1、快速測試片技術法
快速測試片是指以紙片、紙膜、膠片等作為培養基載體,將特定的培養基和顯色物質附著在上面,通過微生物在上面的生長、顯色來測定食品中微生物的方法。
細菌總數檢測紙片的研製始於 20 世紀 80 年代,其主要優點是簡便、實用、經濟、操作性強。近年來以濾紙和美國某公司的 Petrifilm 為載體的測試片已開始被廣泛應用。
2、生物電化學方法
生物電化學方法是指通過電極測定微生物產生或消耗的電荷,從而提供分析信號的方法。微生物在滋生代謝過程中,培養基的電化學性質如電流、電位、電阻和電導等會發生變化,所以可以通過檢測分析這些電化學參量的變化來實現對微生物的快速測定。
常見的有:阻抗分析法、電位分析法、電流分析法等。生物電化學方法具有測量快速、直觀、操作簡單、測量設備成本低和信號的可控性等特點。
3、微菌落技術
微菌落是指細菌生長繁殖早期在固相載體上所形成的只能藉助於顯微鏡觀察的微小菌落。微菌落技術具有快速、經濟、實用的特點,其研究始於 20 世紀50年代,定量測定技術從 20 世紀 70 年代開始,國外已有報道將該法應用於水、食品中細菌總數的快速檢測。
4、氣相色譜法
氣相色譜應用到微生物的檢測中,主要是依據不同微生物的化學組成或其產生的代謝產物各異,利用上述色譜檢測可直接分析各種體液中的細菌代謝產物、細胞中的脂肪酸、蛋白質、氨基酸、多肽、多糖等,以確定病原微生物的特異性化學標志成分,協助病原診斷和檢測。
5、高效液相色譜法
利用高效液相色譜檢測可分析各種體液中的細菌代謝產物、病原微生物等,以確定病原微生物的特異性化學標志成分,協助病原診斷和檢測。
B. 菌種鑒定常用的分離方法有哪些
菌種質量檢測的目標包括菌絲形態、菌落特徵以及子實體形態等方面。質量檢測常用方法如下:
(1)建立標準的培養和觀察方法
對於一個栽培品種各菌種的質量檢測,實際上是以該品種典型的生物學特性(包括形態特徵、生理生態特性、栽培習性)為參照標准進行比較,以檢驗菌種是否存在品種退化、菌種老化、病菌侵染、雜菌污染和品種混雜等質量問題。同時,菌種質量檢測不僅要考慮從哪些方面來評價一個菌種的質量優劣,也要考慮用怎樣的標准方法對菌種質量進行評價的問題。因為一定的結果來源於一定的方法和一定的條件。方法和條件不同,結果就失去了可比性,也就無法鑒別,因此,需要建立標准。這些標准包括:培養基、培養條件(溫度、濕度、pH、光照等)、菌種的菌齡等。
(2)連續觀察
在菌種生長過程中,要連續觀察,一切不正常的現象只有在生長過程中才能表現出來。而當菌種長滿培養基表面後,其不正常現象往往會被菌種的過齡而掩蓋。
(3)宏觀檢查
對食用菌母種、原種及栽培種的宏觀檢查要根據其培養特徵來進行(參見前述有關內容),這是菌種生產者及使用者普遍使用的方法,簡單易行,但需要有多年的從業經驗與技術沉澱。如被檢菌種表現出菌落生長速度不一致、氣生菌絲變稀疏或出現扇變菌落、菌落上過早出現色素、或不同特徵的菌落混雜共存、或菌落上出現黑褐色、青灰色、黃褐色或紅色的孢子堆,均可以確定該菌種存在質量問題。優質菌種外觀菌絲潔白、密集粗壯,生長速度一致,齊發並進。
在生產實踐中,廣大菇農和專業工作人員總結出「純、正、壯、潤、香」的質量檢查方法。這種應用感官識別菌種優劣,是經驗的總結,能大致、快速地鑒定出菌種的優劣。具體方法是:
「純」指菌種的純度高,無雜菌感染,無斑塊、無抑制線,無「退菌」、「斷菌」現象等。
「正」指菌絲無異常,具有親本正宗的特徵,如菌絲純白、有光澤,生長整齊,連結成塊,具彈性等。
「壯」指菌絲發育粗壯,長勢旺盛,分枝多而密,在培養基上恢復、定植、蔓延速度快。
「潤」指菌種含水量適中,基質濕潤,與瓶壁緊貼,瓶頸略有水珠,無干縮、鬆散現象。
「香」指具該品種特有的香味,無霉變、腥臭、酸敗氣味。
通過檢測各種食用菌菌絲生長的色澤、速度、均勻度等特徵是否正常,來判斷菌種生長是否正常、是否可用,但辨別不了是否優質高產。
(4)顯微鏡檢查
對菌絲體進行顯微觀察,可以確定菌絲粗細、分枝、隔膜、鎖狀聯合等特性是否均一,是否與該栽培品種的典型特徵一致(參見前述相關內容)。具有不同形態特徵的菌絲體存在於同一菌種體中,表明該菌種存在質量問題;如果出現菌絲體重寄生現象,常表現出不同特徵的菌絲體相互纏繞,或菌絲體中空變細,或在寄生點出現吸器等不正常現象。
鏡檢的方法是:挑取少量菌絲,置載玻片中央的水滴上,用解剖針或接種針撥散,蓋上蓋玻片,也可加碘酒或美藍等染色後進行鏡檢。正常的菌絲一般透明、分枝狀,有橫隔和明顯的鎖狀聯合;異宗結合的食用菌,如僅有單核菌絲,不具結實性,不宜作菌種用;雙核菌絲中,鎖狀聯合多而密,則結菇力強,一般可認為是好菌種。如:
