導航:首頁 > 使用方法 > 集合常用方法

集合常用方法

發布時間:2022-02-03 22:00:38

1. 集合的表示方法

這是錯誤的表述
{x^2=0}表示一個集合中只有一個元素,這個元素是x^2=0,而不是0
正確表述應該是0∈{x|x^2=0}。
{x|x^2=0}這個集合表示x^2=0時x的值,所以解出來x=0,所以0就是這個集合中的元素。

方程組 X+Y=2; X-2Y=-1的解集可不可以表示為{(X,Y)|(1,1)}
這個表述是正確的,方程組的解集就是幾個函數所表示的圖像的交點。
另外也可以表示為{(1,1)}

2. 集合的表示方法有哪三種

表示集合的方法通常有四種,即列舉法 、描述法 、圖像法和符號法 。

1,列舉法

列舉法就是將集合的元素逐一列舉出來的方式[7]。例如,光學中的三原色可以用集合{紅,綠,藍}表示;由四個字母a,b,c,d組成的集合A可用A={a,b,c,d}表示,如此等等。

2,描述法

描述法的形式為{代表元素|滿足的性質}。

設集合S是由具有某種性質P的元素全體所構成的,則可以採用描述集合中元素公共屬性的方法來表示集合:S={x|P(x)}。例如,由2的平方根組成的集合B可表示為B={x|x2=2}。而有理數

N:非負整數集合或自然數集合{0,1,2,3,…}

N*或N+:正整數集合{1,2,3,…}

Z:整數集合{…,-1,0,1,…}

Q:有理數集合

Q+:正有理數集合

Q-:負有理數集合

R:實數集合(包括有理數和無理數)

R+:正實數集合

R-:負實數集合

C:復數集合

∅ :空集(不含有任何元素的集合)

(2)集合常用方法擴展閱讀

集合,簡稱集,是數學中一個基本概念,也是集合論的主要研究對象。集合論的基本理論創立於19世紀,關於集合的最簡單的說法就是在樸素集合論(最原始的集合論)中的定義,即集合是「確定的一堆東西」,集合里的「東西」則稱為元素。

現代的集合一般被定義為:由一個或多個確定的元素所構成的整體 。

資料來源:集合(數學概念)_網路

3. 集合常用的表示方法有( )和( )

常用的有列舉法和描述法。
如果滿意請點擊右上角評價點【滿意】即可~~
你的採納是我前進的動力~~
答題不易..祝你開心~(*^__^*)
嘻嘻……

4. 集合的基本運算有哪些

集合的基本運算:交集、並集、相對補集、絕對補集、子集。

(1)交集:集合論中,設A,B是兩個集合,由所有屬於集合A且屬於集合B的元素所組成的集合,叫做集合A與集合B的交集(intersection),記作A∩B。

(2)並集:給定兩個集合A,B,把他們所有的元素合並在一起組成的集合,叫做集合A與集合B的並集,記作A∪B,讀作A並B。

(3)相對補集:若A和B是集合,則A在B中的相對補集是這樣一個集合:其元素屬於B但不屬於A,B-A= { x| x∈B且x∉A}。

(4)絕對補集:若給定全集U,有A⊆U,則A在U中的相對補集稱為A的絕對補集(或簡稱補集),寫作∁UA。

(5)子集:子集是一個數學概念:如果集合A的任意一個元素都是集合B的元素,那麼集合A稱為集合B的子集。符號語言:若∀a∈A,均有a∈B,則A⊆B。

5. 集合的表示法常用的有列舉法和什麼

集合的表示法常用的有列舉法和(描述)法。

描述法是集合的常用表示方法。

描述法的定義﹕常用於表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括弧內﹐這種表示集合的方法叫做描述法。優點:省時省力,概括性強。缺點:較為抽象,不利於判斷選擇。

