加減的時候要 特變注意 !!!!)
E的x展開 sina 展開 cos 展開 ln1+x展開
對題目簡化有很好幫助

4面對無窮大比上無窮大形式的解決辦法
取大頭原則 最大項除分子分母!!!!!!!!!!!
看上去復雜處理很簡單 !!!!!!!!!!

5無窮小於有界函數的處理辦法
面對復雜函數時候, 尤其是正余旋的復雜函數與其他函數相乘的時候,一定要注意這個方法。
面對非常復雜的函數 可能只需要知道它的范圍結果就出來了!!!

6夾逼定理(主要對付的是數列極限!)
這個主要是看見極限中的函數是方程相除的形式 ,放縮和擴大。

7等比等差數列公式應用(對付數列極限) (q絕對值符號要小於1)

8各項的拆分相加 (來消掉中間的大多數) (對付的還是數列極限)
可以使用待定系數法來拆分化簡函數

9求左右求極限的方式(對付數列極限) 例如知道Xn與Xn+1的關系, 已知Xn的極限存在的情況下, xn的極限與xn+1的極限時一樣的 ,應為極限去掉有限項目極限值不變化

10 2 個重要極限的應用。 這兩個很重要 !!!!!對第一個而言是X趨近0時候的sinx與x比值 。 地2個就如果x趨近無窮大 無窮小都有對有對應的形式
(地2個實際上是 用於 函數是1的無窮的形式 )(當底數是1 的時候要特別注意可能是用地2 個重要極限)

11 還有個方法 ,非常方便的方法
就是當趨近於無窮大時候
不同函數趨近於無窮的速度是不一樣的!!!!!!!!!!!!!!!
x的x次方 快於 x! 快於 指數函數 快於 冪數函數 快於 對數函數 (畫圖也能看出速率的快慢) !!!!!!
當x趨近無窮的時候 他們的比值的極限一眼就能看出來了

12 換元法 是一種技巧,不會對模一道題目而言就只需要換元, 但是換元會夾雜其中

13假如要算的話 四則運演算法則也算一種方法 ,當然也是夾雜其中的

14還有對付數列極限的一種方法,
就是當你面對題目實在是沒有辦法 走投無路的時候可以考慮 轉化為定積分。 一般是從0到1的形式 。

15單調有界的性質
對付遞推數列時候使用 證明單調性!!!!!!

16直接使用求導數的定義來求極限 ,
(一般都是x趨近於0時候,在分子上f(x加減麽個值)加減f(x)的形式, 看見了有特別注意)
(當題目中告訴你F(0)=0時候 f(0)導數=0的時候 就是暗示你一定要用導數定義!!!!),咱英語不好,lim為極限號,下面看清趨向於0還是無窮,根據以上方法即可。嘻嘻,努力哦,加油文秘雜燴網 http://www.rrrwm.com

Ⅵ 求極限的所有方法,要求詳細點

基本方法有:

1、分式中,分子分母同除以最高次,化無窮大為無窮小計算,無窮小直接以0代入;

2、無窮大根式減去無窮大根式時,分子有理化,然後運用(1)中的方法;

3、運用兩個特別極限;

4、運用洛必達法則,但是洛必達法則的運用條件是化成無窮大比無窮大,或無窮小比無窮小,分子分母還必須是連續可導函數。它不是所向無敵,不可以代替其他所有方法,一樓言過其實。

5、用Mclaurin(麥克勞琳)級數展開,而國內普遍誤譯為Taylor(泰勒)展開。

6、等階無窮小代換,這種方法在國內甚囂塵上,國外比較冷靜。因為一要死背,不是值得推廣的教學法;二是經常會出錯,要特別小心。

7、夾擠法。這不是普遍方法,因為不可能放大、縮小後的結果都一樣。

8、特殊情況下,化為積分計算。

9、其他極為特殊而不能普遍使用的方法。

拓展資料

極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函數的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。如果要問:「數學分析是一門什麼學科?」那麼可以概括地說:「數學分析就是用極限思想來研究函數的一門學科,並且計算結果誤差小到難於想像,因此可以忽略不計。

