⑴ 如何利用電鏡技術測定病毒粒體的特徵
隨著科學的發展,電鏡已成為一種綜合的分析儀器,在植物病毒的診斷和鑒定中發揮著重要作用。植物病毒學上用得較多的是透射電鏡。
1 透射電鏡的成像原理
顯微鏡的解析度與其使用光源的波長呈負相關,即波長越短分辨本領越大。可見光的波長范圍為0.4~0.7μm,它決定了光鏡的分辨極限為0.2μm,有效放大倍數不能超過2000倍。電鏡用的光源為電子槍產生的高速電子束,其波長比可見光短十萬倍以上,因而大大地提高了解析度。電鏡解析度接近0.lnm,有效放大倍數在百萬倍以上。
在電子顯微鏡下可觀察病毒粒體外形、大小以及在寄主細胞中的位置等。植物病毒粒子常見的有球形、長桿狀、線形和彈狀。
2 制樣技術
樣品處理技術多種多樣,適用於不同的材料和觀察目的。如金屬投影和復型技術,主要用於病毒或其他大分子的表面結構和大小觀察;冰凍蝕刻用於細胞化學、生物膜等研究;另外還有放射自顯影電鏡技術、免疫電鏡技術等。而植物病毒學上廣泛應用的是負染技術和超薄切片技術。負染制樣操作簡單,所需時間少;而超薄切片制樣方法操作復雜,所需時間長,但這種方法可以觀察到病毒粒子在組織中的情況。
2.1 負染技術
負染是相對正染而言的。是指在樣品的周圍包被高電子密度的染料,背景呈深色,而樣品呈白色,反襯出樣品的輪廓。病毒負染後能很清楚地看到其大小和細微結構。此法簡便、易行、快速,為病毒診斷提供了一種可靠手段。現在鑒定病毒,一般先用病汁液做負染觀察,根據看到的病毒的大小和形狀等,能為進一步研究提供許多有用信息,如採用什麼方法提純、病毒的分類地位如何等。其中有六個病毒屬的形態特徵非常典型,幾乎可以憑此特徵就能確定它們屬於哪個病毒科、屬,見表1。
表1 六個典型特徵病毒屬
pH調節用1mol/L HCl或1mol/L NaOH,而鉬酸銨用醋酸銨調,甲酸鈾用氫氧化銨調。
強大電子束的轟擊,是造成病毒變形和失去結構細節的另一重要原因,觀察時要採用盡量低亮度光斑,動作迅速,以減少轟擊時間。Forvmor膜等在電子束照射下,容易漂移,這樣病毒會被拉長或拉寬,因此,在測量病毒顆粒大小等精確觀察時,最好使用碳膜,或在Forvmor膜上加噴一層碳膜。
(5)病毒粒體大小測量 目前病毒學工作者已經注意到,同一病毒的大小不一樣,有些甚至相差甚遠。這可能是由於不同分離物或不同株系本身就不同,但大部分可能是由於實驗誤差或方法上的差別造成的。測量病毒大小,一般不宜提純病毒,而要用病株粗提液。因為病毒在提純過程中的形態結構,會由於提純過程中離子環境等的變化和物理因素的影響發生而變化。染色要用兩種以上染料,測量病毒顆粒的數量要盡量多,尤其是線狀病毒容易斷裂,數量應在100個以上。
2.2 超薄切片技術
根據電鏡成像原理可知,用於電鏡觀察樣品其厚度要求在數十納米,而通常單個細胞的厚度在數十微米,比要求厚度大100倍,而徒手切片或用於光鏡的切片機,其切片厚度一般在單個細胞水平,所以電鏡觀察必須做超薄切片。
超薄切片一般程序為:取材—固定—脫水—包埋—切片—染色—電鏡觀察。
(1)取材 取材要求典型、迅速,機械損傷小。材料切成1mm3大小,離體後1min之內進入固定液。應取不同寄主材料、同一寄主的不同組織和不同接種時期的樣品。