①雙孢菇 觀察雙孢菇單孢子萌發後的菌絲生長形態。凡菌絲潔白、健壯,保存時間較長時菌絲顏色不變,較耐28℃以上氣溫,生長在基質上平貼培養基表面,氣生菌絲不多的,為同化能力較強,產量較高的菌株。相反,菌絲生長初期好,很快變黃變稀,如蜘蛛絲一樣,長出培養基表面菌絲較多的菌株產量較低。
②香菇 觀察香菇的雙核菌絲,在斜面培養基上生長速度達到1.2厘米/天以上的,菌絲不十分粗壯和潔白,鎖狀連合頻繁,鎖狀連合在菌絲間相距較近,且在觀察面上分布均勻,一般均是高產和抗雜能力較強的菌株。香菇出菇的密度與鎖狀連合有一定關系。
③草菇 觀察草菇菌絲,發現菌絲分枝角度大的,出菇率高,產量高。菌絲分枝角度小、平行排列的,產量低。
各種食用菌的菌絲生長是否正常、是否可用,一般都以色澤、速度、均勻度等特徵加以檢測,但這並不能說明其是否優質高產。
(5)拮抗試驗
也稱對峙反應。同一種食用菌,經分離或雜交,將選育出許多不同的菌株,這些菌株的菌絲在形態上很難區別。如不同編號的香菇菌種,都是白色絨毛狀菌絲,鏡檢時均具有鎖狀聯合等。在當前菌種管理工作尚不十分健全的情況下,「同名異種」、「同種異名」的現象普遍發生,要識別異同,可採用「拮抗試驗」加以區別。具體方法是:
用1支20毫米×200毫米的無底試管,中央部位裝入長 5~7厘米的木屑麩糠培養基,兩端壓平並蓋棉塞,滅菌後,兩端各接入兩株受檢的菌種 1小塊,25℃左右條件下培養,當兩端菌絲往中央生長並相互接觸後,把試管移至20℃、約300勒克斯的漫射光下繼續培養,觀察菌絲接觸區有無對峙反應。若無褐色的帶線出現,表示兩個受檢菌株的基因極相似或相同,是相同的菌株,僅編號不同,即同種異名。如果受檢菌株間形成帶線,則表示是不同的菌株。
用平板進行拮抗試驗測試,方法是在無菌的PDA培養基平板上各接入2個或多個被檢菌株的菌種,在上述條件下培養,觀察菌絲相接觸部分有無帶線,以區別相同或不同的菌株。也可用菌種瓶(袋)進行拮抗測試(圖2-11)。
圖2-11 拮抗現象
(6)菌絲長速測定
在適宜的條件下,若菌絲生長迅速、粗壯有力、濃密整齊,一般為優質菌種。若菌絲生長緩慢、中斷或長速極快、稀疏無力、參差不齊和易枯黃萎縮,則為不良菌種。菌絲生長速度測定,可在PDA平板中心接種培養,測量菌落兩個直交直徑,取其平均值。同理,還可在原種、栽培種瓶(袋)壁上劃線測定。
(7)菌絲生長量測定
將等面積的菌苔接入無菌的液體培養基內,在相同的條件下,進行搖床振動培養,經過一定時間後,過濾收集菌絲,反復沖洗干凈後置容器內,80~100℃烘箱中烘乾至恆重後稱重。凡菌絲增殖快、重量重的為優質菌株,而增殖慢、重量輕的為不良菌株。
(8)耐高溫測定
以雙孢菇為例,把菌種置於20~22℃下培養,待菌絲長到1/2試管斜面時,每一菌株取出2~3支試管,置於35℃溫度下,經24小時作抗熱性試驗,然後放到22~23℃下培養,觀察菌絲恢復情況。若菌絲恢復萌發快,仍健壯、旺盛生長,則表明該菌株具有耐較高溫的優良性狀;如果菌絲生長緩慢,出現發黃倒伏,萎縮無力,則為不良菌株。
(9)均一性測定
將母種接種於標准培養基的平板上,並置於標準的環境條件下,每批做30~50個重復,進行長勢和長速的連續觀察記錄。均一性好的品種,每個重復之間長勢和長速幾乎沒有肉眼可見的差異。如果長勢和長速不一,則表明原始的母種的遺傳均一性不良,不宜作生產用種。
(10)純度測定
菌種純度高低是鑒定菌種質量好壞的關鍵環節。優質菌種要求同一管、瓶或袋內只含有所需要的菌種菌絲體,而不能含有其他種類的雜菌。這里所說的雜菌包括細菌、放線菌、酵母菌和各種黴菌,以及含有兩種食用菌菌絲體或同一種食用菌的兩個品種菌絲。凡是被雜菌污染的菌種都是不純菌種,必須予以淘汰。在三角瓶內裝入淺層液體培養基,滅菌後接入經搗散的菌種,25℃條件下培養,約1周觀察,若有氣泡和菌膜發生,並具酸敗味,說明菌種不純,混有雜菌;如果無上述現象則菌種純正無雜。
(11)長勢測定
菌絲長勢包括菌絲生長的狀態和速度。凡是菌絲生長迅速、整齊濃密、健壯有力的菌種為優良菌種。如果菌絲生長緩慢,或長速特快、稀疏無力、參差不齊、易於衰老,則表明是劣質菌種。在鑒別菌絲長勢時,必須注意,在不同培養基上、不同培養條件下,同一種食用菌菌絲的長勢不同,因此,判斷食用菌的菌種長勢,應採用相同的培養基,這樣,結果就可靠一些。在外界環境條件相同的情況下,菌絲生長旺盛、生長量多、生長速度快的要好於菌絲生長弱、生長量少、生長速度慢的菌種。還有一種方法是在三角瓶內裝入淺層液體培養基,滅菌後接入經搗散的菌種,25℃條件下培養,約1周觀察浮在液面的菌種。如果菌絲向旁邊迅速生長、健壯有力、邊緣整齊,且不斷增厚,說明該菌株生長勢強;若表面生長慢、稀疏、菌絲層薄,說明長勢弱,不宜用於生產。
