導航:首頁 > 使用方法 > 模擬示波器使用方法

模擬示波器使用方法

發布時間:2023-05-11 15:49:14

❶ 求模擬/數字示波器的使用方法和讀周期,頻率的方法。拜託

數字示波器有直讀功能,按測量鍵/MEASURE,通過屏旁邊的軟按鍵實現所需功能;
模擬示波器也有部分CRT直讀的,如日本岩崎的SS7802,SS7810等,沒有直讀功能的可以這么來用:a,Vp-p(峰谷電壓)=V/div(衰減因數)× div(波形在垂直方向所佔的格數);
b,周期T=t/div(水平掃描速度)×div(一個重復周期在水平方向所佔格數,如峰到峰之間的格數);
c,頻率是周期的倒數,即有:f=1/T。

❷ 示波器操作和使用方法

示波器操作和使用方法

①熒光屏

熒光屏是示波管的顯示部分。屏上水平方向和垂直方向各有多條刻度線,指示出信號波形的電壓和時間之間的關系。根據被測信號在屏幕上占的格數乘以適當的比例常數(V/DIV,TIME/DIV)能得出電壓值與時間值。

②示波管和電源系統

1)電源(Power)-示波器主電源開關。當此開關按下時,電源指示燈亮,表示電源接通。

2)輝度(Intensity)-旋轉此旋鈕能改變光點和掃描線的亮度。觀察低頻信號時可小些,高頻信號時大些。一般不應太亮,以保護熒光屏。

3)聚焦(Focus)-聚焦旋鈕調節電子束截面大小,將掃描線聚焦成最清晰狀態。

4)標尺亮度(Illuminance)-此旋鈕調節熒光屏後面的照明燈亮度。正常室內光線下,照明燈暗一些好。室內光線不足的環境中,可適當調亮照明燈。

③垂直偏轉因數和水平偏轉因數

1)垂直偏轉因數選擇(VOLTS/DIV)和微調

在單位輸入信號作用下,光點在屏幕上偏移的距離稱為偏移靈敏度,這一定義對X軸和Y軸都適用。靈敏度的倒數稱為偏轉因數。垂直靈敏度的單位是為cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏轉因數的單位是V/cm,mV/cm或者V/DIV,mV/DIV。

蹤示波器中每個通道各有一個垂直偏轉因數選擇波段開關。每個波段開關上往往還有一個小旋鈕,微調每檔垂直偏轉因數。將它沿順時針方向旋到底,處於「校準」位置,此時垂直偏轉因數值與波段開關所指示的值一致。逆時針旋轉此旋鈕,能夠微調垂直偏轉因數。

垂直偏轉因數微調後,會造成與波段開關的指示值不一致,這點應引起注意。許多示波器具有垂直擴展功能,當微調旋鈕被拉出時,垂直靈敏度擴大若干倍(偏轉因數缺核縮小若干倍)。

2)時基選擇(TIME/DIV)和微調

時基選擇和微調的使用方法與垂直偏轉因數選擇和微調類似。時基選擇也通過一個波段開關實現,按1、2、5方式把時基分為若干檔。波段開關的指示值代表光點在水平方向移動一個格的時間值。例如在1μS/DIV檔,光點在屏上移動一格代表時間值1μS。

「微調」旋鈕用於時基校準和微調。沿順時針方向旋到底處於校準位置山乎時,屏幕上顯示的時基值與波段開關所示的標稱值一致。逆時針旋轉旋鈕,則對時基微調。

TDS實驗台上有10MHz、1MHz、500kHz、100kHz的時鍾信號,由石英晶體振盪器和分頻器產生,准確度很高,可用來校準示波器的時基。示波器的標准信號源CAL,專門用於校準示波器的時基和垂直偏轉因數。示波器前面板上的位移(Position)旋鈕調節信號波形在熒光屏上的位置。



