A. 如何對目的基因進行檢測與鑒定
可以從三方面對目的基因進行鑒定:
1、直接測定:按照目的基因組成製作DNA分子探針進行配對。
2、mRNA測定:根據目的基因組得出其轉錄的mRNA組成,利用探針檢測。
3、蛋白測定:可應用PCR相應技術測定目的基因翻譯的相關蛋白,也可採用免疫化學法導入蛋白抗體檢測蛋白。
(1)基因鑒定的常用方法是擴展閱讀:
對目的基因進行鑒定和檢測的多種方法:
基因鑒定技術是一項生物學檢測技術,人體細胞有總數約為30億個鹼基對的DNA,每個人的DNA都不完全相同,人與人之間不同的鹼基對數目達幾百萬之多,因此通過分子生物學方法顯示的DNA圖譜也因人而異,由此可以識別不同的人。
所謂「DNA指紋」,就是把DNA作為像指紋那樣的獨特特徵來識別不同的人。由於DNA是遺傳物質,因此通過對DNA鑒定還可以判斷兩個人之間的親緣關系。
基因鑒定的原理其實是DNA分子雜交,這種分子雜交是在緩沖液中進行的,由於DNA分子雜交時,兩個分子相遇的機會不是很大,所以就需要眾多的帶有目的基因的DNA與待測的DNA分子。
而PCR技術就是將目的基因進行擴增的一種技術手段,所以在進行基因鑒定時並不是直接進行鑒定的,而是先進行PCR技術將目的基因擴增再進行鑒定。
網路-對目的基因進行檢測與鑒定
老兄。我掃個盲哈。檢測基因表達的方法主要有:表達譜,全轉錄組的信息,目前最流行平台包括47,000個轉錄本,檢測全基因組的表達變化。簡單的經典的方法有Northern Blot,常用的有反轉錄PCR,定量分析表達的變化qRT-PCR這些都是檢測單一轉錄子的方法。
C. 常用的基因突變檢測方法有哪些
1、焦磷酸測序法
測序法的基本原理是雙脫氧終止法,是進行基因突變檢測的可靠方法,也是使用最多的方法。但其過程繁瑣、耗時長,靈敏度不高,對環境和操作者有危害,故在臨床應用中存在一定的限制。
焦磷酸測序法適於對已知的短序列的測序分析,其可重復性和精確性能與SangerDNA測序法相媲美,而速度卻大大的提高。
焦磷酸測序技術產品具備同時對大量樣品進行測序分析的能力。為大通量、低成本、適時、快速、直觀地進行單核苷酸多態性研究和臨床檢驗提供了非常理想的技術操作平台。
2、微數字聚合酶鏈反應
該方法為將樣品作大倍數稀釋和細分,直至每個細分試樣中所含有的待測分子數不超過1個,再將每個細分試樣同時在相同條件下聚合酶鏈反應後,通過基因晶元逐個計數。該方法為絕對定量的方法。
3、聚合酶鏈反應-限制性片段長度多態性分析技術
聚合酶鏈式反應(PCR)是一種用於放大擴增特定的DNA片段的分子生物學技術,它可看作是生物體外的特殊DNA復制,PCR的最大特點是能將微量的DNA大幅增加。該法一般用於檢測已知的突變位點。
因此,無論是化石中的古生物、歷史人物的殘骸,還是幾十年前兇殺案中兇手所遺留的毛發、皮膚或血液,只要能分離出一丁點的DNA,就能用PCR加以放大,進行比對。這也是「微量證據」的威力之所在。
由1983年美國Mullis首先提出設想,1985年由其發明了聚合酶鏈反應,即簡易DNA擴增法,意味著PCR技術的真正誕生。到如今2013年,PCR已發展到第三代技術。1976年,台灣科學家錢嘉韻,發現了穩定的Taq DNA聚合酶,為PCR技術發展也做出了基礎性貢獻。
