⑴ 常用的統計分析方法總結(聚類分析、主成分分析、因子分析)
1. 系統聚類法 :由N類--1類
2. 分解法 :由1類---N類
3. K-均值法 :事先在聚類過程中確定在K類,適用於數據量大的數據
4. 有序樣品的聚類 :N個樣品排序,次序相鄰的樣品聚成一類
5. 模糊聚類法 :模糊數學的方法,多用於定性變數
6. 加入法 :樣品依次加入,全部加入完得到聚類圖。
a.夾角餘弦
b.相關系數
a.常用的類間距離定義有8種之多,與之相應的 系統聚類法 也有8種,分別為
a. 中間距離法
b. 最短距離法 :類與類之間的距離最近兩個樣品的距離。
c. 最長距離法 :類與類之間的距離最遠兩個樣品的距離。【先距離最短,後距離最遠合並】
d. 類平均法 :兩類元素中任兩個樣品距離的平均。
e. 重心法 :兩個重心xp 和xq 的距離。
f. 可變類平均法
e. 離差平方和法(Ward法) : 該方法的基本思想來自於方差分析,如果分類正確,同 類樣品的離差平方和應當較小,類與類的離差平方和較大。 具體做法是先將 n 個樣品各自成一類,然後每次縮小一類,每 縮小一類,離差平方和就要增大,選擇使方差增加最小的兩 類合並,直到所有的樣品歸為一類為止。
a. 最短距離法的主要缺點是它有鏈接聚合的趨勢,容易形 成一個比較大的類,大部分樣品都被聚在一類中,所以最短 距離法的聚類效果並不好,實際中不提倡使用。
b. 最長距離法克服了最短距離法鏈接聚合的缺陷,兩類合 並以後與其他類的距離是原來兩個類中的距離最大者,加大 了合並後的類與其他類的距離。
a. 定義 :主成分分析(Principal Component Analysis,簡記 PCA)是將 多個指標化為少數幾個綜合指標的一種統計分析方法 ,通常我們把轉化成的綜合指標稱為主成分。
b. 本質:降維
c. 表達 :主成分為原始變數的線性組合
d. 即信息量在空間降維以後信息量沒有發生改變,所有主成分的方差之和與原始的方差之和
e. 多個變數之間有一定的相關性,利用原始變數 的線性組合形成幾個綜合指標(主成分),在保留原始變數主要信息的前提下起到降維與簡化問題的作用。
f. 累積貢獻率一般是 85% 以上
(1)每一個主成分都是各 原始變數的線性組合
(2)主成分的數目大大少於原始變數的數目
(3)主成分保留了原始變數絕大多數信息
(4)各主成分之間 互不相關
a. 基本目的:用 少數幾個綜合因子去描述多個隨機變數之間的相關關系 。
b. 定義:多個變數————少數綜合因子(不存在的因子)
c. 顯在變數:原始變數X;潛在變數:因子F
d. X=AF+e【公共因子+特殊因子】
e. 應用: 因子分析主要用於相關性很強的多指標數據的降維處理。
f. 通過研究原始變數相關矩陣內部 的依賴關系,把一些具有錯綜復雜關系的變數歸結為少數幾個綜合因子的一種多變數統計分析方法。
g. 定義:原始的變數是可觀測的顯在變數,而 綜合 的因子是 不可觀測 的 潛在變數 ,稱為因子。
i. 根據相關性大小把原始變數分組,使得同組內的變數之間相關性較高,而不同組的變數間的相關性則較低。
ii. 公共因子 :每組變數代表一個基本結構,並用一個不可觀測的綜合變數表示。
iii. 對於所研究的某一具體問題,原始變數分解成兩部分:
i. R 型因子分析——研究變數之間的相關關系
ii. Q 型因子分析——研究樣品之間的相關關系
a. 因子載荷 是第i個變數與第j個公共因子的相關系數,絕對值越大,相關的密切程度越高。
a. 變數 Xi 的共同度是因子載荷矩陣的第i行的元素的平方和。記為
b. 所有的公共因子與特殊因子對變數 Xi 的貢獻和為1。
a. 確定因子載荷
b. 因子旋轉
c. 計算因子得分
a. 尋找簡單結構的載荷矩陣:載荷矩陣A的所有元素都接 近0或±1,則模型的公共因子就易於解釋。
b. 如果各主因子的典型代表變數不突出,就需要進行旋轉使因子載荷矩陣中載荷的絕對值向0和1兩個方向分化。
a.意義:對公共因子作正交旋轉相當於對載荷矩陣 A 作一正交變換 ,右乘正交矩陣 T ,使 A* = AT 能有更鮮明的實際意義。
b.幾何意義:是在 m 維空間上對原因子軸作一剛性旋轉。 因子旋轉不改變公共因子的共同度,這是因為 A A '=ATT'A'=AA'
c. 旋轉方法有:正交旋轉和斜交旋轉
d. 最普遍的是: 最大方差旋轉法
a. 定義:通過坐標變換使各個因子載荷的方差之和最大。
b. 任何一個變數只在一個因子上有高貢獻率,而在 其它因子上的載荷幾乎為0;
c. 任何一個因子只在少數變數上有高載荷,而在其 它變數上的載荷幾乎為0。
思想相同: 降維
前提條件:各變數間必須有 相關性 ,否則各變數之間沒有共享信息
⑵ SPSS聚類分析 系統聚類分析