(2)模擬示波器使用方法擴展閱讀

示波器的應用

示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點(這是傳統的模擬示波器的工作原理)。

在被測信號的作用下,電子束就好像一支筆的筆尖,可以在屏面上描繪出被測信號的瞬時值的變化曲線。利用示波器能觀察各種不同信號幅度隨時間變化的波形曲線,還可以用它測試各種不同的電量,如電壓、電流、頻率、相位差、調幅度等等。

❸ 示波器使用方法(示波器原理結構與使用方法)

示波器是一種使用非常廣泛,且使用相對復雜的儀器。本章從使用的角度介紹一下示波器的原理和使用方法。

一、示波器工作原理

示波器是利用電子示波管的特性,將人眼無法直接觀測的交變電信號轉換成圖像,顯示在熒光屏上以便測量的電子測量儀器。它是觀察數字電路實驗現象、分析實驗中的問題、測量實驗結果必不可少的重要儀器。示波器由示波管和電源系統、同步系統、X軸偏轉系統、Y軸偏轉系統、延遲掃描系統、標准信號源組成。

示波管

陰極射線管(CRT)簡稱示波管,是示波器的核心。它將電信號轉換為光信號。正如圖1所示,電子槍、偏轉系統和熒光屏三部分密封在一個真空玻璃殼內,構成了一個完整的示波管。

圖1 示波管的內部結構和供電圖示

(1)熒光屏

現在的示波管屏面通常是矩形平面,內表面沉積一層磷光材料構成熒光膜。在熒光膜上常又增加一層蒸發鋁膜。高速電子穿過鋁膜,撞擊熒光粉而發光形成亮點。鋁膜具有內反射作用,有利於提高亮點的輝度。鋁膜還有散熱等其他作用。

當電子停止轟擊後,亮點不能立即消失而要保留一段時間。亮點輝度下降到原始值的10%所經過的時間叫做「余輝時間」。余輝時間短於10μs為極短余輝,10μs—1ms為短余輝,1ms—0.1s為中余輝,0.1s-1s為長余輝,大於1s為極長余輝。一般的示波器配備中余輝示波管,高頻示波器選用短余輝,低頻示波器選用長余輝。

由於所用磷光材料不同,熒光屏上能發出不同顏色的光。一般示波器多採用發綠光的示波管,以保護人的眼睛。

(2)電子槍及聚焦

電子槍由燈絲(F)、陰極(K)、柵極(G1)、前加速極(G2)(或稱第二柵極)、第一陽極(A1)和第二陽極(A2)組成。它的作用是發射電子並形成很細的高速電子束。燈絲通電加熱陰極,陰極受熱發射電子。

柵極是一個頂部有小孔的金屬園筒,套在陰極外面。由於柵極電位比陰極低,對陰極發射的電子起控製作用,一般只有運動初速度大的少量電子,在陽極電壓的作用下能穿過柵極小孔,奔向熒光屏。初速度小的電子仍返回陰極。

如果柵極電位過低,則全部電子返回陰極,即管子截止。調節電路中的W1電位器,可以改變柵極電位,控制射向熒光屏的電子流密度,從而達到調節亮點的輝度。第一陽極、第二陽極和前加速極都是與陰極在同一條軸線上的三個金屬圓筒。前加速極G2與A2相連,所加電位比A1高。G2的正電位對陰極電子奔向熒光屏起加速作用。

電子束從陰極奔向熒光屏的過程中,經過兩次聚焦過程。第一次聚焦由K、GG2完成,K、K、GG2叫做示波管的第一電子透鏡。第二次聚焦發生在GAA2區域,調節第二陽極A2的電位,能使電子束正好會聚於熒光屏上的一點,這是第二次聚焦。A1上的電壓叫做聚焦電壓,A1又被叫做聚焦極。有時調節A1電壓仍不能滿足良好聚焦,需微調第二陽極A2的電壓,A2又叫做輔助聚焦極。

(3)偏轉系統

偏轉系統控制電子射線方向,使熒光屏上的光點隨外加信號的變化描繪出被測信號的波形。圖8.1中,YY2和Xl、X2兩對互相垂直的偏轉板組成偏轉系統。Y軸偏轉板在前,X軸偏轉板在後,因此Y軸靈敏度高(被測信號經處理後加到Y軸)。兩對偏轉板分別加上電壓,使兩對偏轉板間各自形成電場,分別控制電子束在垂直方向和水平方向偏轉。