PCR是利用DNA在體外攝氏95°高溫時變性會變成單鏈,低溫(經常是60°C左右)時引物與單鏈按鹼基互補配對的原則結合,再調溫度至DNA聚合酶最適反應溫度(72°C左右)。
DNA聚合酶沿著磷酸到五碳糖(5'-3')的方向合成互補鏈。基於聚合酶製造的PCR儀實際就是一個溫控設備,能在變性溫度,復性溫度,延伸溫度之間很好地進行控制。
4、高效液相色譜法
該方法是基於發生錯配的雜合雙鏈DNA與完全匹配的純合雙鏈DNA解鏈特徵的差異而進行檢測的,可檢測出含有單個鹼基的置換、插入或缺失的異源雙鏈片段。
與測序法相比,該法簡單、快速,不僅可用於已知突變的檢測,還可用於未知突變的掃描。但只能檢查有無突變,不能檢測出突變類型,結果判斷容易出錯。
5、單鏈構象異構多態分析技術
依據單鏈DNA在某一種非變性環境中具有其特定的第二構象,構象不同導致電泳的遷移率不同,從而將正常鏈與突變鏈分離出來。與測序法相比,靈敏性更高。
D. 獲取目的基因的常用方法是哪種
..剛好學到
基因工程流程的第一步就是獲得目的DNA片段,如何獲得目的DNA片段就成為基因工程的關鍵問題。所需目的基因的來源,不外乎是分離自然存在的基因或人工合成基因。常用的方法有PCR法、化學合成法、cDNA法及建立基因文庫的方法來篩選
直接獲取
1.從基因文庫中獲取 這個沒什麼就是現成的基因儲存在受體菌上你用的時候提取出來就好了(基因組文庫法 就是原教材中的用限制性內切酶直接獲取。利用λ噬菌體載體構建基因組文庫的一般操作程序如下:① 選用特定限制性內切酶, DNA進行部分酶解,得到DNA限制性片段② 選用適當的限制性內切酶酶解λ噬菌體載體DNA。③ 經適當處理,將基因組DNA限制性片段與λ噬菌體載體進行體外重組。④ 利用體外包裝系統將重組體包裝成完整的顆粒。⑤ 以重組噬菌體顆粒侵染大腸桿菌,形成大量噬菌斑,從而形成含有整個DNA的重組DNA群體,即文庫。)經典解釋
2.cDNA文庫法(即原教材中提到的逆轉錄法)。cDNA文庫,是指匯集以某生物成熟mRNA為模板逆轉錄而成的cDNA序列的重組DNA群體。雖然可用基因組文庫法來獲取真核生物的目的基因,但是由於高等真核生物基因組DNA文庫比其cDNA文庫大得多,相關工作量同樣大得多。更為重要的是,在真核生物基因組中合有大量的間隔序列或內含子,但在大腸桿菌等原核生物中沒有類似序列的存在,所以大腸桿菌不能從真核生物基因的初級轉錄本中去除間隔序列,即不能表達真核生物DNA。而在真核生物成熟mRNA中已不存在間隔序列(已在拼接過程中被去除),所以可以以真核生物成熟mRNA為模板,逆轉錄而成的cDNA可被大腸桿菌表達。因此,在基因工程中,cDNA文庫法是從真核生物細胞中分離目的基因的常用方法。
3.直接分離基因最常用的方法是「鳥槍法」,又叫「散彈射擊法」。這種方法有如用獵槍發射的散彈打鳥,無論哪一顆彈粒擊中目標,都能把鳥打下來。鳥槍法的具體做法是:用限制酶(即限制性內切酶)將供體細胞中的DNA切成許多片段,將這些片段分別載入運載體,然後通過運載體分別轉入不同的受體細胞,讓供體細胞所提供的DNA(外源DNA)的所有片段分別在受體細胞中大量復制(在遺傳學中叫做擴增),從中找出含有目的基因的細胞,再用一定的方法吧帶有目的基因的DNA片段分離出來。如許多抗蟲,抗病毒的基因都可以用上述方法獲得。
