❶ 分解質因數的方法是什麼
分解質因數的方法有兩種:
1、相乘法
寫成幾個質數相乘的形式(這些不重復的質數即為質因數),實際運算時可採用逐步分解的方式。
如:36=2*2*3*3 運算時可逐步分解寫成36=4*9=2*2*3*3或3*12=3*2*2*3
2、短除法
從最小的質數除起,一直除到結果為質數為止。分解質因數的算式的叫短除法。
(1)分解質因數的常用方法有擴展閱讀:
最大公約數的求法:
(1)用分解質因數的方法,把公有的質因數相乘。
(2)用短除法的形式求兩個數的最大公約數。
(3)特殊情況:如果兩個數互質,它們的最大公約數是1。
如果兩個數中較小的數是較大的數的約數,那麼較小的數就是這兩個數的最大公約數。
最小公倍數的方法:
(1)用分解質因數的方法,把這兩個數公有的質因數和各自獨有的質因數相乘。
(2)用短除法的形式求。
(3)特殊情況:如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
如果兩個數中較大的數是較小的數的倍數,那麼較大的數就是這兩個數的最小公倍數。
❷ 怎麼分解質因數
分解方法如下:
用短除法可以求出78的質因數:78=2×3×13。
分解質因數的方法是先用一個合數的最小質因數去除這個合數,得出的數若是一個質數,就寫成這個合數相乘形式;若是一個合數就繼續按原來的方法,直至最後是一個質數 。
分解質因數的有兩種表示方法,除了最常用的「短除分解法」之外,還有一種方法就是「塔形分解法」。
分解質因數對解決一些自然數和乘積的問題有很大的幫助,同時又為求最大公約數和最小公倍數做了重要的鋪墊。
短除法介紹:
求最大公因數的一種方法,也可用來求最小公倍數。
求幾個數最大公因數的方法,開始時用觀察比較的方法,即:先把每個數的因數找出來,然後再找出公因數,最後在公因數中找出最大公因數。
例:求12與18的最大公因數。
12的因數有:1、2、3、4、6、12 。
18的因數有:1、2、3、6、9、18。
12與18的公因數有:1、2、3、6。
12與18的最大公因數是6。
這種方法對求兩個以上數的最大公因數,特別是數目較大的數,顯然是不方便的。於是又採用了給每個數分別分解質因數的方法。