① 如何用spss進行t檢驗
用spss進行t檢驗的操作方法和步驟如下:
1、首先,打開spss軟體,並使用SPSS進行兩個樣本的T檢驗,如下圖所示。
② SPss用法
到網上去找吧 很多的 具體看是哪個版本的 我用的是13.0
③ spss使用方法
樓主電腦上安裝SPSS軟體了嗎?要想建立一個SPSS數據文件,先打開SPSS的變數視圖,進行變數定義,比如你這個問題「你對網路購物了解嗎?」就相當於一個數值型變數。如樓上所說,選項ABCD其實各對應一個分值,從1到4就可以,比如1代表很不了解,4代
④ 怎麼使用SPSS軟體
當我們的調查問卷在把調查數據拿回來後,我們該做的工作就是用相關的統計軟體進行處理,在此,我們以spss為處理軟體,來簡要說明一下問卷的處理過程,它的過程大致可分為四個過程:定義變數、數據錄入、統計分析和結果保存.下面將從這四個方面來對問卷的處理做詳細的介紹.
Spss處理:
第一步:定義變數
大多數情況下我們需要從頭定義變數,在打開SPSS後,我們可以看到和excel相似的界面,在界面的左下方可以看到Data View, Variable View兩個標簽,只需單擊左下方的Variable View標簽就可以切換到變數定義界面開始定義新變數。在表格上方可以看到一個變數要設置如下幾項:name(變數名)、type(變數類型)、width(變數值的寬度)、decimals(小數位) 、label(變數標簽) 、Values(定義具體變數值的標簽)、Missing(定義變數缺失值)、Colomns(定義顯示列寬)、Align(定義顯示對齊方式)、Measure(定義變數類型是連續、有序分類還是無序分類).
我們知道在spss中,我們可以把一份問卷上面的每一個問題設為一個變數,這樣一份問卷有多少個問題就要有多少個變數與之對應,每一個問題的答案即為變數的取值.現在我們以問卷第一個問題為例來說明變數的設置.為了便於說明,可假設此題為:
1.請問你的年齡屬於下面哪一個年齡段( )?
A:20—29 B:30—39 C:40—49 D:50--59
那麼我們的變數設置可如下: name即變數名為1,type即類型可根據答案的類型設置,答案我們可以用1、2、3、4來代替A、B、C、D,所以我們選擇數字型的,即選擇Numeric, width寬度為4,decimals即小數位數位為0(因為答案沒有小數點),label即變數標簽為「年齡段查詢」。Values用於定義具體變數值的標簽,單擊Value框右半部的省略號,會彈出變數值標簽對話框,在第一個文本框里輸入1,第二個輸入20—29,然後單擊添加即可.同樣道理我們可做如下設置,即1=20—29、2=30—39、3=40—49、4=50--59;Missing,用於定義變數缺失值, 單擊missing框右側的省略號,會彈出缺失值對話框, 界面上有一列三個單選鈕,默認值為最上方的「無缺失值」;第二項為「不連續缺失值」,最多可以定義3個值;最後一項為「缺失值范圍加可選的一個缺失值」,在此我們不設置預設值,所以選中第一項如圖;Colomns,定義顯示列寬,可自己根據實際情況設置;Align,定義顯示對齊方式,有居左、居右、居中三種方式;Measure,定義變數類型是連續、有序分類還是無序分類。
以上為問卷中常見的單項選擇題型的變數設置,下面將對一些特殊情況的變數設置也作一下說明.
1.開放式題型的設置:諸如你所在的省份是_____這樣的填空題即為開放題,設置這些變數的時候只需要將Value 、Missing兩項不設置即可.