用「鳥槍法」獲取目的基因的優點是操作簡便,缺點是工作量大,具有一定的盲目性。
人工合成
1.(主要是序列已知的基因)。主要是通過DNA自動合成儀,通過固相亞磷酸醯胺法合成,具體過程可以網上查詢,反正是可以按照已知序列將核苷酸一個一個連接上去成為核苷酸序列,一般適於分子較小而不易獲得的基因。對於大的基因一般是先用化學合成法合成引物,再利用引物獲得目的基因。
2.聚合酶鏈反應(Polymerase Chain Reaction ,PCR)是80年代中期發展起來的體外核酸擴增技術。它具有特異、敏感、產率高、快速、簡便、重復性好、易自動化等突出優點;能在一個試管內將所要研究 的目的基因或某一DNA片段於數小時內擴增至十萬乃至百萬倍,使肉眼能直接觀察和判斷;可從一根毛發、一滴血、甚至一個細胞中擴增出足量的DNA供分析研 究和檢測鑒定。過去幾天幾星期才能做到的事情,用PCR幾小時便可完成。PCR技術是生物醫學領域中的一項革命性創舉和里程碑
他只是給目的基因的擴增
好累~....
E. 檢測基因表達的方法
主要用探針檢測mRNA或用抗體檢測出表達的蛋白質(轉錄水平上對特異mRNA的檢測和翻譯水平上對特異蛋白質的檢測)
一、外源基因轉錄水平的鑒定
基因表達分為轉錄及翻譯兩階段,轉錄是以DNA(基因)為模板生成mRNA的過程,翻譯是以mRNA為模板生成蛋白質的過程,檢測外源基因的表達就是檢測特異mRNA及特異蛋白質的生成。所以基因表達檢測分為兩個水平。
即轉錄水平上對特異mRNA的檢測和翻譯水平上對特異蛋白質的檢測。轉錄水平上的檢測主要方法是Northern雜交,它是以DNA或RNA為探針,檢測RNA鏈。和Southern雜交相同,Northern雜交包括斑點雜交和印跡雜交。
也可用RT-PCR(reverse transcribed PCR)方法檢測外源DNA在植物體內的轉錄表達。其原理是以植物總RNA或mRNA為模板進行反轉錄,然後再經PCR擴增。
如果從細胞總RNA提取物中得到特異的cDNA擴增條帶,則表明外源基因實現了轉錄。此法簡單、快速,但對外源基因轉錄的最後決定,還需與Northern雜交的實驗結果結合。
二、外源基因表達蛋白的檢測
表達蛋白的檢測方法有三種:
1、生化反應檢測法:主要通過酶反應來檢測;
2、免疫學檢測法:通過目的蛋白(抗原)與其抗體的特異性結合進行檢測,具體方法有Western雜交、酶聯免疫吸附法(ELISA)及免疫沉澱法;
3、生物學活性的檢測。
Western雜交是將聚丙烯醯胺凝膠(SDS-PAGE)電泳分離抗原(Antigen)固定在固體支持物上(如硝酸纖維素膜,NC膜)。不同分子量大小的蛋白質在凝膠中遷移率不同,據此可確定特定的抗原存在與否以及相對豐度,或者蛋白質是否遭到降解等。
蛋白質電泳後轉到NC膜,放在蛋白質(如牛血清蛋白BSA)或奶粉溶液中,溫育,以封閉非特異性位點,然後用含有放射性標記或酶標記的特定抗體雜交,抗原-抗體結合,再通過放射性自顯影或顯色觀察。
(5)基因鑒定的常用方法是擴展閱讀