(2)固定 是用物理的或化學的方法迅速將細胞殺死,並且盡可能地使保存和固定細胞內各種結構、生物大分子生活時的狀態和位置。電鏡中常用的固定方法是化學固定。常用四氧化鋨、戊二醛、高錳酸鉀或重鉻酸鉀等固定劑。在病毒學中一般採用2%~3%戊二醛—1%~2%四氧化鋨(用0.2mol/LPBS,pH7.2配製)雙固定法,這樣細胞中的多種成分,如蛋白質、脂類、多糖、核酸等,大部分都能固定下來。戊二醛固定12~24h,四氧化鋨固定2~4h。戊二醛遇到鋨酸會形成沉澱,因此戊二醛固定後一定要用緩沖液充分清洗後再進行四氧化鋨固定。固定在超薄切片中很關鍵,固定液的種類、濃度、pH、滲透壓、離子組成、固定時間、溫度和方式都與固定的質量密切相關。因此,整個固定過程應該在4℃下進行。固定劑一定要用緩沖液配製。固定好的材料,電鏡下細胞內各種膜系統應該完整,沒有斷裂,雙層膜要基本平行,細胞質呈精細顆粒狀,沒有空白。固定後緩沖液要充分清洗後再進行下面的步驟。
(3)脫水 常用的包埋劑是疏水的,因此包埋前要用既親水又親脂的乙醇或丙酮進行脫水。從低濃度到高濃度的脫水劑脫水,最後用絕對無水的脫水劑脫水。
(4)包埋 包埋的目的是增強樣品的機械強度,使樣品具有一定的機械形狀,適於切片機工作;另一個重要作用是進一步固定細胞結構。包埋劑種類很多,有水溶性的,也有脂溶性的。常用的是Epon812等環氧樹脂。包埋過程中發生的化學反應,叫聚合過程。聚合過程中實際上發生了兩類反應,一類是環氧樹脂末端環氧基之間在胺類化合物(如DMP-30)催化下,化合生成長鏈;另一類是樹脂中間的羥基和交聯劑(也稱固定劑)的酸酐發生反應,生成橫向連橋,加固了樹脂分子之間的聯系。為了增強樹脂聚合形成的包埋塊的切割性能,常加入一些增塑劑,如樹脂、催化劑、固化劑。
(5)切片 准確、熟練地掌握切片機操作技術,包埋塊軟硬適度,修塊好,就能切出要求質量的片子來。這里技巧很重要。
(6)超薄切片的染色 也叫電鏡技術的正染色。觀察內容不一樣,採用染色方法不同,病毒內含體和細胞病理學研究則常用醋酸雙氧鈾—檸檬酸鉛染色法。切片在1%~2%醋酸雙氧鈾中染色20min,用50%乙醇沖洗後用檸檬酸鉛染色30min,0.01mol/L NaOH沖洗。染色的關鍵是要防止醋酸鈾和檸檬酸鉛生成沉澱。防止污染的主要措施是防止CO2和檸檬酸鉛反應。如用剛制備出的蒸餾水配製染料和沖洗劑,染色時在小室中進行,小室中放入吸收CO2的固體NaOH,防止人呼吸時CO2進入小室中,戴口罩等。染色和沖洗完畢,切片自然乾燥後就可以電鏡觀察。
電子顯微鏡的出現及各種電鏡技術的發展,為植物病毒的直接觀察起到了巨大的推動作用,使檢疫工作人員能得到受病毒感染的病毒粒子電鏡照片以作為直接證據。但電鏡觀察結果需要和其他方法的檢測結果相結合,才能確定病毒的分類地位。這是因為許多病毒都有類似的形態和結構。由於一些植物汁液中病毒濃度過低,在進行常規的電鏡觀察檢測中,很難發現病毒粒子,這樣就要求對一些植物病毒進行分離和提純,以便進行有效的電鏡觀察和其他理化檢測。病毒的分離和提純主要是採用差速離心、PEG沉澱的方法,進一步的純化則採用密度梯度離心和柱層析法。為了直接檢測植物體內的帶毒情況,常採用植物組織的超薄切片和電鏡觀察進行。超薄切片的電鏡觀察可以直接用於對植物組織內部的病毒形態、內含體形態、病毒所在的部位、受感染的植物組織發生的病理學變化等進行檢查。
顯微鏡是由一個透鏡或幾個透鏡的組合構成的一種光學儀器,是人類進入原子時代的標志。下面是我為大家整理的幾種使用顯微鏡的 方法 步驟,希望您喜歡。
使用顯微鏡的方法步驟(一)
1安放:顯微鏡應放在體前偏左,鏡筒在前鏡臂在後的方向安放好。
2對光:用低倍鏡、較大光圈(遮光器上調);眼看目鏡,同時調節反光鏡;使視野變得明亮。
3放片:觀察對象要正對物鏡的孔,將玻片夾好之後再調焦。
