導航:首頁 > 使用方法 > 極限常用的方法

極限常用的方法

發布時間:2023-09-11 10:14:20

『壹』 求極限最常用的方法

極限最常用的方法:
1、夾逼定理

主要對付的是數列極限 !這個主要是看見極限中的函數是方程相除的形式,放縮和擴大。
2、等比等差數列公式應用
對付數列極限 (q 絕對值符號要小於1)
3、各項的拆分相加(對付數列極限 )
例如知道 Xn 與 Xn+1 的關系,已知 Xn 的極限存在的情況下,xn 的極限與 xn+1 的極限時一樣的,因為極限去掉有限項目極限值不變化。
4、求左右極限的方式
(對付數列極限 )例如知道 Xn 與 Xn+1 的關系,已知 Xn 的極限存在的情況下,xn 的極限與 xn+1 的極限時一樣的,因為極限去掉有限項目極限值不變化。
5、兩個重要極限的應用
這兩個很重要 !對第一個而言是 X 趨近 0 時候的 sinx 與 x 比值。第 2 個就如果 x 趨近無窮大,無窮小都有對有對應的形式 (第 2 個實際上是用於函數是 1 的無窮的形式 )(當底數是 1 的時候要特別注意可能是用地兩個重要極限 )
6、趨近於無窮大
還有個方法,非常方便的方法 ,就是當趨近於無窮大時候 ,不同函數趨近於無窮的速度是不一樣的 !x 的 x 次方快於 x!快於指數函數, 快於冪數函數, 快於對數函數(畫圖也能看出速率的快慢 )!!當 x 趨近無窮的時候,他們的比值的極限一眼就能看出來了。

『貳』 極限的幾種求法

極限的求法有很多中:
1、連續初等函數,在定義域范圍內求極限,可以將該點直接代入得極限值,因為連續函數的極限值就等於在該點的函數值
2、利用恆等變形消去零因子(針對於0/0型)
3、利用無窮大與無窮小的關系求極限
4、利用無窮小的性質求極限
5、利用等價無窮小替換求極限,可以將原式化簡計算
6、利用兩個極限存在准則,求極限,有的題目也可以考慮用放大縮小,再用夾逼定理的方法求極限
7、利用兩個重要極限公式求極限
8、利用左、右極限求極限,(常是針對求在一個間斷點處的極限值)
9、洛必達法則求極限
其中,最常用的方法是洛必達法則,等價無窮小代換,兩個重要極限公式。
在做題時,如果是分子或分母的一個因子部分,如果在某一過程中,可以得出一個不為0的常數值時,我們常用數值直接代替,進行化簡。另外,也可以用等價無窮小代換進行化簡,化簡之後再考慮用洛必達法則。

『叄』 求極限的八種方法,詳細回答多獎勵50財富值

1、基本的定義法,ε--δ法,是一切方法的基礎。

2、夾逼法,f1≤f≤f2恆成立,且f1、f2有相同的極限,則也是f的極限;

3、洛必達法則,求0/0,∞/∞,0.∞型極限;

4、積分、微分法;兩邊同時積分或微分,結果逆求一下

5、函數法,g(f(x))有極限A,則f(x)的極限=g^(-1)(A),

6、等價代換法,f(x)/g(x)的極限=1,可以互換。

7、利用已知的極限。化成相同形式。

8、連分數法,可以用於求分式極限。

N的相應性

一般來說,N隨ε的變小而變大,因此常把N寫作N(ε),以強調N對ε的變化而變化的依賴性。但這並不意味著N是由ε唯一確定的:(比如若n>N使|xn-a|<ε成立,那麼顯然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在於其值的大小。

閱讀全文

與極限常用的方法相關的資料

熱點內容
核桃樹嫁接方法視頻 瀏覽:799
男性問題的治療方法 瀏覽:2
快速脫單方法和技巧 瀏覽:240
三星的錄音許可權在哪裡設置方法 瀏覽:693
鼻炎怎麼治好徹底除根方法視頻 瀏覽:700
佰草集太極泥使用方法 瀏覽:193
批量安裝機械硬碟的方法 瀏覽:30
板薯的種植方法 瀏覽:541
單片機銷售技巧和方法 瀏覽:849
小飛蛾的最佳消滅方法 瀏覽:898
快速背知識的方法 瀏覽:651
硒鼓用什麼方法打不開 瀏覽:661
如何學好語文教學方法 瀏覽:561
等差的最佳方法 瀏覽:966
失眠恢復訓練的方法 瀏覽:235
高三升學最佳方法 瀏覽:188
租賃車的技巧和方法 瀏覽:609
房屋用粘鋼方法加固如何檢測強度 瀏覽:578
食用油哪幾重提煉方法 瀏覽:690
手機檢測手機真假有幾種方法 瀏覽:969