❶ 求函數定義域的方法有哪些
求函數定義域的情形和方法總結:
已知函數解析式時:只需要使得函數表達式中的所有式子有意義。
(1)常見要是滿足有意義的情況簡總:
①表達式中出現分式時:分母一定滿足不為0;
②表達式中出現根號時:開奇次方時,根號下可以為任意實數;開偶次方時,根號下滿足大於或等於0(非負數);
③表達式中出現指數時:當指數為0時,底數一定不能為0;
④根號與分式結合,根號開偶次方在分母上時:根號下大於0;
⑤表達式中出現指數函數形式時:底數和指數都含有x,必須滿足指數底數大於0且不等於1.(0<底數<1;底數>1);
⑥表達式中出現對數函數形式時:自變數只出現在真數上時,只需滿足真數上所有式子大於0,且式子本身有意義即可;自變數同時出現在底數和真數上時,要同時滿足真數大於0,底數要大0且不等於1。[ f(x)=logx(x²-1) ]
註:(1)出現任何情形都是要注意,讓所有的式子同時有意義,及最後求的是所有式子解集的交集。
(2)求定義域時,盡量不要對函數解析式進行變形,以免發生變化。(形如:f(x)=x²/x)
2..抽象函數(沒有解析式的函數)解題的方法精髓是「換元法」,根據換元的思想,我們進行將括弧為整體的換元思路解題,所以關鍵在於求括弧整體的取值范圍。總結為:
(1)給出了定義域就是給出了所給式子中x的取值范圍;
(2)在同在同一個題中x不是同一個x;
(3)只要對應關系f不變,括弧的取值范圍不變;
(4)求抽象函數的定義域個關鍵在於求f(x)的取值范圍,及括弧的取值范圍。
3.復合函數定義域
復合函數形如:y=f(g(x)),理解復合函數就是可以看作由幾個我們熟悉的函數組成的函數,或是可以看作幾個函數組成一個新的函數形式。
❷ 求函數解析式的幾種方法
求函數的解析式的方法
求函數的解析式是函數的常見問題,也是高考的常規題型之一,方法眾多, 求函數的解析式是函數的常見問題 , 也是高考的常規題型之一 , 方法眾多 , 下面 對一些常用的方法一一辨析. 對一些常用的方法一一辨析. 換元法: g(x)) f(x)的解析式 一般的可用換元法,具體為: 的解析式, 一.換元法:已知 f(g(x)),求 f(x)的解析式,一般的可用換元法,具體為: t=g(x),在求出 f(t)可得 的解析式。 的取值范圍。 令 t=g(x),在求出 f(t)可得 f(x)的解析式。換元後要確定新元 t 的取值范圍。 例題 1.已知 f(3x 1)=4x 3, 求 f(x)的解析式.
x 1 練習 1.若 f ( ) = ,求 f (x) . x 1− x
2.已知 f ( x 1) = x 2 x ,求 f ( x 1)
f(g(x))內的 g(x)當做整體 當做整體, 二.配湊法:把形如 f(g(x))內的 g(x)當做整體,在解析式的右端整理成只含 配湊法: g(x)的形式 的形式, g(x)用 代替。 有 g(x)的形式,再把 g(x)用 x 代替。 一般的利用完全平方公式 1 1 例題 2.已知 f ( x − ) = x 2 2 , 求 f (x) 的解析式. x x
練習 3.若 f ( x 1) = x 2 x ,求 f (x) .
待定系數法:已知函數模型( 一次函數,二次函數,指數函數等 數等) 三.待定系數法:已知函數模型(如:一次函數,二次函數,指數函數等)求 解析式,首先設出函數解析式, 解析式,首先設出函數解析式,根據已知條件代入求系數 例 3. (1)已知一次函數 f ( x ) 滿足 f (0) = 5 ,圖像過點 ( −2,1) ,求 f ( x ) ;
(2)已知二次函數 g ( x ) 滿足 g (1) = 1 , g ( −1) = 5 ,圖像過原點,求 g ( x ) ;
(3)已知二次函數 h( x) 與 x 軸的兩交點為 ( −2, 0) , (3, 0) ,且 h(0) = −3 ,求 h( x) ;
(4)已知二次函數 F ( x ) ,其圖像的頂點是 ( −1, 2) ,且經過原點,求 F ( x ) .
練習 4.設二次函數 f (x) 滿足 f ( x − 2) = f (− x − 2) ,且圖象在 y 軸上截距為 1,在 x 軸上截得的線段長為 2 2 ,求 f (x) 的表達式.