2.多選題的變數設置:這類題型的設置有兩種方法即多重二分法和多重分類法,在這里我們只對多重二分法進行介紹.這種方法的基本思想是把該題每一個選項設置成一個變數,然後將每一個選項拆分為兩個選項項,即選中該項和不選中該項.現在舉例來說明在spss中的具體操作.比如如下一例:
請問您通常獲取新聞的方式有哪些( )
1 報紙 2 雜志 3 電視 4 收音機 5 網路
在spss中設置變數時可為此題設置五個變數,假如此題為問卷第三題,那麼變數名分別為3_1、3_2、3_3、3_4、3_5,然後每一個選項有兩個選項選中和不選中,只需在Value一項中為每一個變數設置成1=選中此項、0=不選中此項即可.
使用該窗口,我們可以把一個問卷中的所有問題作為變數在這個窗口中一次定義。
到此,我們的定義變數的工作就基本上可以結束了.下面我們要作就是數據的錄入了.首先,我們要回到數據錄入窗口,這很簡單,只要我們點擊軟體左下方的Data View標簽就可以了.
第二步:數據錄入
Spss數據錄入有很多方式,大致有一下幾種:
1.讀取SPSS格式的數據
2.讀取Excel等格式的數據
3.讀取文本數據(Fixed和Delimiter)
4.讀取資料庫格式數據(分如下兩步)
(1)配置ODBC (2)在SPSS中通過ODBC和資料庫進行
但是對於問卷的數據錄入其實很簡單,只要在spss的數據錄入窗口中直接輸入就可以了,只是在這里有幾點注意的事項需要說明一下.
1. 在數據錄入窗口,我們可以看到有一個表格,這個表格中的每一行代表一份問卷,我們也稱為一個個案.
2. 在數據錄入窗口中,我們可以看到表格上方出現了1、2、3、4、5…….的標簽名,這其實是我們在第一步定義變數中,我們為問卷的每一個問題取的變數名,即1代表第一題,2代表第二題.以次類推.我們只需要在變數名下面輸入對應問題的答案即可完成問卷的數據錄入.比如上述年齡段查詢的例題,如果問卷上勾選了A答案,我們在1下面輸入1就行了(不要忘記我們通常是用1、2、3、4來代替A、B、C、D的).
3.我們知道一行代表一份問卷,所以有幾分問卷,就要有幾行的數據.
在數據錄入完成後,我們要做的就是我們的關鍵部分,即問卷的統計分析了,因為這時我們已經把問卷中的數據錄入我們的軟體中了.
第三步:統計分析
有了數據,可以利用SPSS的各種分析方法進行分析,但選擇何種統計分析方法,即調用哪個統計分析過程,是得到正確分析結果的關鍵。這要根據我們的問卷調查的目的和我們想要什麼樣的結果來選擇.SPSS有數值分析和作圖分析兩類方法.
1.作圖分析:
在SPSS中,除了生存分析所用的生存曲線圖被整合到Analyze菜單中外,其他的統計繪圖功能均放置在graph菜單中。該菜單具體分為以下幾部分::
(1)Gallery:相當於一個自學向導,將統計繪圖功能做了簡單的介紹,初學者可以通過它對SPSS的繪圖能力有一個大致的了解。
(2)Interactive:互動式統計圖。
(3)Map:統計地圖。
(4)下方的其他菜單項是我們最為常用的普通統計圖,具體來說有:
條圖
散點圖
線圖
直方圖
餅圖
面積圖
箱式圖
正態Q-Q圖
正態P-P圖
質量控制圖
Pareto圖
自回歸曲線圖
高低圖
交互相關圖
序列圖
頻譜圖
誤差線圖
作圖分析簡單易懂,一目瞭然,我們可根據需要來選擇我們需要作的圖形,一般來講,我們較常用的有條圖,直方圖,正態圖,散點圖,餅圖等等,具體操作很簡單,大家可參閱相關書籍,作圖分析更多情況下是和數值分析相結合來對試卷進行分析的,這樣的效果更好.