外顯子與內含子表達過程中的相對性 從內含子與外顯子的定義來看,兩者是不能混淆的,但是真核生物的外顯子也並非都「顯」(編碼氨基酸),除了tRNA基因和rRNA基因的外顯子完全「不顯」之外,幾乎全部的結構基因的首尾兩外顯子都只有部分核苷酸順序編碼氨基酸,還有完全不編碼基酸的外顯子,如人類G6PD基因的第一外顯子核苷酸順序。
已發現一個基因的外顯子可以是另一基因的內含子,所這亦然。以小鼠的澱粉酶基因為例,來源於肝的與來源於唾液腺的是同一基因。澱粉酶基因包括4個外顯子,肝生成的澱粉酶不保留外顯子1,而唾液腺中的澱粉酶則保留了外顯子1的50bp順序,但把外顯子2與前後兩段內含子一起剪切掉,經過這樣剪接,外顯子2就變成唾液澱粉酶基因中的內含子。
同一基因在不同組織能生成不同的基因產物來源於不同組織的類似蛋白,可以由同一基因編碼產生,這種現象首先是由於基因中的增強子等有組織特異性,它能與不同組織中的組織特異因子結合,故在不同組織中同一基因會產生不同的轉錄物與轉錄後加工作用。
此外真核生物基因可有一個以一的poly(A)位點,因此能在不同的細胞中產生具有不同3』末端的前mRNA,從而會有不同的剪接方式。由於大多數真核生物基因的轉錄物是先加poly(A)尾巴,然後再行剪接,因此不同組織、細胞中會有不同的因子干預多聚腺苷酸化作用,最後影響剪接模式。
F. 基因檢測方法
一般有三種基因檢測方法:生化檢測、染色體分析和DNA分析。
1.生化檢測
生化檢測是通過化學手段,檢測血液、尿液、羊水或羊膜細胞樣本,檢查相關蛋白質或物質是否存在,確定是否存在基因缺陷。用於診斷某種基因缺陷,這種缺陷是因某種維持身體正常功能的蛋白質不均衡導致的,通常是檢測測試蛋白質含量。還可用於診斷苯丙酮尿症等。
2.染色體分析
染色體分析直接檢測染色體數目及結構的異常,而不是檢查某條染色體上某個基因的突變或異常。通常用來診斷胎兒的異常。
常見的染色體異常是多一條染色體,檢測用的細胞來自血液樣本,若是胎兒,則通過羊膜穿刺或絨毛膜絨毛取樣獲得細胞。將之染色,讓染色體凸顯出來,然後用高倍顯微鏡觀察是否有異常。
3.DNA分析
DNA分析主要用於識刖單個基因異常引發的遺傳性疾病,如亨廷頓病等。DNA分析的細胞來自血液或胎兒細胞。
G. 檢測基因表達的方法有哪些
基因工程第四步中包括導入檢測,轉錄檢測和翻譯檢測,方法分別是dna分子雜交技術、分子雜交技術、抗原-抗體雜交技術。有的還可在個體水平是進行檢測,如抗性檢測等
H. 基因檢測方法有哪些
基因是遺傳的基本單元,攜帶有遺傳信息的DNA或RNA序列,通過復制,把遺傳信息傳遞給下一代,指導蛋白質的合成來表達自己所攜帶的遺傳信息,從而控制生物個體的性狀表達。基因檢測是通過血液、其他體液、或細胞對DNA進行檢測的技術,是取被檢測者外周靜脈血或其他組織細胞,擴增其基因信息後,通過特定設備對被檢測者細胞中的DNA分子信息作檢測,分析它所含有的基因類型和基因缺陷及其表達功能是否正常的一種方法,從而使人們能了解自己的基因信息,明確病因或預知身體患某種疾病的風險。
基因檢測可以診斷疾病,也可以用於疾病風險的預測。疾病診斷是用基因檢測技術檢測引起遺傳性疾病的突變基因。應用最廣泛的基因檢測是新生兒遺傳性疾病的檢測、遺傳疾病的診斷和某些常見病的輔助診斷。
一般有三種基因檢測方法:生化檢測、染色體分析和DNA分析。
1.生化檢測