(12)抗霉性測定
以木耳為例:制備平板,在平板的一邊分別接入不同的木耳菌株,每一菌株3個重復,在26~28℃下培養。待木耳菌絲長到平板一半左右時,在平板的另一邊接上木黴菌絲,繼續培養。之後注意觀察木黴菌絲與木耳菌絲的交界處,出現拮抗線的表示木耳菌株抗霉能力強,木黴菌絲無法長過去,為抗霉能力強的菌株。如果木黴菌絲很快蓋過木耳菌絲,說明這個木耳菌株的抗霉能力差或沒有抗霉力。
(13)出菇試驗
對引進或分離的同一品種的若干菌株進行出菇對比試驗,必須是在各級菌種的培養基成分、培養溫度、培養時間及栽培條件基本一致的情況下進行。出菇試驗可按菇類的常規栽培方法進行,數量可少些。為使試驗准確,每一菌株設3~4個重復,以避免試驗的偶然性。在位置排放上盡可能按菌名拉丁文排列,以相同的措施管理,在管理過程中對環境因子的變化、管理措施及生長歷程、品種本身性狀等要詳細全面記錄。以香菇為例記載內容如下:
①母種菌絲生長情況,如菌絲濃淡、生長快慢、菌苔韌性等。
②原種、栽培種中菌絲生長情況,如菌絲萌動、吃料、生長快慢;菌種表面有無菌皮或菌皮厚薄,白色顆粒狀物有無或多少;培養基轉色情況等。
③栽培階段應記載:菇木轉色快慢、顏色深淺;出菇快慢、菇生長密度;子實體經濟性狀,包括菇的大小、厚度、色澤、圓整程度、菌柄長度、粗細等;轉潮快慢;對水分的敏感程度;產量及產量分布;出口菇比例等。
通過對記載資料分析,選出綜合性狀符合要求的菌株,供大面積生產或出售。
出菇試驗因季節推遲或其他原因,可採用一種較簡單的方法來彌補,即直接將接有各菌株並已發好菌的瓶(袋)裝菌種,小心地敲破瓶頸或打開塑料袋口,使培養料外露(如果是雙孢菇,則要覆土調好土粒的濕度),置最適宜的溫、濕度條件下進行出菇(耳)管理,觀察記載各項指標,最後進行評比。但這種方法的結果只能提供參考。
(14)栽培指標
採用一定的栽培規模,通過不同地區、不同原料、不同栽培方式,進行多次反復栽培觀察,詳細記錄、評比後,具有優質、高產、高抗、高效和遺傳性、穩定性強的菌株,才是優質和可推廣的品種。其鑒定的內容、方法和指標有:
①吃料能力鑒定 將菌種接入最佳配方的原種培養料中,置適宜的溫、濕度條件下培養,1周後觀察種菇(耳)菌絲的生長情況。如果菌種塊能很快萌發,並迅速向四周和培養料中生長伸展,則說明該品種的吃料能力強;反之,菌種塊萌發後生長緩慢,遲遲不向四周的料層深處伸展,則表明該品種對培養料的適應能力差。對菌種吃料能力的測定,不僅用於對菌種本身的考核,同時還可以作為對培養料選擇的一種手段。
②成活率 將菌種接在適宜的培養基上,若菌絲能很快恢復、定植和蔓延生長,成活率很高,是質量好的菌種;反之,接種後恢復慢,成活率不高是質量差的菌種。
③出菇快慢 一般說,高溫型的出菇快,低溫型的出菇慢,中溫型的介於兩者之間。而以菇的質量來說,高溫型的質量差,低溫型的質量好。但同一溫型食用菌品種的不同菌株,其菌種接種後若菌絲分解培養料能力強,培養前後培養料失重大,出菇快而多,總產高,即是好菌種;否則為劣質菌種。
④菇峰間隔 在一個生產周期中,子實體發生可分數潮次,產菇最多時稱菇峰,最低時稱菇谷,每個菇峰和菇谷構成一潮菇。凡菇潮多,間隔時間短,說明菌絲分解能力強,供子實體發生的養分積累多,因此轉潮快,是好的菌種;反之,菇潮間隔時間長,或不明顯,零星出菇,產量低,即為劣質菌種。
⑤乾燥率 鮮菇經干制後乾燥率高,說明轉化率高,子實體含水分低,為優質菌種。
⑥生物學效率 生物學效率,指每100千克乾料可產多少千克鮮菇。生物學效率高,則菌種質量好,反之為劣質菌種。
(15)經濟指標
高產不一定高效、豐產不等於豐收,要佔領市場,獲得較高利潤,還必須具備商品的要求,如產品的色、香、味、形,檔次,上市時間,貨架期和保質期等。凡是鮮菇上市時間早,產量高、品質好、檔次高、含水量低,不易變色、變質、破碎、失重,無農葯殘毒、殘臭,符合食品衛生標准和得到的利潤高等,均表示經濟指標高,則為優質菌株;而上市有效時間短,易變色、變味、變質,含水量高,失水嚴重,易破碎,利潤低的菌種均為劣質菌種。如香菇以大小適中、肉厚、色深、邊緣內卷,柄短細為優良;雙孢菇以色白、子實體大小適中,菌柄短,不易開傘等為優良;銀耳以色白、開片好、蒂頭小、松泡率高為優良等。