示波管的電源

為使示波管正常工作,對電源供給有一定要求。規定第二陽極與偏轉板之間電位相近,偏轉板的平均電位為零或接近為零。陰極必須工作在負電位上。柵極G1相對陰極為負電位(—30V~—100V),而且可調,以實現輝度調節。第一陽極為正電位(約+100V~+600V),也應可調,用作聚焦調節。

第二陽極與前加速極相連,對陰極為正高壓(約+1000V),相對於地電位的可調范圍為±50V。由於示波管各電極電流很小,可以用公共高壓經電阻分壓器供電。

二、示波器的基本組成

從上一小節可以看出,只要控制X軸偏轉板和Y軸偏轉板上的電壓,就能控制示波管顯示的圖形形狀。我們知道,一個電子信號是時間的函數f(t),它隨時間的變化而變化。因此,只要在示波管的X軸偏轉板上加一個與時間變數成正比的電壓,在y軸加上被測信號(經過比例放大或者縮小),示波管屏幕上就會顯示出被測信 號隨時間變化的圖形。電信號中,在一段時間內與時間變數成正比的信號是鋸齒波。

示波器的基本組成框圖如圖2所示。它由示波管、Y軸系統、X軸系統、Z軸系統和電源等五部分組成。

圖2示波器基本組成框圖

被測信號①接到「Y"輸入端,經Y軸衰減器適當衰減後送至Y1放大器(前置放大),推挽輸出信號②和③。經延遲級延遲Г1時間,到Y2放大器。放大後產生足夠大的信號④和⑤,加到示波管的Y軸偏轉板上。為了在屏幕上顯示出完整的穩定波形,將Y軸的被測信號③引入X軸系統的觸發電路,在引入信號的正(或者負)極性的某一電平值產生觸發脈沖⑥,啟動鋸齒波掃描電路(時基發生器),產生掃描電壓⑦。

由於從觸發到啟動掃描有一時間延遲Г2,為保證Y軸信號到達熒光屏之前X軸開始掃描,Y軸的延遲時間Г1應稍大於X軸的延遲時間Г2。掃描電壓⑦經X軸放大器放大,產生推挽輸出⑨和⑩,加到示波管的X軸偏轉板上。z軸系統用於放大掃描電壓正程,並且變成正向矩形波,送到示波管柵極。這使得在掃描正程顯示的波形有某一固定輝度,而在掃描回程進行抹跡。

以上是示波器的基本工作原理。雙蹤顯示則是利用電子開關將Y軸輸入的兩個不同的被測信號分別顯示在熒光屏上。由於人眼的視覺暫留作用,當轉換頻率高到一定程度後,看到的是兩個穩定的、清晰的信號波形。

示波器中往往有一個精確穩定的方波信號發生器,供校驗示波器用。

三、示波器使用

本節介紹示波器的使用方法。示波器種類、型號很多,功能也不同。數字電路實驗中使用較多的是20MHz或者40MHz的雙蹤示波器。這些示波器用法大同小異。本節不針對某一型號的示波器,只是從概念上介紹示波器在數字電路實驗中的常用功能。

熒光屏

熒光屏是示波管的顯示部分。屏上水平方向和垂直方向各有多條刻度線,指示出信號波形的電壓和時間之間的關系。水平方向指示時間,垂直方向指示電壓。水平方向分為10格,垂直方向分為8格,每格又分為5份。垂直方向標有0%,10%,90%,100%等標志,水平方向標有10%,90%標志,供測直流電平、交流信號幅度、延遲時間等參數使用。根據被測信號在屏幕上占的格數乘以適當的比例常數(V/DIV,TIME/DIV)能得出電壓值與時間值。

示波管和電源系統

(1)電源(Power)

示波器主電源開關。當此開關按下時,電源指示燈亮,表示電源接通。

(2)輝度(Intensity)