SPSS聚類分析:系統聚類分析
一、概念:(分析-分類-系統聚類)
系統聚類法常稱為層次聚類法、分層聚類法,也是聚類分析中使用廣泛的一種方法。它有兩種類型,一是對研究對象本身進行分類,稱為Q型聚類;另一是對研究對象的觀察指標進行分類,稱為R型聚類。同時根據聚類過程不同,又分為分解法和凝聚法。
二、聚類方法(分析-分類-系統聚類-方法)
1、聚類方法。可用的選項有組間聯接、組內聯接、最近鄰元素、最遠鄰元素、質心聚類法、中位數聚類法和Ward法。◎Between-groupslinkage:組間平均距離法。系統默認選項。合並兩類的結果使所有的兩類的平均距離最小。◎Within-groups linkage:組內平均距離法。當兩類合並為一類後,合並後的類中的所有項之間的平均距離最小。◎Nearestneighbor:最近距離法。採用兩類間最近點間的距離代表兩 類間的距離。◎Furthest Neighbor:最遠距離法。用兩類之間最遠點的距離代表兩類之間的距離。◎Centroidclustering:重心法。定義類與類之間的距離為兩類中各 樣品的重心之間的距離。◎Medianclustering:中位數法。定義類與類之間的距離為兩類中各 樣品的中位數之間的距離。◎Ward』s method:最小離差平方和法。聚類中使類內各樣品的離差平方和最小,類間的離差平方和盡可能大。
2、度量。允許您指定聚類中使用的距離或相似性測量。選擇數據類型以及合適的距離或相似性測量:◎Euclideandistance:歐氏距離。◎SquaredEuclideandistance:歐氏距離平方。兩項之間的距離是每個變數值之差的平方和。系統默認項。◎Cosline:餘弦相似性測度,計算兩個向量間夾角的餘弦。◎Pearsonconelation:皮爾遜相關系數。它是線性關系的測度,范圍是-1~+1。◎Chebychev:切比雪夫距離。◎Block:曼哈頓(Manhattan)距離,兩項之間的距離是每個變數值之差的絕對值總和。◎Minkowski:閔科夫斯基距離。◎Customized:自定義距離。
2.1、區間。可用的選項有Euclidean距離、平方Euclidean距離、餘弦、Pearson相關性、Chebychev、塊、Minkowski及定製。
2.2、計數。可用的選項有卡方測量和phi平方測量。
2.3、二分類。可用的選項有Euclidean距離、平方Euclidean距離、尺度差分、模式差分、方差、離差、形狀、簡單匹配、Phi 4點相關性、lambda、Anderberg的D、骰子、Hamann、Jaccard、Kulczynski 1、Kulczynski 2、Lance和Williams、Ochiai、Rogers和Tanimoto、Russel和Rao、Sokal和Sneath 1、Sokal和Sneath 2、Sokal和Sneath3、Sokal和Sneath 4、Sokal和Sneath 5、Yule的Y以及Yule的Q。
3、轉換值。允許您在計算近似值之前為個案或值進行數據值標准化(對二分類數據不可用)。可用的標准化方法有z得分、范圍1至1、范圍0至1、1的最大量級、1的均值和使標准差為1。
4、轉換度量。允許您轉換距離測量所生成的值。在計算了距離測量之後應用這些轉換。可用的選項有絕對值、更改符號和重新調整到0–1范圍。
三、統計量(分析-分類-系統聚類-統計量)
1、合並進程表。顯示在每個階段合並的個案或聚類、所合並的個案或聚類之間的距離以及個案(或變數)與聚類相聯結時所在的最後一個聚類級別。
2、相似性矩陣。給出各項之間的距離或相似性。
3、聚類成員。顯示在合並聚類的一個或多個階段中,每個個案被分配所屬的聚類。可用的選項有單個解和一定范圍的解。
⑶ 什麼是系統聚類分析系統聚類方法有幾種
1.k-mean聚類分析 適用於樣本聚類; 2.分層聚類 適用於對變數聚類; 3.兩步聚類 適用於分類變數和連續變數聚類; 4.基於密度的聚類演算法; 5.基於網路的聚類; 6.機器學習中的聚類演算法; 前3種,可用spss簡單操作實現;
⑷ 系統聚類的原理
確定了距離和相似系數後就要進行分類。分類有許多種方法,最常用的一種方法是在樣品距離的基礎上定義類與類之間的距離。首先將n個樣品分成n類,每個樣品自成一類,然後每次將具有最小距離的兩類合並,合並後重新計算類與類之間的距離,這個過程一直持續到將所有的樣品歸為一類為止,並把這個過程畫成一張聚類圖,參照聚類圖可方便地進行分類。因為聚類圖很像一張系統圖,所以這種方法就叫系統聚類法。系統聚類法是在實際中使用最多的一種方法,從上面的分析可以看出,雖然我們已給了計算樣品之間距離的方法,但在實際計算過程中還要定義類與類之間的距離。定義類與類之間的距離也有許多方法,不同的方法就產生了不同的系統聚類方法,常用的有如下六種:
(1)最短距離法:類與類之間的距離等於兩類最近樣品之間的距離;
(2)最長距離法:類與類之間的距離等於兩類最遠樣品之間的距離:
(3)類平均法:類與類之問的距離等於各類元素兩兩之間的平方距離的平均;
(4)重心法:類與類之間的距離定義為對應這兩類重心之間的距離對樣品分類來說,每一類的類重心就是該類樣品的均值;
(5)中間距離法:最長距離法誇大了類間距離,最短距離法低估了類間距離介於兩者問的距離法即為中間距離法,類與類之問的距離既不採用兩類之間最近距離。也不採用最遠距離,而是採用介於最遠和最近之間的距離;
(6)離差平方和法(Ward法):基於方差分析的思想,如果分類正確,同類樣品之間的離差平方和應當較小,類與類之間的離差平方和應當較大
⑸ 聚類分析方法有哪些
問題一:什麼是聚類分析?聚類演算法有哪幾種 聚類分析又稱群分析,它是研究(樣品或指標)分類問題的一種統計分析方法。聚類分析起源於
分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行
定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識
難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又
將多元分析的技術引入到數值分類學形成了聚類分析。
聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論
聚類法、聚類預報法等。
聚類分析計算方法主要有如下幾種:分裂法(partitioning methods):層次法(hierarchical
methods):基於密度的方法(density-based methods): 基於網格的方法(grid-based
methods): 基於模型的方法(model-based methods)。
問題二:聚類分析方法有什麼好處 5分 聚類分析:將個體(樣品)或者對象(變數)按相似程度(距離遠近)劃分類別,使得同一類中的元素之間的相似性比其他類的元素的相似性更強。目的在於使類間元素的同質性最大化和類與類間元素的異質性最大化。其主要依據是聚到同一個數據集中的樣本應該彼此相似,而屬於不同組的樣本應該足夠不相似。
常用聚類方法:系統聚類法,K-均值法,模糊聚類法,有序樣品的聚類,分解法,加入法。
注意事項:
1. 系統聚類法可對變數或者記錄進行分類,K-均值法只能對記錄進行分類;
2. K-均值法要求分析人員事先知道樣品分為多少類;
3. 對變數的多元正態性,方差齊性等要求較高。
應用領域:細分市場,消費行為劃分,設計抽樣方案等
優點:聚類分析模型的優點就是直觀,結論形式簡明。
缺點:在樣本量較大時,要獲得聚類結論有一定困難。由於相似系數是根據被試的反映來建立反映琺試間內在聯系的指標,而實踐中有時盡管從被試反映所得出的數據中發現他們之間有緊密的關系,但事物之間卻無任何內在聯系,此時,如果根據距離或相似系數得出聚類分析的結果,顯然是不適當的,但是,聚類分析模型本身卻無法識別這類錯誤。
問題三:什麼是聚類分析? 聚類分析又稱群分析,它是研究(樣品或指標)分類問題的一種統計分析方法。聚類分析起源於
分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行
定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識
難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又
將多元分析的技術引入到數值分類學形成了聚類分析。
聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論
聚類法、聚類預報法等。
聚類分析計算方法主要有如下幾種:分裂法(partitioning methods):層次法(hierarchical
methods):基於密度的方法(density-based methods): 基於網格的方法(grid-based
methods): 基於模型的方法(model-based methods)。
問題四:常用的聚類方法有哪幾種?? 1.k-mean聚類分析 適用於樣本聚類;
2.分層聚類 適用於對變數聚類;
3.兩步搐類 適用於分類變數和連續變數聚類;
4.基於密度的聚類演算法;
5.基於網路的聚類;
6.機器學習中的聚類演算法;
前3種,可用spss簡單操作實現;
問題五:spss聚類分析方法有哪些 首先,k-means你每次算的結果都會不一樣,因為結果跟初始選取的k個點有關