C. 請教病原微生物分型的方法種類及優劣勢比較。謝謝!
病原微生物的分子分型方法
近年來,隨著分子牛物學技術快速發展,新的診斷技術和方法不斷涌現並廣泛應用於臨床微生物的檢測,為病原微牛物的致病性、流行性、變異性以及耐葯性分析等方面提供J,重要的信息。目前,應用分子生物學技術對病原微牛物進行分型的方法包括:脈沖場凝膠電泳(pulsed-field gelelectrophoresis。PFGE)分型、聚合酶鏈反應(polymerase chain reaction,PCR)分型、生物晶元分型、多位點序列分型(muhilocus sequencetyping,MI。ST)、質粒DNA圖譜分型以及限制性片段長度多態性(restriction fragment length polymorphism,RFLP)分型等。
1.脈沖場凝膠電泳分型PFGE技術以其重復性好、分辨力強而被譽為細菌分子分型的「金標准」。它可以用於大分子DNA的分離,其分辨范圍達到10 Mb,而普通瓊脂糖凝膠電泳僅能分離小於500 Kb的DNA。PFGE的基本原理是通過電場的不斷改變,使包埋在凝膠中的DNA分子的泳動方向發
生改變,小分子DNA比大分子DNA泳動快,從『『ii在凝膠上按DNA分子大小呈現出特異的電泳圖譜。病原微生物的基因組DNA經脈沖場凝膠電泳,使大片段DNA有效分離。DNA條帶的密度反映了病原微生物基因組DNA的含量以及分子的大小,最終達到分型的目的。目前,PFGE已被廣泛的應用於病原微牛物的分型,Swaminathan等∽J已經建立了針對大腸桿菌0157:H7、沙門菌屬的Typhimurium血清型、李斯特菌、志賀菌屬等病原微生物分型的標准PFGE操作方法。有研究認
為PFGE的分辨力強於核糖體分型和隨機擴增多態性DNA(random amplified polymorphic DNA,RAPD)分型。當採用1個限製件核酸內切酶的分辨力不強時,可以採用2種限制性核酸內切酶加以提高。當然,PFGE也有一些局限,如耗時長、成本高等。另外,電泳圖譜易受操作人員技術水平等因素的影響,這為不同實驗室問的比較帶米一定困難¨
2.聚合酶鏈反脫分犁PCR技術自1985年發明以來,以其靈敏度高和特異性強受到了人們的高度重視,成為核酸擴增和檢測的一種常規方法H]。用於病原微生物分子分型的PCR方法主要有RAPD分型和重復序列PCR分犁2種。RAPD是建移在PCR基礎卜-的1種可對整個未知序列的基因
組進行多態性分析的分子生物學方法。該方法以基岡組DNA為模板,以單個人T.合成的隨機多態核苷酸序列(通常為10個鹼基)為引物,在熱穩定的DNA聚合酶的作用下進行PCR擴增,擴增產物經瓊脂糖或聚內烯醯胺凝膠電泳後,對其進行多態性分析。反應小同基因組DNA特點,從而對病原微生物進行分型。RAPD可以在物種沒有任何基因組信息的情況下分析其DNA多態性,對模板DNA的純度要求不高。無需DNA探針和分子雜交。重復序列PCR分型足Versalovic於1996
年描述的1種細菌基因組指紋分析方法,即PCR擴增細菌基因組中廣泛分布的短重復序列,經電泳圖譜比較分析揭示基因組間的差異[5]。研究表明重復序列PCR分型與RAPD分型有相同的分辨力[6],但操作相對復雜。然而,重復序列PCR分型的再現性非常好,這是RAPD無法比擬的。此外,多重PCR、巢式PCR等也呵用於病原微生物的分型,雖然各有長處,但也存在分辨力弱、重復性差、結果解析困難等不足,因此,還未廣泛應用於臨床。
3.生物晶元分型 生物晶元技術是將生物大分子,如寡核苷酸、cDNA、基岡組DNA、肽、抗原以及抗體等固定在諸如矽片、玻璃片、塑料片、凝膠和尼龍膜等固相介質上形成生物分子點陣,當待測樣品中的生物分子與生物晶元的探針分子發生雜交或相互作用後,利.}}j激光共聚焦顯微掃描儀對雜交信號進行檢測和分析例。其用於病原微生物分型的基本原理是將代表各個亞型的特異基因製成1張晶元,經反轉錄就可檢測樣本中病原微生物的亞型進行辨別。液態晶元(suspension arraytechnology,SAT),又稱微球蛋白晶元(proteinbeadarrays,PBA),是近年來出現的1種新的晶元技術。其原理是甩2種熒光染料按照不同比例將直徑為5.6 ttm的微球染成100種顏
色,每種顏色的微球共價結合1種牛物探針,可以是抗原、抗體、配體,也可以是核酸或酶,分針對1種待檢物。混合載有100種不同顏色的微球,就可以在1個反應孔里同時完成100種不同的生物反應。隨後微球成單列通過2束激光照射的管道,計算機採集並處理每種顏色微球的熒光強度變化就可以分別對每個待測物進行定性或定量的檢測。該系統口『用於多種微生物抗原、抗體和特定基因的聯合檢測。目前,該方法已應用於臨床HPV的分型檢測。與固態晶元相比,液態晶元在反
應動力學、反應速度、檢測敏感性、穩定性以及自動化程度方面都有較大的優勢,因此,不少學者看好液態晶元的應用前景。