5. 設 f (x) 是一次函數,且 f [ f ( x)] = 4 x 3 ,求 f (x)
四.解方程組法:求抽象函數的解析式,往往通過變換變數構造一個方程,組成 解方程組法:求抽象函數的解析式,往往通過變換變數構造一個方程, 方程組, 方程組,利用消元法求 f(x)的解析式 例題 4.設函數 f (x) 是定義(-∞,0)∪(0, ∞)在上的函數,且滿足關系式
1 3 f ( x) 2 f ( ) = 4 x ,求 f (x) 的解析式. x
練習 6.若 f ( x) f (
x −1 ) = 1 x ,求 f (x) . x
7.
設 f (x) 為偶函數, g (x) 為奇函數,又 f ( x) g ( x) =
1 , 試求 f ( x)和g ( x) 的 x −1
解析式
f(x)的解析式 的解析式, 五.利用給定的特性求解析式;一般為已知 x>0 時, f(x)的解析式,求 x<0 時, 利用給定的特性求解析式 一般為已知 f(x)的解析式 的解析式。 f(-x)的解析式 的解析式, =f(-x)或 f(x)=-f(f(x)的解析式。首先求出 f(-x)的解析式,根據 f(x)=f(-x)或 f(x)=-f(-x) 求得 f(x) 例題 5 設 f (x) 是偶函數,當 x>0 時, f ( x) = e ⋅ x 2 e x ,求當 x<0 時, f (x) 的表 達式.
練習 8. x∈R, f (x) 滿足 f ( x) = − f ( x 1) ,且當 x∈[-1,0]時, f ( x) = x 2 2 x 對 求當 x∈[9,10]時 f (x) 的表達式.
9. x∈R, f (x) 滿足 f ( x) = − f ( x 1) , . 對 且當 x∈[-1, 時, f ( x) = x 2 2 x , 0]時 的表達式. 求當 x∈[9,10]時 f (x) 的表達式 時
歸納遞推法:利用已知的遞推公式,寫出若干幾項, 六.歸納遞推法:利用已知的遞推公式,寫出若干幾項,利用數列的思想從中 找出規律, f(x)的解析式 (通項公式) 的解析式。 (通項公式 找出規律,得到 f(x)的解析式。 通項公式) x −1 例題 6.設 f ( x) = ,記 f n ( x) = f { f [L f ( x)]},求 f 2004 ( x) . x 1
練習 10.若 f ( x y ) = f ( x) ⋅ f ( y ) ,且 f (1) = 2 ,
f (2) f (3) f (4) f (2005) L . f (1) f (2) f (3) f (2004)
求值
七.相關點法;一般的,設出兩個點,一點已知,一點未知,根據已知找到兩點 相關點法;一般的,設出兩個點,一點已知,一點未知, 之間的聯系, 把已知點用未知點表示, 最後代入已知點的解析式整理出即可。 (軌 之間的聯系, 把已知點用未知點表示, 最後代入已知點的解析式整理出即可。 軌 ( 跡法) 跡法) 例題 7:已知函數 y=f(x)的圖像與 y=x2 x 的圖像關於點(-2,3)對稱,求 f(x) 的解析式。
練習 11.已知函數 f ( x) = 2 x 1 ,當點 P(x,y)在 y= f (x) 的圖象上運動時,點 Q( −
y x , )在 y=g(x)的圖象上,求函數 g(x). 2 3
的抽象函數, 八.特殊值法;一般的,已知一個關於 x,y 的抽象函數,利用特殊值去掉一個未 特殊值法;一般的, 的解析式。 知數 y,得出關於 x 的解析式。 例題 8:函數 f(x)對一切實數 x,y 均有 f(x y)-f(y)=(x 2y 1)x 成立,且 f(1)=0.求 f(x)的解析式。
九.圖像法;觀察圖像的特點和特殊點,可用代入法,或根據函數圖像的性質進 圖像法;觀察圖像的特點和特殊點,可用代入法, 行解題。注意定義域的變化。 行解題。注意定義域的變化。 y 例題 9. 圖中的圖象所表示的函數的解析式為( B ) 3 3 A. y = x − 1 (0 ≤ x ≤ 2) 2 2 3 3 B. y = − x − 1 (0 ≤ x ≤ 2) 2 2 3 O x 1 2 C. y = − x − 1 (0 ≤ x ≤ 2) 2
D. y = 1 − x − 1
(0 ≤ x ≤ 2)
第 7 題圖
總結:求函數的解析式的方法較多,應根椐題意靈活選擇, 總結:求函數的解析式的方法較多,應根椐題意靈活選擇,但不論是哪種方法 都應注意自變數的取值范圍的變化,對於實際問題材,同樣需注意這一點, 都應注意自變數的取值范圍的變化,對於實際問題材,同樣需注意這一點,應 保證各種有關量均有意義。求出函數的解析式最後要寫上函數的定義域, 保證各種有關量均有意義。求出的函數的解析式最後要寫上函數的定義域,這 是容易遺漏和疏忽的地方。 是容易遺漏和疏忽的地方。