導航:首頁 > 使用方法 > 數學知識整理的常用方法

數學知識整理的常用方法

發布時間:2023-12-16 18:48:22

1. 常見的數學方法有哪些

問題一:數學常用思想方法有哪些 一、用字母表示數的思想
這是基本的數學思想之一 .在代數第一冊第二章「代數初步知識」中,主要體現了這種思想。
例如: 設甲數為a,乙數為b,用代數式表示:(1)甲乙兩數的和的2倍:2(a+b)(2)甲數的2倍與乙數的5倍差:2a-5b
二、數形結合的思想
「數形結合」是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括.數學教材中下列內容體現了這種思想。
1、數軸上的點與實數的一一對應的關系。
2、平面上的點與有序實數對的一一對應的關系。
3、函數式與圖像之間的關系。
4、線段(角)的和、差、倍、分等問題,充分利用數來反映形。
5、解三角形,求角度和邊長,引入了三角函數,這是用代數方法解決何問題。
6、「圓」這一章中,圓的定義,點與圓、直線與圓、圓與圓的位置關系等都是化為數量關系來處理的。
7、統計初步中統計的第二種方法是繪制統計圖表,用這些圖表的反映數據的分情況,發展趨勢等。實際上就是通過「形」來反映數據扮布情況,發展趨勢等。實際上就是通過「形」來反映數的特徵,這是數形結合思想在實際中的直接應用。
三、轉化思想 (化歸思想)
在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。下列內容體現了這種思想:
1、分式方程的求解是分式方程轉化為前面學過的一元二次方程求解,這里把待解決的新問題化為已解決的問題來求解,體現了轉化思想。
2、解直角三角形;把非直角三形問題化為直角三角形問題;把實際問題轉化為數學問題。
3、證明四邊形的內角和為360度.是把四邊形轉化成兩個三角形的.同時探索多邊形的內角和也是利用轉化的思想的.
四、分類思想
有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。

問題二:小學數學中的常用的數學方法有哪些 常用的數學方法配方法,換元法,消元法,待定系數法;
常用的數學思想數形結合
數學思想方法主要來源於
觀察與實驗,概括與抽象,類比,歸納和演繹等

問題三:小學數學常用的教學方法有哪幾種 (一)講授法講授法是教師運用口頭語言系統地向學生傳授知識的方法。講授法是一種最古老的教學方法,也是迄今為止在世界范圍內應用最廣泛、最普遍的一種教學方法。講授法的基本形式是教師講、學生聽,具體地說,又可以分為講述、講讀、講解三種方式。
講述:教師向學生敘述、描繪事物和現象。
講解:教師向學生解釋、說明、論證概念、原理、公式等。
講讀:教師利用教科書邊讀邊講。
以上三種方式之間沒有嚴格的界限,在教學活動中經常穿插結合地使用。
講授法的優點在於,可以使學生在比較短的時間內獲得大量的、系統的知識,有利於發揮教師的主導作用,有利於教學活動有目的有計劃地進行。講授法的缺點在於,容易束縛學生,不利於學生主動、自覺地學習,而且對教師個人的語言素養依賴較大。
教師運用講授法,應當注意以下幾點。
1.保證講授內容的科學性和思想性。教師講授的概念、原理、事實、觀點必須是正確的,這就要求教師認真備課和教學。
2.講授要做到條理清楚、重點分明。講授邏輯清楚,學生才能夠理解清楚。
3.講究語言藝術。教師的語言水平直接決定著講授法的效果,因此必須不斷注重和提高自己的語言修養。首先要做到語言清晰、准確、精練,既邏輯嚴密又清楚明白;其次,要努力做到生動形象、富於感染力,這對於小學生尤其重要;再次,還應當注意語音的高低、語速的快慢,講究抑揚頓挫。
4.注意與其他教學方法配合使用。小學生的注意時間有限,在整節課中完全採用講授法很難取得良好效果,教師應當善於將講授法與其他教學方法和手段交叉替換使用,避免學生因長時間聽講出現疲勞和注意渙散現象。
(二)談話法
談話法是教師根據學生已有的知識經驗,藉助啟發性問題,通過口頭問答的方式,引導學生通過比較、分析、判斷等思維活動獲取知識的教學方法。談話法的基本形式是學生在教師引導下通過獨立思考進行學習。
談話法的優點在於,能夠比較充分地激發學生的主動思維,促進學生的獨立思考,對於學生智力的發展有積極作用,同時也有助於學生語言表達能力的鍛煉和提高。談話法的缺點在於,與講授法相比,完成同樣的教學任務,它需要較多的時間。此外,當學生人數較多時,很難照顧到每一個學生。因此,談話法經常與講授法等其他方法配合使用。
教師運用談話法,應當注意以下幾點。
1.做好充分的准備。圍繞什麼內容進行談話?提出哪些問題?提問哪些學生?以及學生可能做出什麼樣的回答?怎樣通過進一步的提問引導學生?等等,教師都應當在事前周密考慮和安排。
2.談話要面向全體學生。盡管談話只能在教師與個別學生之間進行,教師還是可以通過努力吸引所有的學生。首先,談話的內容應當是能夠引起全體學生注意的、在教學中具有普遍性和重要性的問題。其次,教師應當盡可能使得談話對象有代表性,比如選擇不同層次的學生。再次,在談話時適時加以適當的解釋、說明作為補充。
3.在談話結束時進行總結。在談話中學生的理解和掌握往往表達得不夠准確、精練,因此在談話的最後階段,教師應當用規范和科學的表述對學生通過談話所獲得的知識加以概括總結,從而強化他們的收獲。
(三)討論法
討論法是在教師指導下,學生圍繞某個問題發表和交換意見,通過相互之間的啟發、討論、商量獲取知識的教學方法。討論法的基本形式是學生在教師的引導下藉助獨立思考和交流學習。
討論法的優點在於,年齡和發展水平相近的學生共同討論,容易激發興趣、活躍思維,有助於他們聽取、比較、思考不同意見,在此基礎上進行獨立思考,促進思維能力的發展。此外,討論法能夠普遍而充分地給予每一個學生表達自己觀點和意見的機會,調動所有學生的學習積極性,並且有效地促進學生口頭語言能力的發展。討論法的缺點......>>