生化檢測是通過化學手段,檢測血液、尿液、羊水或羊膜細胞樣本,檢查相關蛋白質或物質是否存在,確定是否存在基因缺陷。用於診斷某種基因缺陷,這種缺陷是因某種維持身體正常功能的蛋白質不均衡導致的,通常是檢測測試蛋白質含量。還可用於診斷苯丙酮尿症等。
2.染色體分析
染色體分析直接檢測染色體數目及結構的異常,而不是檢查某條染色體上某個基因的突變或異常。通常用來診斷胎兒的異常。
常見的染色體異常是多一條染色體,檢測用的細胞來自血液樣本,若是胎兒,則通過羊膜穿刺或絨毛膜絨毛取樣獲得細胞。將之染色,讓染色體凸顯出來,然後用高倍顯微鏡觀察是否有異常。
3.DNA分析
DNA分析主要用於識別單個基因異常引發的遺傳性疾病,如亨廷頓病等。DNA分析的細胞來自血液或胎兒細胞。
基因檢測可以分為以下五類:
1.基因篩檢
主要是針對特定團體或全體人群進行檢測。大多數通過產前或新生兒的基因檢測以達到篩檢的目的。
2.生殖性基因檢測
在進行體外人工授精階段可運用,篩檢出胚胎是否帶有基因變異,避免胎兒患有遺傳性疾病。
3.診斷性檢測
多數用來協助臨床用葯指導。
4.基因攜帶檢測
基因攜帶者如果與某些特殊基因相結合,可能會導致下一代患基因疾病,通過基因攜帶者的檢測可篩檢出此種可能,作為基因攜帶者婚前檢查、生育時的參考。
5.症狀出現前的檢測
檢測目的是了解健康良好者是否帶有某種突變基因,而此基因與特定疾病的發生有密切的聯系。
臨床意義
1.用於疾病的診斷
如對結核桿菌感染的診斷,以前主要依靠痰、糞便或血液培養,整個檢驗流程需要在兩周以上,採用基因診斷的方法,不僅敏感性大大提高,而且在短時間內就能得到結果。
2.了解自身是否有家族性疾病的致病基因,預測患病風險
資料證實10%~15%的癌症與遺傳有關,糖尿病、心腦血管疾病等多種疾病都與遺傳因素有關。如具有癌症或多基因遺傳病(如老年痴呆、高血壓、糖尿病等)的人可找出致病的遺傳基因,就能夠有針對性地調整生活方式,預防或者延緩疾病的發生。
3.正確選擇葯物,避免濫用葯物和葯物不良反應
由於個體遺傳基因上的差異,不同的人對外來物質產生的反應也會有所不同,因此部分患者使用正常劑量的葯物時,可能會出現葯物過敏、紅腫發疹的現象。根據基因檢測的結果,可制定特定的治療方案,從而科學地指導使用葯物,避免葯物毒副反應。
I. 基因診斷的方法有哪幾種
基因診斷(gene diagnosis)是以探測基因的存在,分析基因的類型和缺陷及其表達功能是否正常,從而達到診斷疾病的一種方法。它是繼形態學、生物化學和免疫學診斷之後的第四代診斷技術,它的誕生與發展得益於分子生物學理論和技術的迅速發展。
常用基因診斷技術:
一、Southern印跡法(Southern blot)
基本原理是:硝酸纖維膜或尼龍濾膜對單鏈DNA的吸附能力很強,當電泳後凝膠經過DNA變性處理,覆以上述濾膜,再於其上方壓上多層乾燥的吸水紙,藉助它對深鹽溶液的上吸作用,凝膠上的單鏈DNA將轉移到濾膜上。轉移是原位的,即DNA片段的位置保持不變。轉移結束後,經過80℃烘烤的DNA,將原位地固定於膜上。