2.數值分析:
SPSS 數值統計分析過程均在Analyze菜單中,包括:
(1)、Reports和Descriptive Statistics:又稱為基本統計分析.基本統計分析是進行其他更深入的統計分析的前提,通過基本統計分析,用戶可以對分析數據的總體特徵有比較准確的把握,從而選擇更為深入的分析方法對分析對象進行研究。Reports和Descriptive Statistics命令項中包括的功能是對單變數的描述統計分析。
Descriptive Statistics包括的統計功能有:
Frequencies(頻數分析):作用:了解變數的取值分布情況
Descriptives(描述統計量分析):功能:了解數據的基本統計特徵和對指定的變數值進行標准化處理
Explore(探索分析):功能:考察數據的奇異性和分布特徵
Crosstabs(交叉分析):功能:分析事物(變數)之間的相互影響和關系
Reports包括的統計功能有:
OLAP Cubes(OLAP報告摘要表):功能: 以分組變數為基礎,計算各組的總計、均值和其他統計量。而輸出的報告摘要則是指每個組中所包含的各種變數的統計信息。
Case Summaries(觀測量列表):察看或列印所需要的變數值
Report Summaries in Row:行形式輸出報告
Report Summaries in Columns:列形式輸出報告
(2)、Compare Means(均值比較與檢驗):能否用樣本均值估計總體均值?兩個變數均值接近的樣本是否來自均值相同的總體?換句話說,兩組樣本某變數均值不同,其差異是否具有統計意義?能否說明總體差異?這是各種研究工作中經常提出的問題。這就要進行均值比較。
以下是進行均值比較及檢驗的過程:
MEANS過程:不同水平下(不同組)的描述統計量,如男女的平均工資,各工種的平均工資。目的在於比較。術語:水平數(指分類變數的值數,如sex變數有2個值,稱為有兩個水平)、單元Cell(指因變數按分類變數值所分的組)、水平組合
T test 過程:對樣本進行T檢驗的過程
單一樣本的T檢驗:檢驗單個變數的均值是否與給定的常數之間存在差異。
獨立樣本的T檢驗:檢驗兩組不相關的樣本是否來自具有相同均值的總體(均值是否相同,如男女的平均收入是否相同,是否有顯著性差異)
配對T檢驗:檢驗兩組相關的樣本是否來自具有相同均值的總體(前後比較,如訓練效果,治療效果)
One-Way ANOVA:一元(單因素)方差分析,用於檢驗幾個(三個或三個以上)獨立的組,是否來自均值相同的總體。
(3)、ANOVA Models(方差分析):方差分析是檢驗多組樣本均值間的差異是否具有統計意義的一種方法。例如:醫學界研究幾種葯物對某種疾病的療效;農業研究土壤、肥料、日照時間等因素對某種農作物產量的影響;不同飼料對牲畜體重增長的效果等,都可以使用方差分析方法去解決
(4)、Correlate(相關分析):它是研究變數間密切程度的一種常用統計方法,常用的相關分析有以下幾種:
1、線性相關分析:研究兩個變數間線性關系的程度。用相關系數r來描述。
2、偏相關分析:它描述的是當控制了一個或幾個另外的變數的影響條件下兩個變數間的相關性,如控制年齡和工作經驗的影響,估計工資收入與受教育水平之間的相關關系
3、相似性測度:兩個或若干個變數、兩個或兩組觀測量之間的關系有時也可以用相似性或不相似性來描述。相似性測度用大值表示很相似,而不相似性用距離或不相似性來描述,大值表示相差甚遠
(5)、Regression(回歸分析):功能:尋求有關聯(相關)的變數之間的關系在回歸過程中包括:Liner:線性回歸;Curve Estimation:曲線估計;Binary Logistic: 二分變數邏輯回歸;Multinomial Logistic:多分變數邏輯回歸;Ordinal 序回歸;Probit:概率單位回歸;Nonlinear:非線性回歸;Weight Estimation:加權估計;2-Stage Least squares:二段最小平方法;Optimal Scaling 最優編碼回歸;其中最常用的為前面三個.