4調焦:先用低倍鏡尋找物象,先降鏡筒後升高鏡筒,降低鏡筒時要在側面觀察是否壓片,升高鏡筒時正對著目鏡尋找物象。把物像移到視野中心,換用高倍鏡觀察只調節細准焦螺旋,使物象變得清晰。
5觀察:兩眼睜開,用左眼觀察,用右眼畫圖。
注意事項:
1.必須熟練掌握並嚴格執行使用規程。
2.取送顯微鏡時一定要一手握住鏡臂,另一手托住底座。顯微鏡不能傾斜,以免目鏡從鏡筒上端滑出。取送顯微鏡時要輕拿輕放。
使用顯微鏡的方法步驟(二)1.實驗時要把顯微鏡放在桌面上,鏡座應距桌沿6~7cm左右,打開底光源開關。
2.轉動轉換器,使低倍鏡頭正對載物台上的通光孔。然後用雙眼注視目鏡內,調整光源強度,把聚光鏡上升,把虹彩光圈調至最大,使光線反射到鏡簡內,這時視野內呈明亮的狀態。
3.將所要觀察的裝片放在載物台上,使被觀察的部分位於通光孔的正中央。
4.先用低倍鏡觀察(物鏡10×、目鏡10×)。觀察之前,先轉動粗准焦螺旋,使載物台上升,使物鏡逐漸接近切片。需要注意,不能使物鏡觸及玻片,以防鏡頭將玻片壓碎。並轉動粗准焦螺旋,使載物台慢慢下降,不久即可看到玻片中材料的放大物像。
5.如果在視野內看到的物像不符合實驗要求(物像偏離視野),可慢慢移動左右移動尺。移動時應注意玻片移動的方向與視野中看到的物像移動的方向正好相反。如果物像不甚清晰,可以調節細准焦螺旋,直至物像清晰為止。
6.如果進一步使用高倍物鏡觀察,應在轉換高倍物鏡之前,把物像中需要放大觀察的部分移至視野中央(將低倍物鏡轉換成高倍物鏡觀察時,視野中的物像范圍縮小了很多)。一般具有正常功能的顯微鏡,低倍物鏡和高倍物鏡基本齊焦,在用低倍物鏡觀察清晰時,換高信物鏡應該可以見到物像,但物像不一定很清晰,可以轉動細准焦螺旋進行調節。
7.在轉換高倍物鏡並且看清物像之後,可以根據需要調節光圈或聚光器,使光線符合要求般將低倍物鏡換成高倍物鏡觀察時,視野要稍變暗一些,所以需要調節光線強弱)。
8.觀察完畢,應先將物鏡鏡頭從通光孔處移開,然後將顯微鏡復原。並檢查零件有無損傷(特別要注意檢查物鏡是否沾水,如沾了水要用鏡頭紙擦凈),檢查處理完畢後即可放回原處。
使用顯微鏡的方法步驟(三)1.右手握住鏡臂,左手托住鏡座。
2.把顯微鏡放在實驗台上,略偏左(顯微鏡放在距實驗台邊緣7厘米左右處)。安裝好目鏡和物鏡。
3.轉動轉換器,使低倍物鏡對准通光孔(物鏡的前端與載物台要保持2厘 米的距離)。
4.把一個較大的光圈對准通光孔。左眼注視目鏡內(右眼睜開,同時畫圖)。轉動反光鏡,使光線通過通光孔反射到鏡筒內。通過目鏡,可以看到白亮的視野。
5.把所要觀察的玻片標本(也可以用印有“6”字的薄紙片製成)放在載物台上,用壓片夾壓住,標本要正對通光孔的中心。
6.轉動粗准焦螺旋,使鏡筒緩緩下降,直到物鏡接近玻片標本為止(眼睛看著物鏡,以免物鏡碰到玻片標本)。
7.左眼向目鏡內看,同時反方向轉動粗准焦螺旋,使鏡筒緩緩上升,直到看清物像為止。再略微轉動細准焦螺旋,使看到的物像更加清晰。
注意事項:
實驗完畢,把顯微鏡的外表擦拭乾凈。轉動轉換器,把兩個物鏡偏到兩旁,並將鏡筒緩緩下降到最低處。最後把顯微鏡放進鏡箱里,送回原處。
顯微鏡的類型顯微鏡以顯微原理進行分類可分為偏光顯微鏡、光學顯微鏡與電子顯微鏡和數碼顯微鏡。
偏光顯微鏡
偏光顯微鏡(Polarizing microscope)是用於研究所謂透明與不透明各向異性材料的一種顯微鏡,在地質學等理工科專業中有重要應用。凡具有雙折射的物質,在偏光顯微鏡下就能分辨的清楚,當然這些物質也可用染色法來進行觀察,但有些則不可用,而必須利用偏光顯微鏡。反射偏光顯微鏡是利用光的偏振特性對具有雙折射性物質進行研究鑒定的必備儀器, 可供廣大用戶做單偏光觀察,正交偏光觀察,錐光觀察。