當含有特定基因片段已原位轉移到膜上後,即可與同位素標記了的探針進行雜交,並將雜交的信號顯示出來。雜交通常在塑料袋中進行,袋內放置上述雜交濾膜,加入含有變性後探針的雜交溶液後,在一定溫度下讓單鏈探針DNA與固定於膜上的單鏈基因DNA分子按鹼基到互補原理充分結合。結合是特異的,例如只有β珠蛋白基因DNA才能結合上β珠蛋白的探針。雜交後,洗去膜上的未組合的探針,將Ⅹ線膠片覆於膜上,在暗盒中日光進行放射自顯影。結合了同位素標記探針的DNA片段所在部位將顯示黑色的雜交帶,基因的缺失或突變則可能導致帶的缺失或位置改變。
二、聚合酶鏈反應
近年來,基因分析和基因工程技術有了革命性的突破,這主要歸功於聚合酶鏈反應(polymerase chain reaction,PCR)的發展和應用。應用PCR技術可以使特定的基因或DNA片段在短短的2-3小時內體外擴增數十萬至百萬倍。擴增的片段可以直接通過電泳觀察,也可用於進一步的分析。這樣,少量的單拷貝基因不需通過同位素提高其敏感性來觀察,而通過擴增至百萬倍後直接觀察到,而且原先需要一、二周才能作出的診斷可以縮短至數小時。
三、擴增片段長度多態性
小衛星DNA和微衛星DNA的長度多態性可以通過PCR擴增後電泳來檢出,並用於致病基因的連鎖分析,這種診斷方法稱為擴增片段長度多態性(amplified fragment length polymorphism,Amp-FLP)連鎖分析法。PCR擴增後,產物即等位片段之間的差別有時只有幾個核苷酸,故需用聚丙烯醯胺凝膠電泳分離鑒定。此法多用於突變性質不明的連鎖分析.
四、等位基因的特異寡核苷酸探針診斷法
當基因的突變部位和性質已完全明了時,可以合成等基因特異的寡核苷酸探針(allele-specific oligonucleotide,ASO)用同位素或非同位素標記進行診斷。探針通常為長20bp左右的核苷酸。用於探測點突變時一般需要合成兩種探針,與正常基因序列完全一致,能與之穩定地雜交,但不能與突變基因序列雜交;另一種與突變基因序列一致,能與突變基因序列穩定雜交,但不能與正常基因序列穩定雜交,這樣,就可以把只有一個鹼基發生了突變的基因區別開來.
PCR可結合ASO,即PCR-ASO技術,即先將含有突變點的基因有關片段進行體外擴增,然後再與ASO探針作點雜交,這樣大大簡化了方法,節約了時間,而且只要極少量的基因組DNA就可進行。
五、單鏈構象多態性診斷法
單鏈構象多態性(signle strand conformation polymorphism,SSCP)是指單鏈DNA由於鹼基序列的不同可引起構象差異,這種差異將造成相同或相近長度的單鏈DNA電泳遷移率不同,從而可用於DNA中單個鹼基的替代、微小的缺失或手稿的檢測。用SSCP法檢查基因突變時,通常在疑有突變的DNA片段附近設計一對引物進行PCR擴增,然後將擴增物用甲醯胺等變性,並在聚丙烯醯胺凝膠中電泳,突變所引起的DNA構象差異將表現為電泳帶位置的差異,從而可據之作出診斷。
J. 基因功能鑒定的方法有哪些
基因功能鑒定的方法
1、轉基因技術
2、基因敲出技術
3、基因沉默技術
轉基因技術是將外源基因導入受體細胞,室外源基因隨即整合到受體細胞的染色體上,並隨者受體細胞的分裂並將外源基因遺傳給後代,從而獲得攜帶外源基因的轉基因生物方法。
基因敲出技術是採用動物胚胎肝細胞介導定向基因轉移,使動物體內的特定基因喪失功能的技術。
基因沉默技術是針對mRNA的操作,旨在抑制基因表達產物的生成。