除描述法外,集合的常用表示方法還有列舉法。

(5)集合常用方法擴展閱讀

{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小於π的正實數組成的集合表示為:{x|0<x<π}。

{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小於π的正實數組成的集合表示為:{x|0<x<π}。

6. 求集合a∩b的常用方法

因為集合

7. 學好集合的快速方法

首先要理解集合的意義, 其次,把集合和我們日常生活中的事物聯系起來。其實數學並不是空洞的 理論,它的一切都來源於實際生活,所以你學習數學的時候要問 一下別人為什麼要這樣定義,這樣定義有什麼作用。理解了這些 之後,你就知道數學沒有高深的東西,這些所謂高深的東西都是 一些非常簡單的理論累計的結果。所以清楚了前輩數學開拓者在 這些地方為什麼要這么來構建這個知識點,你就同時具備了自學 的能力.
簡單的說 懂定義,那就是缺乏鍛煉了!多做題!(盯著一套題!由易到難!做完了再多看看)初中剛進高中都這樣…適應老師的教學方法 給你把知識點考過來把概要:第一章 集合與函數概念 一、集合有關概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說 ...
第一章 集合與函數概念
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無序性
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員}B={12345}
2.集合的表示方法:列舉法與描述法。
注意啊:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
關於「屬於」的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
4、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5} <br>二、集合間的基本關系 <br>1.「包含」關系子集 <br>注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 <br>反之: 集合A不包含於集合B或集合B不包含集合A記作A B或B A <br>2.「相等」關系(5≥5,且5≤5,則5=5) <br>實例:設 A={x|x2-1=0} B={-11} 「元素相同」
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
① 任何一個集合是它本身的子集。A?A
②真子集:如果A?B且A? B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 A?B B?C 那麼 A?C
④ 如果A?B 同時 B?A 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
三、集合的運算
1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集.
記作A∩B(讀作」A交B」),即A∩B={x|x∈A,且x∈B}.
2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:A∪B(讀作」A並B」),即A∪B={x|x∈A,或x∈B}.
3、交集與並集的性質:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A
A∪φ= A A∪B = B∪A.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作: CSA 即 CSA ={x ? x?S且 x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U
二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域. 快快地 給我分兒~

8. java集合的通用方法有哪些

map集合,對象以鍵值對的形式存放在集合中,並且鍵它是不允許重復的。常用的實現是HashMap和TreeMap,HashMap能夠快速的查詢到一個鍵,而TreeMap則是對鍵按序存放的。
list介面是對collection的擴充,它允許存放相同的元素。常用的有2種實現類,ArrayList和LinkedList。ArraryList是一種以數組形式存放元素的集合,更適合於做查詢,而LinkedList內部實現鏈表,適合做增刪元素操作。
set介面同樣是對collection的擴充,它不允許存放相同的元素。常用類HashSet和TreeSet.HashSet主要能夠快速定位到一個元素,需要用到HashCode()方法,而TreeSet類中可以實現對元素的排序。

9. 常用的集合表示方法有哪些

常用的有列舉法和描述法。
1.列舉法:常用於表示有限集合,把集合中的所有元素一一列舉出來,寫在大括弧內,這種表示集合的方法叫做列舉法。{1,2,3,……}
2.描述法:常用於表示無限集合,把集合中元素的公共屬性用文字,符號或式子等描述出來,寫在大括弧內,這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小於π的正實數組成的集合表示為:{x|0<x<π}
3.圖示法(Venn圖):為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內部表示一個集合。
4.自然語言(不常用)
參考資料:http://ke..com/view/15216.htm

閱讀全文

與集合常用方法相關的資料

熱點內容
win10在哪裡連接網路連接網路設置方法 瀏覽:27
霍香正氣水可以治療腳氣的最佳方法 瀏覽:96
快速減輕胃痛的方法 瀏覽:471
快速降體重的方法 瀏覽:683
我是賣家鏈接在哪裡設置方法 瀏覽:183
手機不開機修復方法 瀏覽:90
扁平疣最佳方法 瀏覽:132
定編的方法案例分析 瀏覽:170
簡易雨傘安裝方法 瀏覽:703
手機液晶屏閃爍解決方法 瀏覽:137
兩極管測量方法 瀏覽:39
女性治療甲亢的方法有哪些 瀏覽:29
簡單做香蕉布丁的方法 瀏覽:825
絕對濕度計算方法高中 瀏覽:525
gta5mod安裝方法 瀏覽:924
一根線最簡單取戒指方法 瀏覽:300
49生男生女計算方法 瀏覽:193
農村房屋拆遷面積測量方法 瀏覽:790
十畝小麥種植方法 瀏覽:492
所謂自愈的方法就是手機調成靜音 瀏覽:371