(6)、Nonparametric Tests(非參數檢驗):是指在總體不服從正態分布且分布情況不明時,用來檢驗數據資料是否來自同一個總體假設的一類檢驗方法。由於這些方法一般不涉及總體參數故得名。
非參數檢驗的過程有以下幾個:
1.Chi-Square test 卡方檢驗
2.Binomial test 二項分布檢驗
3.Runs test 遊程檢驗
4.1-Sample Kolmogorov-Smirnov test 一個樣本柯爾莫哥洛夫-斯米諾夫檢驗
5.2 independent Samples Test 兩個獨立樣本檢驗
6.K independent Samples Test K個獨立樣本檢驗
7.2 related Samples Test 兩個相關樣本檢驗
8.K related Samples Test 兩個相關樣本檢驗
(7)、Data Rection(因子分析)
(8)、Classify(聚類與判別)等等
以上就是數值統計分析Analyze菜單下幾項用於分析的數值統計分析方法的簡介,在我們的變數定義以及數據錄入完成後,我們就可以根據我們的需要在以上幾種分析方法中選擇若干種對我們的問卷數據進行統計分析,來得到我們想要的結果.
第四步:結果保存
我們的spss軟體會把我們統計分析的多有結果保存在一個窗口中即結果輸出窗口(output),由於spss軟體支持復制和粘貼功能,這樣我們就可以把我們想要的結果復制、粘貼到我們的報告中,當然我們也可以在菜單中執行file->save來保存我們的結果,一般情況下,我們建議保存我們的數據,結果可不保存.因為只要有了數據,如果我們想要結果的,我們可以隨時利用數據得到結果.
總結:
以上便是spss處理問卷的四個步驟,四個步驟結束後,我們需要spss軟體做的工作基本上也就結束了,接下來的任務就是寫我們的統計報告了.值得一提的是.spss是一款在社會統計學應用非常廣泛的統計類軟體,學好它將對我們以後的工作學習產生很大的意義和作用.
⑤ spss軟體如何讓使用
sig是顯著性指標,一般大於0.05拒絕原假設,否則接受原假設,一般我們都是期望拒絕原假設,少數情況我們希望接受原假設,所以sig就是判斷的依據。 ~
⑥ 使用spss檢驗的具體操作過程
使用spss檢驗的具體操作過程如下:
首先,打開或者新建立一組數據。
這里是打開了一組案例分析中的數據進行分析。
找到非參數檢驗->就對話框->卡方檢驗,將其單擊單擊打開。
下面是卡方檢驗的參數設置窗口。將左邊的原變數選入到檢驗變數列表中。
打開精確,裡面的值默認,一般不需要更改。
打開選項窗口,將描述性復選框按鈕進行勾選。
再將期望單選和期望值選擇好。
全部參數設定好之後單擊確定獲得檢驗分析結果。
⑦ spss怎麼用
用spss進行數據分析:
數據獲取
外部數據主要有三種獲取方式,一種是獲取國內一些網站上公開的數據資料,例如國家統計局;一種是通過爬蟲等工具獲取網站上的數據。還有一種是通過企業內部的資料庫,SPSS有豐富的資料庫介面,可以便捷地從資料庫中讀取數據。
數據存儲
對於數據量不大的項目,可以使用excel來處理數據,但對於數據量過萬的項目,使用資料庫來存儲與管理會更高效便捷。SPSS也有自己的用作數據儲存的數據格式,sav文件。用戶可以將經過SPSS處理的數據保存為sav格式,同時也可以非常方便地將sav文件轉換為其他數據格式文件。
數據預處理
數據預處理也稱數據清洗。大多數情況下,我們拿到手的數據是格式不一致,存在異常值、缺失值等問題的,而不同項目數據預處理步驟的方法也不一樣。數據分析有80%的工作都在處理數據,可見數據預處理在數據分析的重要性。
建模與分析