光學顯微鏡
通常皆由光學部分、照明部分和機械部分組成。無疑光學部分是最為關鍵的,它由目鏡和物鏡組成。早於1590年,荷蘭和義大利的眼鏡製造者已經造出類似顯微鏡的放大儀器。光學顯微鏡的種類很多,主要有明視野顯微鏡(普通光學顯微鏡)、暗視野顯微鏡、熒光顯微鏡、相差顯微鏡、激光掃描共聚焦顯微鏡、偏光顯微鏡、微分干涉差顯微鏡、倒置顯微鏡。
電子顯微鏡
電子顯微鏡有與光學顯微鏡相似的基本結構特徵,但它有著比光學顯微鏡高得多的對物體的放大及分辨本領,它將電子流作為一種新的光源,使物體成像。自1938年Ruska發明第一台透射電子顯微鏡至今,除了透射電鏡本身的性能不斷的提高外,還發展了其他多種類型的電鏡。如掃描電鏡、分析電鏡、超高壓電鏡等。結合各種電鏡樣品制備技術,可對樣品進行多方面的結構 或結構與功能關系的深入研究。顯微鏡被用來觀察微小物體的圖像。常用於生物、醫葯及微小粒子的觀測。電子顯微鏡可把物體放大到200萬倍。
台式顯微鏡,主要是指傳統式的顯微鏡,是純光學放大,其放大倍率較高,成像質量較好,但一般體積較大,不便於移動,多應用於實驗室內,不便外出或現場檢測。
攜帶型顯微鏡
攜帶型顯微鏡,主要是近幾年發展出來的數碼顯微鏡與視頻顯微鏡系列的延伸。和傳統光學放大不同,手持式顯微鏡都是數碼放大,其一般追求便攜,小巧而精緻,便於攜帶;且有的手持式顯微鏡有自己的屏幕,可脫離電腦主機獨立成像,操作方便,還可集成一些數碼功能,如支持拍照,錄像,或圖像對比,測量等功能。
⑶ 透射電鏡和掃描電鏡的特點及應用(越全越好)
1、透射電子顯微鏡電子束的波長要比可見光和紫外光短得多,並且電子束的波長與發射電子束的電壓平方根成反比,也就是說電壓越高波長越短。
透射電子顯微鏡在材料科學、生物學上應用較多。由於電子易散射或被物體吸收,故穿透力低,樣品的密度、厚度等都會影響到最後的成像質量,必須制備更薄的超薄切片,通常為50~100nm。所以用透射電子顯微鏡觀察時的樣品需要處理得很薄。
常用的方法有:超薄切片法、冷凍超薄切片法、冷凍蝕刻法、冷凍斷裂法等。對於液體樣品,通常是掛預處理過的銅網上進行觀察。
2、掃描電鏡的特點:有較高的放大倍數,2-20萬倍之間連續可調;有很大的景深,視野大,成像富有立體感,可直接觀察各種試樣凹凸不平表面的細微結構;試樣制備簡單。
生物:種子、花粉、細菌;
醫學:血球、病毒;
動物:大腸、絨毛、細胞、纖維;
材料:陶瓷、高分子、粉末、金屬、金屬夾雜物、環氧樹脂;
化學、物理、地質、冶金、礦物、污泥(桿菌)、機械、電機及導電性樣品,如半導體(IC、線寬量測、斷面、結構觀察)電子材料等。
(3)透射電鏡使用方法擴展閱讀
透射電鏡的總體工作原理是:由電子槍發射出來的電子束,在真空通道中沿著鏡體光軸穿越聚光鏡,通過聚光鏡將之會聚成一束尖細、明亮而又均勻的光斑,照射在樣品室內的樣品上;透過樣品後的電子束攜帶有樣品內部的結構信息,樣品內緻密處透過的電子量少,稀疏處透過的電子量多;
經過物鏡的會聚調焦和初級放大後,電子束進入下級的中間透鏡和第1、第2投影鏡進行綜合放大成像,最終被放大了的電子影像投射在觀察室內的熒光屏板上;熒光屏將電子影像轉化為可見光影像以供使用者觀察。
掃描電子顯微鏡的製造依據是電子與物質的相互作用。掃描電鏡從原理上講就是利用聚焦得非常細的高能電子束在試樣上掃描,激發出各種物理信息。通過對這些信息的接收、放大和顯示成像,獲得測試試樣表面形貌的觀察。