4.多位點序列分型 隨著DNA測序技術的快速發展,分子分型日益趨向於染色體的單一或多個位點的多態性上。MI。ST分型是指測定對多個管家基囡中長度約為470 bp的核心片段的核苷酸序列,對其組合進行索引編號,不同的菌株對應不同的序列型,從而揭示菌株間等位基因的多樣性。Maid—en等[83發現,MI,ST可用於腦膜炎奈瑟球菌的分型。他們認為,多個管家基因的序列分析比較在實驗過程的ⅡI操作性與結果的可靠性之間取得了平衡,且結果准確,所得數據在不同的實驗竄問具有良好的可比性,即MLST對某哆菌株具有較強的種內分辨力【9 J。Chen等no]應用MLST對我國台灣地區12家醫院分離到的51株白色假絲酵母菌進行遺傳特徵分析,結
果發現了7個管家基因序列的83個多態性位點和45個二倍體序列類型。其中,36.1%是同義突變,63.9 oA為非同義突變。他們認為,MI。ST的分辨力較PFGE更強,能分辨某患者所感
染的白色假絲酵母菌隨時間推移『『ii發生的微小種內進化。但MLST的缺點是它的高額費用和操作過程所需的特定儀器。這使得這項技術只能局限在大型的全球性流行病學研究中心
使用,影響其在醫院推廣普及。
5.質粒DNA圖譜分型 細菌質粒分析是較早被使用的病原微牛物分子分型方法。該方法包括萃取質粒DNA和瓊脂糖凝膠電泳。由於不同菌株質粒DNA序列和大小不同,
通過瓊脂糖凝膠電泳分離得到的DNA質粒圖譜也不同,從而可以對不同菌株進行分型。菌株攜帶的質粒越多則質粒DNA圖譜分型方法的特異性越強。質粒網譜分型的優點是操作相對簡單,只需要簡單的設備就可以完成,耗時短,費用低廉。但質粒圖譜分型有一難以克服的缺陷。即質粒可以自發的丟失、獲取以及在同種細菌甚至是在異種細菌之間轉移,這就造成了質粒圖譜的不穩定性。另外,質粒圖譜型方法小能區分那些大小相同而DNA序列不同的質粒¨「。
6.限制性片段長度多態性分型 RFI。P是指基因組DNA經限制性核酸內切酶消化,消化後的片段再通過瓊脂糖凝膠電泳進行分離。用限制性核酸內切酶BglⅡ和EcoRI等消化病原微生物基因組DNA,可以產生大量短的片段,通過電泳後得到的DNA圖譜可用於病原微生物的分型。幾乎所有
的病原微牛物分離株都町以通過這種方法分型,但由於基因組DNA巨大,酶切後產生的片段眾多,且含有大量的鶯疊片段,這使得蔚株間圖譜的一致性分析面I臨諸多用難口「。RFLP分
型分辨力弱於PFGE分型,且操作比較復雜。
D. 請問一下菌種鑒定的方法和實驗步驟
實驗步驟:菌種鑒定工作是各類微生物學實驗室都經常遇到的基礎性工作。不論鑒定對象屬哪一類,其工作步驟都離不開以下三步:①獲得該微生物的純種培養物;②測定一系例必要的鑒定指標;③查找權威性的鑒定手冊。 一、經典分類鑒定方法 群體:菌落形態,在半固體或液體培養基中的生長狀態等
* 形態 個體:細胞形態,染色反應,各種特殊構造等
* 營養要求:能源,碳源,氮源,生長因子等
* 生理、生化反應 酶;產酶種類和反應物性等
* 代謝產物:種類,產量,顯色反應等
* 經典指標 生態特性:生長溫度,對氧的需要,宿主種類等
* 生活史特點
* 血清學反應
* 噬菌體的敏感性
* 其它
經典分類法
經典分類法是一百多年來進行微生物分類的傳統方法。其特點是人為地選擇幾種形態生理生化特徵進行分類,並在分類中將表型特徵分為主、次。一般在科以上分類單位以形態特徵、科以下分類單位以形態結合生理生化特徵加以區分。 * A. 能在 60 o C 以上生長
* B. 細胞大,寬度 1.3~1.8mm ………………… 1. 熱微菌屬 ( Thermomicrobium )
* B. 細胞小,寬度 0.4~0.8mm
* C. 能以葡萄糖為碳源生長
* D. 能在 pH4.5 生長 …………………………… 2. 熱酸菌屬 ( Acidothermus )
* DD. 不能在 pH4.5 生長 …………………………………… 3. 棲熱菌屬 ( Thermus )
* CC. 不能以葡萄糖為唯一碳源 ……………… 4. 棲熱嗜油菌屬 ( 棲熱嗜獅菌屬 Thermoleophilum )
* AA. 不能在 60 o C 以上生長
二、現代分類鑒定方法
* 近年來,隨著分子生物學的發展和各項新技術的廣泛應用,促使微生物分類鑒定工作有了飛速發展。對微生物鑒定工作來說,已從經典的表型特徵的鑒定深入到現代的遺傳學特性的鑒定、細胞化學組分的精確分析以及利用電子計算機進行數值分類研究等新的層次上。
* (一)微生物遺傳型的鑒定
* DNA是除少數RNA病毒以外的一切微生物的遺傳信息載體。每一種微生物均有其自己特有的、穩定的DNA成分和結構,不同微生物間DNA成分和結構的差異程度代表著它們間新緣關系的遠近。因此,測定每種微生物DNA的若乾重要數據,是微生物鑒定中極其重要的指標:
1. DNA的鹼基組成(G+Cmol%)* 每一個微生物種的 DNA 中 GC mol% 的數值是恆定的,不會隨著環境條件、培養條件等的變化而變化,而且在同一個屬不同種之間, DNA 中 GCmol% 的數值不會差異太大,可以某個數值為中心成簇分布,顯示同屬微生物種的 GC mol% 范圍。 DNA 中 GC mol% 分析主要用於區分細菌的屬和種,因為細菌 DNA 中 GC 含量的變化范圍一般在 25 %~ 75 %;而放線菌 DNA 中的 GC 比例范圍非常窄 (37 %~ 51%) 。一般認為任何兩種微生物在 GC 含量上的差別超過了 10 %,這兩種微生物就肯定不是同一個種。因此可利用 G+C mol %來鑒別各種微生物種屬間的親緣關系及其遠近程度。值得注意的是,親緣關系相近的菌,其 G+C mol %含量相同或者近似,但 G+C mol %相同或近似的細菌,其親緣關系並不一定相似,這是因為這一數據還不能反映出鹼基對的排列序列,而且如放線菌的 DNA 的 GC mol% 在 37 ~ 51 之間,企圖在這么小的范圍內區分放線菌的幾十個屬顯然是不現實的。要比較兩種細菌的 DNA 鹼基對排列序列是否相同,以及相同的程度如何,就需做核酸雜交試驗。
1. DNA的鹼基組成(G+Cmol%)* 1)每個生物種都有特定的GC%范圍,因此後者可以作為分類鑒定的指標。細菌的GC%范圍為25--75%,變化范圍最大,因此更適合於細菌的分類鑒定。
* 2)GC%測定主要用於對表型特徵難區分的細菌作出鑒定,並可檢驗表型特徵分類的合理性,從分子水平上判斷物種的親緣關系。
* 3)使用原則:
* G+C含量的比較主要用於分類鑒定中的否定每一種生物都有一定的鹼基組成,親緣關系近的生物,它們應該具有相似的G+C含量,若不同生物之間G+C含量差別大表明它們關系遠。但具有相似G+C含量的生物並不一定表明它們之間具有近的親緣關系。
1. DNA的鹼基組成(G+Cmol%)* 同一個種內的不同菌株G+C含量差別應在4~5%以下;同屬不同種的差別應低於10~15%。所以G+C含量已經作為建立新的微生物分類單元的一項基本特徵,它對於種、屬甚至科的分類鑒定有重要意義。
* 若二個在形態及生理生化特性方面及其相似的菌株,如果其G+C含量的差別大於5%,則肯定不是同一個種,大於15%則肯定不是同一個屬。
* 在疑難菌株鑒定、新種命名、建立一個新的分類單位時,G+C含量是一項重要的,必不可少的鑒定指標。其分類學意義主要是作為建立新分類單元的一項基本特徵和把那些G+C含量差別大的種類排除出某一分類單元。
2.核酸的鹼基組成和分子雜交:* 與形態及生理生化特性的比較不同,對DNA的鹼基組成的比較和進行核酸分子雜交是直接比較不同微生物之間基因組的差異,因此結果更加可信。
DNA-DNA 雜交
* DNA 雜交法的基本原理是用 DNA 解鏈的可逆性和鹼基配對的專一性,將不同來源的 DNA 在體外加熱解鏈,並在合適的條件下,使互補的鹼基重新配對結合成雙鏈 DNA ,然後根據能生成雙鏈的情況,檢測雜合百分數。如果兩條單鏈 DNA 的鹼基順序全部相同,則它們能生成完整的雙鏈,即雜合率為 100% 。如果兩條單鏈 DNA 的鹼基序列只有部分相同,則它們能生成的「雙鏈」僅含有局部單鏈,其雜合率小於 100% 。由此;雜合率越高,表示兩個 DNA 之間鹼基序列的相似性越高,它們之間的親緣關系也就越近。如兩株大腸埃希氏菌的 DNA 雜合率可高達 100 %,而大腸埃希氏菌與沙門氏菌的 DNA 雜合率較低,約有 70 %。 G+Cmol %的測定和 DNA 雜交實驗為細菌種和屬的分類研究開辟了新的途徑,解決了以表觀特徵為依據所無法解決的一些疑難問題,但對於許多屬以上分類單元間的親緣關系及細菌的進化問題仍不能解決。
DNA — rRNA 雜交
* 目前研究 RNA 鹼基序列的方法有兩種。一是 DNA 與 rRNA 雜交,二是 16S rRNA 寡核苷酸的序列分析。 DNA 與 rRNA 雜交的基本原理、實驗方法同 DNA 雜交一樣,不同的是① 是 DNA 雜交中同位素標記的部分是 DNA ,而 DNA 與 rRNA 雜交中同位素標記的部分是 rRNA 。② DNA 雜交結果用同源性百分數表示,而 DNA 與 rRNA 雜交結果用 Tm(e) 和 RNA 結合數表示。 Tm(e) 值是 DNA 與 rRNA 雜交物解鏈一半時所需要的溫度。 RNA 結合數是 100 m gDNA 所結合的 rRNA 的 m g 數。根據這個參數可以作出 RNA 相似性圖。在 rRNA 相似性圖上,關系較近的菌就集中到一起。關系較遠的菌在圖上占據不同的位置。用 rRNA 同性試驗和 16SrRNA 寡核苷酸編目的相似性比較 rRNA 順反子的實驗數據可得到屬以上細菌分類單元的較一致的系統發育概念,並導致了古細菌的建立。
3.建立16 S r RNA系統發育樹
* a)使生物進化的研究范圍真正覆蓋所有生物類群;
* 傳統的生物進化研究,主要基於復雜的形態學和化石記載,因此多限於研究後生生物(metazoa),而後者僅占整個生物進化歷程的1/5
* b)提出了一種全新的正確衡量生物間系統發育關系的方法;