Ⅶ 高數總結求極限方法

1. 代入法, 分母極限不為零時使用。先考察分母的極限,分母極限是不為零的常數時即用此法。
【例1】lim[x-->√3](x^2-3)/(x^4+x^2+1)
解:lim[x-->√3](x^2-3)/(x^4+x^2+1)
=(3-3)/(9+3+1)=0
【例2】lim[x-->0](lg(1+x)+e^x)/arccosx
解:lim[x-->0](lg(1+x)+e^x)/arccosx
=(lg1+e^0)/arccos0
=(0+1)/1
=1
2. 倒數法,分母極限為零,分子極限為不等於零的常數時使用。
【例3】 lim[x-->1]x/(1-x)
解:∵lim[x-->1] (1-x)/x=0 ∴lim[x-->1] x/(1-x)= ∞
以後凡遇分母極限為零,分子極限為不等於零的常數時,可直接將其極限寫作∞。
3. 消去零因子(分解因式)法,分母極限為零,分子極限也為零,且可分解因式時使用。
【例4】 lim[x-->1](x^2-2x+1)/(x^3-x)
解:lim[x-->1](x^2-2x+1)/(x^3-x)
=lim[x-->1](x-1)^2/[x(x^2-1)
=lim[x-->1](x-1)/x
=0
【例5】lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)
解:lim[x-->-2] (x^3+3x^2+2x)/(x^2-x-6)
= lim[x-->-2]x(x+1)(x+2)/[(x+2)(x-3)]
= lim[x-->-2]x(x+1) / (x-3)
=-2/5
【例6】lim[x-->1](x^2-6x+8)/(x^2-5x+4)
解:lim[x-->1](x^2-6x+8)/(x^2-5x+4)
= lim[x-->1](x-2)(x-4)/[(x-1)(x-4)]
= lim[x-->1](x-2) /[(x-1)
=∞
【例7】lim[h-->0][(x+k)^3-x^3]/h
解:lim[h-->0][(x+h)^3-x^3]/h
= lim[h-->0][(x+h) –x][(x+h)^2+x(x+h)+h^2]/h
= lim[h-->0] [(x+h)^2+x(x+h)+h^2]
=2x^2
這實際上是為將來的求導數做准備。
4. 消去零因子(有理化)法,分母極限為零,分子極限也為零,不可分解,但可有理化時使用。可利用平方差、立方差、立方和進行有理化。
【例8】lim[x-->0][√1+x^2]-1]/x
解:lim[x-->0][√1+x^2]-1]/x
= lim[x-->0][√1+x^2]-1] [√1+x^2]+1]/{x[√1+x^2]+1]}
= lim[x-->0][ 1+x^2-1] /{x[√1+x^2]+1]}
= lim[x-->0] x / [√1+x^2]+1]
=0
【例9】lim[x-->-8][√(1-x)-3]/(2+x^(1/3))
解:lim[x-->-8][√(1-x)-3]/(2+x^(1/3))
=lim[x-->-8][√(1-x)-3] [√(1-x)+3] [4-2x^(1/3)+x^(2/3)]
÷{(2+x^(1/3))[4-2x^(1/3)+x^(2/3)] [√(1-x)+3]}
=lim[x-->-8](-x-8) [4-2x^(1/3)+x^(2/3)]/{(x+8)[√(1-x)+3]}
=lim[x-->-8] [4-2x^(1/3)+x^(2/3)]/[√(1-x)+3]
=-2
5. 零因子替換法。利用第一個重要極限:lim[x-->0]sinx/x=1,分母極限為零,分子極限也為零,不可分解,不可有理化,但出現或可化為sinx/x時使用。常配合利用三角函數公式。
【例10】lim[x-->0]sinax/sinbx
解:lim[x-->0]sinax/sinbx
= lim[x-->0]sinax/(ax)*lim[x-->0]bx/sinbx*lim[x-->0]ax/(bx)
=1*1*a/b=a/b
【例11】lim[x-->0]sinax/tanbx
解:lim[x-->0]sinax/tanbx
= lim[x-->0]sinax/ sinbx*lim[x-->0]cosbx
=a/b
6. 無窮轉換法,分母、分子出現無窮大時使用,常常借用無窮大和無窮小的性質。
【例12】lim[x-->∞]sinx/x
解:∵x-->∞ ∴1/x是無窮小量
∵|sinx|<=1, 是有界量 ∴sinx/x=sinx* 1/x是無窮小量
從而:lim[x-->∞]sinx/x=0
【例13】lim[x-->∞](x^2-1)/(2x^2-x-1)
解:lim[x-->∞](x^2-1)/(2x^2-x-1)
= lim[x-->∞](1 -1/x^2)/(2-1/x-1/ x^2)
=1/2
【例14】lim[n-->∞](1+2+……+n)/(2n^2-n-1)
解:lim[n-->∞](1+2+……+n)/(2n^2-n-1)
=lim[n-->∞][n( n+1)/2]/(2n^2-n-1)
=lim[n-->∞][ (1+1/n)/2]/(2-1/n-1/n^2)
=1/4
【例15】lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50
解:lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50
= lim[x-->∞][(2x-3)/ (5x+1)]^20[(3x+2)/ (5x+1)]^30
= lim[x-->∞][(2-3/x)/ (5+1/ x)]^20[(3+2/ x)/ (5+1/ x)]^30
=(2/5)^20(3/5)^30=2^20*3^30/5^50

