㈠ 圖像分割哪種方法比較好
圖片分割,可以把它理解成裁剪.
最好是用Illustrator,裁減後圖片8會失楨.
就是8會模糊.
㈡ 圖像分割演算法那麼多 如何正確的使用適合的演算法
從學術角度講圖像分割主要分成3大類,一是基於邊緣的,二是基於區域的,三是基於紋理的。由於基於紋理的也可以看成是基於區域的,所以有些專家也把分割方法分成基於邊緣和基於區域兩大類。
選擇演算法的時候主要參考你要分割的圖像樣本的特點。
如果圖像的邊界特別分明,比如綠葉和紅花,在邊界處紅綠明顯不同,可以精確提取到邊界,這時候用基於邊緣的方法就可行。但如果是像醫學圖像一樣,輪廓不是特別明顯,比如心臟圖像,左心房和左心室顏色比較接近,它們之間的隔膜僅僅是顏色比它們深一些,但是色彩上來說很接近,這時候用基於邊緣的方法就不合適了,用基於區域的方法更好。再比如帶紋理的圖像,例如條紋衫,如果用基於邊緣的方法很可能就把每一條紋都分割成一個物體,但實際上衣服是一個整體,這時候用基於紋理的方法就能把紋理相同或相似的區域分成一個整體。
不過總體來說,基於區域的方法近些年更熱一些,如Meanshift分割方法、測地線活動輪廓模型、JSEG等。
㈢ 圖像處理的常用方法有哪幾個
1、圖像變換:
由於圖像陣列比較大,如果直接在空間域中進行圖像處理,這樣涉及的計算量會比較大。因此,我們一般採用各種圖像變換的方法,如沃爾什變換、傅立葉變換、離散餘弦變換等一些間接處理技術,將空間域的處理轉變為變換域處理,不僅可減少計算量,而且可獲得更有效的處理(如傅立葉變換可在頻域中進行數字濾波處理)。
2、圖像編碼壓縮:
圖像編碼壓縮技術能夠減少描述圖像的數據量,從而可以節省圖像傳輸、處理時間和減少所佔用的存儲器容量。圖像編碼壓縮能夠在不失真的基礎上獲得,同時也可以在允許的失真條件下開始。編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術。
3、圖像增強和復原:
圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等。圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分。如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響。圖像復原要求對圖像降質的原因有一定的了解,一般講應根據降質過程建立“降質模型”,再採用某種濾波方法,恢復或重建原來的圖像。
4、圖像分割:
圖像分割是數字圖像處理中的關鍵技術之一。圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎。雖然目前已研究出不少邊緣提取、區域分割的方法,但還沒有一種普遍適用於各種圖像的有效方法。
關於圖像處理的常用方法,青藤小編就和您分享到這里了。如果您對圖片處理、網站設計等有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於平面設計的技巧及素材等內容,可以點擊本站的其他文章進行學習。
㈣ 圖像分割的介紹
圖像分割就是把圖像分成若干個特定的、具有獨特性質的區域並提出感興趣目標的技術和過程。它是由圖像處理到圖像分析的關鍵步驟。現有的圖像分割方法主要分以下幾類:基於閾值的分割方法、基於區域的分割方法、基於邊緣的分割方法以及基於特定理論的分割方法等。1998年以來,研究人員不斷改進原有的圖像分割方法並把其它學科的一些新理論和新方法用於圖像分割,提出了不少新的分割方法。圖像分割後提取出的目標可以用於圖像語義識別,圖像搜索等等領域。
㈤ 圖像分割最好方法
1.基於閾值的分割方法
閾值法的基本思想是基於圖像的灰度特徵來計算一個或多個灰度閾值,並將圖像中每個像素的灰度值與閾值作比較,最後將像素根據比較結果分到合適的類別中。因此,該方法最為關鍵的一步就是按照某個准則函數來求解最佳灰度閾值。
閾值法特別適用於目標和背景占據不同灰度級范圍的圖。圖像若只有目標和背景兩大類,那麼只需要選取一個閾值進行分割,此方法成為單閾值分割;但是如果圖像中有多個目標需要提取,單一閾值的分割就會出現作物,在這種情況下就需要選取多個閾值將每個目標分隔開,這種分割方法相應的成為多閾值分割。
2.基於區域的圖像分割方法
基於區域的分割方法是以直接尋找區域為基礎的分割技術,基於區域提取方法有兩種基本形式:一種是區域生長,從單個像素出發,逐步合並以形成所需要的分割區域;另一種是從全局出發,逐步切割至所需的分割區域。
分水嶺演算法
分水嶺演算法是一個非常好理解的演算法,它根據分水嶺的構成來考慮圖像的分割,現實中我們可以想像成有山和湖的景象,那麼一定是水繞山山圍水的景象。
分水嶺分割方法,是一種基於拓撲理論的數學形態學的分割方法,其基本思想是把圖像看作是測地學上的拓撲地貌,圖像中每一點像素的灰度值表示該點的海拔高度,每一個局部極小值及其影響區域稱為集水盆,而集水盆的邊界則形成分水嶺。分水嶺的概念和形成可以通過模擬浸入過程來說明。在每一個局部極小值表面,刺穿一個小孔,然後把整個模型慢慢浸入水中,隨著浸入的加深,每一個局部極小值的影響域慢慢向外擴展,在兩個集水盆匯合處構築大壩,即形成分水嶺。
㈥ 圖像處理中的圖像分割
這個很明顯的有顏色區別,灰度化後灰度值會有明顯的區分,合理設定閾值就可以了么!
㈦ 目前應用最廣的圖像分割演算法是什麼
典型的圖像分割方法有閥值法,邊緣檢測法,區域法,很多演算法是在其上進行改進,目前沒有一個演算法適用所有圖像.
目前常用的閾值分割方法有:雙峰曲線擬合法,最大熵值分割法,類間方
差閾值分割法,模糊閾值分割法等;
邊緣檢測是最為普遍的對於灰度間斷的檢測方一般常用一階和二階導數來檢測邊,二階導數:有梯度運算元、Roberts、Prewitt和Sobel運算元、拉普拉斯運算元、Canny運算元 。
㈧ 圖像分割方法
圖像分割的方法分為:
1、基於圖論的分割方法
2、基於聚類的分割方法
3、基於語義的分割方法