* c)對探索生命起源及原始生命的發育進程提供了線索和理論依據;
* d)突破了細菌分類僅靠形態學和生理生化特性的限制,建立了全新的微生物分類、鑒定理論;
* e)為微生物生物多樣性和微生物生態學研究建立了全新的研究理論和研究方法,特別是不經培養直接對生態環境中的微生物進行研究。
3、 16S rRNA(16S rDNA) 寡核苷酸的序列分析
* 首先, 16S rRNA 普遍存在於原核生物(真核生物中其同源分子是 18S rRNA )中。 rRNA 參與生物蛋白質的合成過程,其功能是任何生物都必不可少的,而且在生物進化的漫長歷程中保持不變,可看作為生物演變的時間鍾。其次,在 16S rRNA 分子中,既含有高度保守的序列區域,又有中度保守和高度變化的序列區域,因而它適用於進化距離不同的各類生物親緣關系的研究。第三, 16S rRNA 的相對分子量大小適中,約 1 540 個核苷酸,便於序列分析。因此,它可以作為測量各類生物進化和親緣關系的良好工具。
分離菌株 16S rRNA 基因
* 。從平板中直接挑取一環分離菌株細胞 , 加入 100μL 無菌重蒸 H 2 O 中 , 旋渦混勻後 , 沸水浴 2min, 12 000r min -1 離心 5min, 上清液中即含 16S rRNA 基因,可直接用於 PCR 擴增。分離菌株 16S rRNA 基因的 PCR 擴增和序列測定的一般步驟為: 16S rRNA 基因的 PCR 引物: 5'-AGAGT TTGAT CCTGG CTCAG-3' ; 5'-AAGGA GGTGA TCCAG CCGCA-3' 。擴增反應體積 50 m L ,反應條件為 95 ℃預變性 5min , 94 ℃變性 1min , 55 ℃退火 1min , 72 ℃延伸 2min ,共進行 29 個循環, PCR 反應在 PTC-200 型熱循環儀上進行。取 5 m L 反應液在 10g L -1 的瓊脂糖凝膠上進行電泳檢測。 PCR 產物測序可由專門技術公司完成。
比對分析
* 測序得到 分離菌株 16S rDNA 部分序列,此序列一般以 *.f.seq 形式保存,可以用寫字板或 Editsequence 軟體打開,將所得序列通過 Blast 程序與 GenBank 中核酸數據進行比對分析 ( http://www.ncbi.nlm.nih.gov/blast ) ,具體步驟如下:點擊網站中 Nucleotide BLAST 下 Nucleotide-nucleotide BLAST [blastn] 選項,將測序所得序列粘貼在「 search 」網頁空白處,或輸入測序結果所在文件夾目錄,點擊核酸比對選項,即「 blast 」,然後點擊「 format 」,計算機自動開始搜索核苷酸資料庫中序列並進行序列比較,根據同源性高低列出相近序列及其所屬種或屬,以及菌株相關信息,從而初步判斷 16S rDNA 鑒定結果。
比對分析
* 遺傳距離矩陣與系統發育樹構建,可採用 DNAStar 軟體包中的 MegAlign 程序計算樣本間的遺傳距離。由 GenBank 中得到相關菌株的序列,與本研究分離菌株所測得序列一起輸入 Clustalx1.8 程序進行 DNA 同源序列排列,並經人工仔細核查。在此基礎上,序列輸入 Phylip3.6 軟體包,以簡約法構建系統發育樹。使用 Kimura 2-parameter 法,系統樹各分枝的置信度經重抽樣法( Bootstrap ) 500 次重復檢測, DNA 序列變異中的轉換和顛換賦於相同的加權值。
(二)細胞化學成分的鑒定* 除上述核酸成分外的其它化學成分的測定,是微生物化學分類法的重要內容,主要包括:1.細胞壁的化學成分。2.全細胞水解液的糖型。3.磷酸類脂成分的分析。4.枝菌酸的分析。5. 醌類的分析。6.氣相色譜技術的應用。
(二)細胞化學成分的鑒定
* 微生物分類中,根據微生物細胞的特徵性化學組分對微生物進行分類的方法稱化學分類法 (chemotaxonomy) 。在近二十多年中,採用化學和物理技術采研究細菌細胞的化學組成,已獲得很有價值的分類和鑒定資料,各種化學組分在原核微生物分類中的意義見表
細菌的化學組分分析及其在分類水平上的應用
細胞化學成分鑒定的意義
* 隨著分子生物學的發展,細胞化學組分分析用於微生物分類日趨顯示出重要性。細胞壁的氨基酸種類和數量現己被接受為細菌屬的水平的重要分類學標准。在放線菌分類中,細胞壁成分和細胞特徵性糖的分析作為分屬的依據,已被廣泛應用。脂質是區別細菌還是古菌的標准之一,細菌具有醯基脂 ( 脂鍵 ) ,而古菌具有醚鍵脂,因此醚鍵脂的存在可用以區分古菌。黴菌酸的分析測定己成為諾卡氏菌形放線菌分類鑒定中的常規方法之一。鞘氨醇單胞菌和鞘氨醇桿菌等細胞膜都含有鞘氨醇,因此鞘氨醇的有無可作為此類細菌的一個重要標志。此外某些細菌原生質膜中的異戊間二烯醌,細胞色素,以及紅外光譜等分析對於細菌、放線菌中某些科、屬、種的鑒定也都十分有價值。