這一階段首先要清楚數據的結構,結合項目需求來選取模型。
可視化分析
數據分析最後一步是撰寫數據分析報告,一般包括數據可視化分析。
其次,掌握了數據分析的一般流程後,便要以SPSS為工具,根據以下流程對一個完整項目進行以下細分並掌握:
⑧ spss 的問題,使用方法
運用SPSS的select菜單過濾出月收入超過5000以上的,然後運用直方圖Histogram菜單判斷其分布類型,當然需要對分布進行檢驗才行。可以用SPSS的非參數檢驗菜單來實現
⑨ Spss的基本方法使用步驟
Spss的基本方法使用步驟
由於一次的調研工作,我們的數據分析採用spss的統計分析工具,然後我是一個新人,全都是一步一步從零開始操作的。在學習的過程中簡單記錄了一點筆記,既然寫了,就覺得應該把它保存下來,所以來到了這里,為我的第一次spss操作做個馬克。
因子分析方法:指標非常多,反映相同事情的進行聚合
設置的地方:
描述—— kmo
抽取 —— 主成分,碎石圖
旋轉——最大方差法
得分——保存為變數
選項——大小為變數、刪除最小系數,特徵值為0.6
kmo > 0.6 ——看是否有效,對原始數據的檢驗。
在SPSS軟體統計結果中,不管是回歸分析還是其它分析,都會看到「SIG」,SIG=significance,意為「顯著性」,後面的值就是統計出的P值,如果P值0.01<P<0.05,則為差異顯著,如果P<0.01,則差異極顯著。
公因子方差——提取程度(損失的數據,如果損失低於40%即滿意)
解釋總方差:可以分成幾類,然後提取主成分因子,累積方差貢獻率,累積特徵值大於等於85%(放寬70%).(損失率低於15%)
碎石圖:類似於解釋總方差,特徵值大於1的就是主成分,對解釋方差的解釋和完善
成分矩陣——一般不考慮,不夠充分,只是中間步驟
旋轉後成分矩陣——成分1,成分2中大於0.6的歸為一類,載荷大於設置的值才會把得分顯示在視圖。
可靠性分析(問卷問題分類正確的前提下)步驟:
分析→度量→可靠性分析→統計量→描述性(如果項已刪除則進行度量)→繼續(模型α)→確定
分析:可靠性統計量:0.7以上有效
可刪除的分析:如果刪除後信度變大,則可以考慮把這個因素刪除
平均數:反應數量的中點
中位數:全體樣本的中點
步驟:
均值:描述性統計分析→描述→導入變數→確定
中位數:比較均值→均值→導入變數→選項→導入中位數即可→確定
線性回歸步驟:
分析→回歸→線性→因變數→自變數→
統計量:估計→模型擬合度→共線性診斷→DW
繪制:Y:ZRESID, X:ZPRED; 直方圖,正態概率圖
保存:不操作
選項: 默認
→確定
模型匯總表
DW統計量代表自相關
DW = 2不存在為偽回歸
DW < 2 正自相關
DW > 2 負相關
多選題可以考慮使用多重響應多重響應,多重響應數據本質上屬於分類數據,但由於各選項均是對同一個問題的回答,之間存在一定的相關,將各選項單獨進行分析並不恰當。因此對多選題最常見的分析方法是使用SPSS中的「多重響應」命令,通過定義變數集的方式,對選項進行簡單的頻數分析和交叉分析
作用1:進行簡單的頻數分析:可以直觀明了的比較一道多選題的各個選項被選比例。
作用2:進行交叉分析:可以通過設置分層變數來進行某個選項控制下的分析。
步驟:
分析→多重響應→定義變數集(把多選題變成一個變數)→設置定義把多選題的選項放進集合中的變數→將變數編碼設置為二分法,計數值為1→名稱標簽→添加 、
交叉表
行、列→定義范圍→確定
⑩ spss使用
總體滿意度求均值即可
四個維度的滿意度根據分組分別求均值標准差即可,要用好幾個功能,比如split、frequency等
我替別人做這類的數據分析蠻多的