問題六:聚類分析方法是什麼? 5分 聚類分析:將個體(樣品)或者對象(變數)按相似程度(距離遠近)劃分類別,使得同一類中的元素之間的相似性比其他類的元素的相似性更強。目的在於使類間元素的同質性最大化和類與類間元素的異質性最大化。
問題七:聚類分析的演算法 聚類分析是數據挖掘中的一個很活躍的研究領域,並提出了許多聚類演算法。傳統的聚類演算法可以被分為五類:劃分方法、層次方法、基於密度方法、基於網格方法和基於模型方法。1 劃分方法(PAM:PArtitioning method) 首先創建k個劃分,k為要創建的劃分個數;然後利用一個循環定位技術通過將對象從一個劃分移到另一個劃分來幫助改善劃分質量。典型的劃分方法包括:k-means,k-medoids,CLARA(Clustering LARge Application),CLARANS(Clustering Large Application based upon RANdomized Search).FCM2 層次方法(hierarchical method) 創建一個層次以分解給定的數據集。該方法可以分為自上而下(分解)和自下而上(合並)兩種操作方式。為彌補分解與合並的不足,層次合並經常要與其它聚類方法相結合,如循環定位。典型的這類方法包括:BIRCH(Balanced Iterative Recing and Clustering using Hierarchies) 方法,它首先利用樹的結構對對象集進行劃分;然後再利用其它聚類方法對這些聚類進行優化。CURE(Clustering Using REprisentatives) 方法,它利用固定數目代表對象來表示相應聚類;然後對各聚類按照指定量(向聚類中心)進行收縮。ROCK方法,它利用聚類間的連接進行聚類合並。CHEMALOEN方法,它則是在層次聚類時構造動態模型。3 基於密度的方法,根據密度完成對象的聚類。它根據對象周圍的密度(如DBSCAN)不斷增長聚類。典型的基於密度方法包括:DBSCAN(Densit-based Spatial Clustering of Application with Noise):該演算法通過不斷生長足夠高密度區域來進行聚類;它能從含有雜訊的空間資料庫中發現任意形狀的聚類。此方法將一個聚類定義為一組「密度連接」的點集。OPTICS(Ordering Points To Identify the Clustering Structure):並不明確產生一個聚類,而是為自動交互的聚類分析計算出一個增強聚類順序。。4 基於網格的方法,首先將對象空間劃分為有限個單元以構成網格結構;然後利用網格結構完成聚類。STING(STatistical INformation Grid) 就是一個利用網格單元保存的統計信息進行基於網格聚類的方法。CLIQUE(Clustering In QUEst)和Wave-Cluster 則是一個將基於網格與基於密度相結合的方法。5 基於模型的方法,它假設每個聚類的模型並發現適合相應模型的數據。典型的基於模型方法包括:統計方法COBWEB:是一個常用的且簡單的增量式概念聚類方法。它的輸入對象是採用符號量(屬性-值)對來加以描述的。採用分類樹的形式來創建一個層次聚類。CLASSIT是COBWEB的另一個版本.。它可以對連續取值屬性進行增量式聚類。它為每個結點中的每個屬性保存相應的連續正態分布(均值與方差);並利用一個改進的分類能力描述方法,即不象COBWEB那樣計算離散屬性(取值)和而是對連續屬性求積分。但是CLASSIT方法也存在與COBWEB類似的問題。因此它們都不適合對大資料庫進行聚類處理.傳統的聚類演算法已經比較成功的解決了低維數據的聚類問題。但是由於實際應用中數據的復雜性,在處理許多問題時,現有的演算法經常失效,特別是對於高維數據和大型數據的......>>
問題八:主成分分析法和聚類分析法的區別
問題九:聚類分析方法具體有哪些應用?可不可以舉個例子? 比如說現在要把n個產品按產品的m個指標繼續聚類,因為產品可能之前的特色是不一樣的。而這個時候影響產品的因素有m個,不可能一個一個的考慮,那樣是分不出類來的。所以只能對產品的m個指標綜合考慮,採用SPSS中的樣本聚類方法,就可以直接將產品分好類。並且從分析結果還可以看出各類產品的特色分別是什麼。。就是最主要的分類標準是什麼。
聚類分析不僅可以用於樣本聚類,還可以用於變數聚類,就是對m個指標進行聚類。因為有時指標太多,不能全部考慮,需要提取出主要因素,而往往指標之間又有很多相關聯的地方,所以可以先對變數聚類,然後從每一類中選取出一個代表型的指標。這樣就大大減少了指標,並且沒有造成巨大的信息丟失。