(三)數值分類法
* 數值分類法亦稱統計分類法,是在約200年前與林奈同代人M.Adanson (1727 ~1806,法國植物學家)發展的分類原理基礎上藉助於現代的電子計算機技術而發展起來的。數值分類的基本步驟為:(1)計算兩菌株間的相似系數;(2)列出相似度矩陣;(3)將矩陣圖轉換成樹狀譜。
數值分類的基本步驟
數值分類法
* 又稱阿德遜氏分類法 。它的特點是根據較多的特徵進行分類,一般為 50 ~ 60 個,多者可達 100 個以上,在分類上,每一個特性的地位都是均等重要。通常是以形態、生理生化特徵,對環境的反應和忍受性以及生態特性為依據。最後,將所測菌株兩兩進行比較,並借用電子計算機計算出菌株間的總相似值,列出相似值矩陣 ( 圖 14-5) 。為便於觀察,應將矩陣重新安排,使相似度高的菌株列在一起,然後將矩陣圖轉換成樹狀譜 (dendrogram) ,再結合主觀上的判斷 ( 如劃分類似程度大於 85 %者為同種,大於 65 %者為同屬等 ) ,排列出—個個分類群。
數值分類法的優越性
* 數值分類法的優越性在於它是以分析大量分類特徵為基礎,對於類群的劃分比較客觀和穩定;而且促進對細菌類群的全面考查和觀察,為細菌的分類鑒定積累大量資料。但在使用數值分類法對細菌菌株分群歸類定種或定屬時,還應做有關菌株的 DNA 鹼基的 G + Cmol% 和 DNA 雜交,以進一步加以確證。
E. 形態染色相似的腸桿菌科細菌通過什麼手段進行鑒別和區別
這個問題要回來答內容很長,腸桿菌科細菌鑒定專著早已經有了,看看這本書問題就解決了,你只給5分,我要化個把鍾頭打字不值,你懸賞50分,我明晚來詳細講給你聽.
先經SS瓊脂分離,種克氏雙糖鐵,18-24h後做OF和氧化酶試驗,
發酵葡萄糖,氧化酶陰性的為腸桿菌科細菌
氧化葡萄糖,氧化酶陽性的為非發酵菌
發酵葡萄糖,氧化酶陽性的為孤菌科細
菌腸桿菌科細菌的鑒定方法:
1,取雙糖斜面上的腸桿菌做玻片凝集試驗,
A-G群沙門氏菌O多價診斷血清鑒別沙門氏菌.陽性者用沙門氏菌因子血清分型。
四種志賀氏多價和鮑氏多價診斷血清鑒別志賀氏並用志賀氏分型血清分型。
2生化反應分屬:進行下述生化反應:
靛基質,甲基紅,V-P,枸椽酸鹽,流化氫,尿素酶,KCN,動力,明膠液化,賴氨酸脫羧酶,精氨酸雙水解酶,鳥氨酸脫羧酶,苯丙氨脫氨酶,丙二酸鈉,葡萄糖產氣,乳糖,蕉糖,甘露醇,衛矛醇
水楊苷,側金盞花醇,肌醇,山梨醇,阿拉佰糖,棉子糖,鼠李糖,
椐以上反應可將腸桿菌科的細菌分為14個屬。
這14個屬的細菌是
艾希氏菌屬
志賀氏菌屬
沙門氏菌屬
枸椽酸鹽桿菌菌屬
克雷佰氏菌屬
腸桿菌菌屬
哈夫尼亞菌屬
沙雷氏菌屬
歐文氏菌屬
愛德華氏菌屬
變形桿菌菌屬
摩根氏菌屬
普羅菲登氏菌屬
耶爾森氏菌屬
各菌屬中的細菌再按種的特性鑒別到種。
沙門氏菌的生化反應:
H2S 靛基質 Ph7.2尿素 KCN 賴氨酸脫羧酶 結果判定
+..... — .....—....... — .........+.......傷寒沙門氏
+.....—..... — ........—..........+ ..亞利桑那,沙門氏菌
—... — ..... — .......— ........ +.. 甲型副傷沙門氏菌
志賀氏菌屬的生化特性
動力 H2S 苯丙氨酸 賴氨酸脫羧酶 枸椽酸鹽 葡銨
..—..—..... — ........— ..........— ........—
符合上述反應時再作群生化反應:
分群 ...........5%乳糖 甘露醇 棉子糖 3%甘油 靛基質
A群痢疾志賀氏菌...—........ —........— .....—......—
B群福氏志賀氏菌 . —....... +........ + ..... — ....+/—
C群鮑氏志賀氏菌 . —.......+......... — .....+ ....+/—
D群宋內氏志賀氏菌 + ........+ ........ + .....D .....—
傷寒副傷寒沙門氏菌的抗原結構
副傷寒甲沙門氏菌 O:2 , 12 H:a;1、5
副傷寒沙乙門氏菌 O:4[5],12 H:b;1、2
副傷寒沙丙門氏菌 O:6,7 H:c;1、5
傷寒沙門氏菌 O:9,12[VI] H:d;/
實在沒辦法打表格,還是自己去查書本吧!習慣的腸道致病菌從含鐵雙糖培養基上結合OF,氧化酶,賴氨酸脫羧酶, 尿素,枸椽酸鹽,半固體等把非發酵菌和孤菌排除後,作沙門氏 菌\志賀氏菌\大腸艾希氏菌\變形桿菌\克雷佰氏菌等作出初步鑒別後,用編碼法作出診斷.請你購腸道菌編碼培養基,附有方法說明書,用起來很方便.我在疾控中心工作,現在我們購進法國生產的全自動化細菌鑒定儀分離到純培養後,把菌液滴入培養管內4-8小時就出結果,20餘種主要生化反應通過電腦軟體給你打出,如果有疑問還會提醒再作幾個生化,把補充結果或血清試驗結果輸入後就准確列印出細菌名稱。