問題四:常用的數學分析方法有哪些 你問的是什麼層次?
1、數學分析方法的基本內容是數學化、模型化和計算機化。從數學角度看,數學中發現了許多有實用價值的手段,如線性規劃、整數規劃、動態規劃、對策論、排隊論、存貨模型、調度模型、概率統計等等,對定量化的分析與決斷起到了重大的推動作用;從模型化角度看,每一種數學手段都包括了解決決策問題的具體數學模型,人們可以藉助於模型找出自己所需了解的問題的答案;從計算機化的角度看,人們可以借用電子計算機這個快速邏輯計算工具,縮短解決問題的時間,增強預測的精確性。這「三化」是互相聯系的,它們的結合使決策的技術和方法發生了重大變化。
2、另一個層次:待定系數法,換元法,數學歸納法。

問題五:數學常用的數學思想方法有哪些 常用的數學方法配方法,換元法,消元法,待定系數法;
常用的數學思想數形結合
數學思想方法主要來源於
觀察與實驗,概括與抽象,類比,歸納和演繹等

2. 如何有效地復習整理數學知識點

數學的邏輯性很強,知識往往分散在不同階段,學生對這些知識理解容易割裂。在階段學習的基礎上需對各領域內容進行系統整理與復習。整理與復習是要把平時相對獨立進行教學的知識,其中特別重要的是把肆嫌擾帶有規律性的知識,以再現、整理、歸納等方法串聯起來,進而加深學生對知識的理解、溝通。它既不同於新授課,更不同於練習課。其基本任務就是整理知識,使之系統化、清晰化,並具有拓展性。
它的重要特點就是在系統原理的指導下,對所學知識進行系統的整理,使之形成一個較完整的知識體系,這樣有利於知識的系統化和對其內在聯系的把握,便於融合貫通,做到梳理——訓練——拓展,有序發展,真正提高復習的效果。
如何進行有效地復習與整理呢?
一、梳理歸納,溝通聯系,強化基礎
基礎知識與基本技能是數學學習的基礎,創新能力的高樓必須建立在扎實的雙基基礎之上,只有具備扎實的數學基礎,學生才會出現創新的可能。教師要引導學生進行回顧與整理,使學生在平時學習的基礎上溝通各部分之間的聯系。在回顧與整理時,應以雙基為基礎,充分發揮學生的主體作用,引導學生自主整理知識,形成知識網路,體驗數學的系統性。
但是在這樣的學習過程中,必須注意兩個問題:一是由於小學生受到知識結構和能力水平的限制,學生所要整理、溝通的知識內容的切人點一定要小,做到小而精,提出的學習要求要明確,以便學生能更好地進行整理;二是在學生整理時,教師應適當給予一些幫助,學生的整理盡管是不完整或粗糙的,教師也應給予充分地評價,並結合學生的整理,取其精華概括出較合理的知識網路圖。
在平時的學習中,有些學生可能對基本概念的理解不夠重視,有些學生則會在理解法則上有些模糊。對於易混淆的知識點,教師適時引導學生結合具體的事例進行理解,讓學生在理解的基礎上進行記憶;同時對學生已能熟練記憶的基礎知識,再要求學生加強理解,弄清知識間的聯系,分清類似知識點的區別,從而更好地掌握基礎知識。如果學生對鈍角的概念只是機械記憶,只記概念「大於90度,小於180度的角是鈍角」,沒有準確理解鈍角概念的內涵與外延,會認為「鈍角大於90度」是正確的。對於商不變規律「被除數和除同時乘或除以相同的數(零除外),商不變」。學生往往會把0除外忽視,還會影響分數的基本性質的學習。
二、合理訓練,提高能力,發展思維