Ⅷ 求極限的21個方法總結

重要極限千篇一律取對數類似題庫集錦大全。對不起打擾了。整體法等價無窮小逆向思維雙向思維。,對數是logarithm的log或者LNX,Lg絕非ig,並非inx,不是logic縮寫,更不會是ins,反民科吧。對不起打擾了唉。abs絕對值,sqrt開根號。平方差公式。分子分母有理化。泰勒公式乘法天下第一先寫別問唉。可以用省略號代替佩亞諾余項。受教於數字帝國。洛必達法則。不定積分結果不唯一求導驗證應該能夠提高湊微分的計算能力。

Ⅸ 求極限的幾種常用方法

可以有直接代入
使用sinx/x和(1+1/x)^x重要極限
以及更加常用的
洛必達法則(即分子分母同時求導)
或者將函數級數展開等等幾種方法
觀察題目選擇最合適的

Ⅹ 求極限的所有方法總結

如果是初等函數,且點在的定義區間內,那麼,因此計算當時的極限,只要計算對應的函數值就可以

閱讀全文

與標題總結常用求極限的方法相關的資料

熱點內容
康復認知訓練方法和技巧 瀏覽:150
42減8破十法計算方法 瀏覽:136
圓五等分最簡單的方法 瀏覽:91
霍爾感測器不帶磁性檢測方法 瀏覽:465
消毒壓力鍋的使用方法 瀏覽:830
碘伏泡腳有什麼好方法 瀏覽:316
300模擬量計算方法 瀏覽:265
肩頸痛肩周炎的鍛煉方法 瀏覽:606
干野生靈芝的食用方法 瀏覽:552
全身肌肉鍛煉方法視頻 瀏覽:422
哪裡有系統的織毛衣方法 瀏覽:905
如何快速學會法語的方法 瀏覽:362
電視機話筒安裝方法 瀏覽:535
黑涼粉製作方法和步驟 瀏覽:454
去角質正確方法 瀏覽:408
直播攝像頭卡頓的原因及解決方法 瀏覽:657
協立智能手環使用方法 瀏覽:599
嬰兒游泳館供水壓力解決方法 瀏覽:882
青春版華為手機otg在哪裡設置方法 瀏覽:700
快速通過初級會計的方法 瀏覽:609