在回顧與整理的基裂旦礎上,需要通過合理的訓練以鞏固學生所學知識。只有通過合理的訓練、反饋,才能暴露出學生在學習中存在的問題,同時訓練可以鍛煉學生如何應用已有知識解決具體的數學問題的能力。學生在回顧與整理中具備了一定的數學基礎知識與技能,那麼在鞏固與應用環節的訓練中,首先要培養學生的應用意識,讓他們學會合理地應用已有知者山識和常見的解題策略來解決數學問題。鞏固與應用中的訓練應注重訓練量的合理,這就要求教師在訓練中精選習題,注重習題的創新性,同時適當加強訓練題的趣味性和生活味,以激發學生的興趣,調節學生心理。
從教學實踐來看,有時一些具有一定思維難度的數學題,也會激起學生的探究慾望。激發學生的學習興趣與熱情是平常教學,更是復習時很重要的教學手段:即通過創設情境激發學生學習的興奮點,讓學生在復習時也有新鮮感,從而以一種積極的心態投人到復習中,避免以往復習課那種沉悶的氣氛及面面俱到的「炒冷飯」般的復習方式。
數學是思維的體操,思維活動是數學學科的特徵,任何數學教學活動都不能缺少思維活動,復習課同樣不例外。因此在復習的全過程中,教師必須以培養學生的思維能力為目標,注重學生思維的發展與提高,在發展與提高學生思維能力的過程中,教師應注重培養學生的解題的靈活性與創新意識。培養學生解題的靈活性,可通過一題多解進行,例如在解決「5米長的鐵絲重250克,2500克的一捆鐵絲有多長?」時,學生可能會先求出每米鐵絲的重量再求這捆鐵絲的重量或先求出每克鐵絲的長度再求這捆鐵絲的長或根據重量比與長度之比求出鐵絲的長度。在這種一題多解的訓練中,讓學生體驗解題的靈活性,發展他們的思維能力。同時,一題多解的訓練,還可培養學生在解題過程中,當某種思路受阻時,可以換一種思路來解決問題。此外教師要在課堂上留給學生思考的時間和空間,鼓勵他們發揮自己的創造力,讓他們的想像得到充分的展現。讓學生提數學問題,解決生活實際的問題。
三、培養良好的學習習慣,提高學習效益
在復習過程中,要注意培養學生良好的學習習慣。良好的學習習慣不僅能提高學習,而且一生受益。
總之,整理和復習課的形式要多樣化,運用多種方法和策略,揭示數學知識之間的聯系與區別,並幫助學生掌握相關規律,認識事物的本質,達到整理有序和復習有效的目的,使學生在獲得對數學理解的同時,思維能力、個性品質、情感態度等方面都得到發展。

閱讀全文

與數學知識整理的常用方法相關的資料

熱點內容
有線耳機怎麼連接電腦的方法 瀏覽:513
辨別品種的最佳方法 瀏覽:204
實驗室內常用滅火方法有 瀏覽:296
止病的最佳方法 瀏覽:197
袖子減針方法視頻教程 瀏覽:547
去屑簡單方法 瀏覽:144
快速變瘦的方法女生做瑜珈 瀏覽:522
白內障保守治療方法 瀏覽:86
力量訓練分析方法 瀏覽:530
總統乳酪的食用方法 瀏覽:194
如何去面部蟎蟲的有效方法 瀏覽:644
數據分析的實現方法 瀏覽:455
如何保持平衡的方法 瀏覽:58
燃氣插卡使用方法 瀏覽:742
撤桶下樓的最佳方法 瀏覽:726
今後如何防止寫錯別字的方法 瀏覽:91
黴菌性鼓膜炎治療方法 瀏覽:757
家長嫌老師沒有方法怎麼辦 瀏覽:275
音樂教法都有哪些方法 瀏覽:626
白煮牛肉的正確方法 瀏覽:84