旋轉此旋鈕能改變光點和掃描線的亮度。觀察低頻信號時可小些,高頻信號時大些。一般不應太亮,以保護熒光屏。

(3)聚焦(Focus)

聚焦旋鈕調節電子束截面大小,將掃描線聚焦成最清晰狀態。

(4)標尺亮度(Illuminance)

此旋鈕調節熒光屏後面的照明燈亮度。正常室內光線下,照明燈暗一些好。室內光線不足的環境中,可適當調亮照明燈。

垂直偏轉因數和水平偏轉因數

(1)垂直偏轉因數選擇(VOLTS/DIV)和微調

在單位輸入信號作用下,光點在屏幕上偏移的距離稱為偏移靈敏度,這一定義對X軸和Y軸都適用。靈敏度的倒數稱為偏轉因數。垂直靈敏度的單位是為cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏轉因數的單位是V/cm,mV/cm或者V/DIV,mV/DIV。實際上因習慣用法和測量電壓讀數的方便,有時也把偏轉因數當靈敏度。

蹤示波器中每個通道各有一個垂直偏轉因數選擇波段開關。一般按1,2,5方式從5mV/DIV到5V/DIV分為10檔。波段開關指示的值代表熒光屏上垂直方向一格的電壓值。例如波段開關置於1V/DIV檔時,如果屏幕上信號光點移動一格,則代表輸入信號電壓變化1V。

每個波段開關上往往還有一個小旋鈕,微調每檔垂直偏轉因數。將它沿順時針方向旋到底,處於「校準」位置,此時垂直偏轉因數值與波段開關所指示的值一致。逆時針旋轉此旋鈕,能夠微調垂直偏轉因數。垂直偏轉因數微調後,會造成與波段開關的指示值不一致,這點應引起注意。許多示波器具有垂直擴展功能,當微調旋鈕被拉出時,垂直靈敏度擴大若干倍(偏轉因數縮小若干倍)。例如,如果波段開關指示的偏轉因數是1V/DIV,採用×5擴展狀態時,垂直偏轉因數是0.2V/DIV。

在做數字電路實驗時,在屏幕上被測信號的垂直移動距離與+5V信號的垂直移動距離之比常被用於判斷被測信號的電壓值。

(2)時基選擇(TIME/DIV)和微調

時基選擇和微調的使用方法與垂直偏轉因數選擇和微調類似。時基選擇也通過一個波段開關實現,按5方式把時基分為若干檔。波段開關的指示值代表光點在水平方向移動一個格的時間值。例如在1μS/DIV檔,光點在屏上移動一格代表時間值1μS。

「微調」旋鈕用於時基校準和微調。沿順時針方向旋到底處於校準位置時,屏幕上顯示的時基值與波段開關所示的標稱值一致。逆時針旋轉旋鈕,則對時基微調。旋鈕拔出後處於掃描擴展狀態。通常為×10擴展,即水平靈敏度擴大10倍,時基縮小到1/10。例如在2μS/DIV檔,掃描擴展狀態下熒光屏上水平一格代表的時間值等於

2μS×(1/10)=0.2μS

TDS實驗台上有10MHz、1MHz、500kHz、100kHz的時鍾信號,由石英晶體振盪器和分頻器產生,准確度很高,可用來校準示波器的時基。

示波器的標准信號源CAL,專門用於校準示波器的時基和垂直偏轉因數。例如COS5041型示波器標准信號源提供一個VP-P=2V,f=1kHz的方波信號。

示波器前面板上的位移(Position)旋鈕調節信號波形在熒光屏上的位置。旋轉水平位移旋鈕(標有水平雙向箭頭)左右移動信號波形,旋轉垂直位移旋鈕(標有垂直雙向箭頭)上下移動信號波形。

輸入通道和輸入耦合選擇

(1)輸入通道選擇

輸入通道至少有三種選擇方式:通道1(CH1)、通道2(CH2)、雙通道(DUAL)。選擇通道1時,示波器僅顯示通道1的信號。選擇通道2時,示波器僅顯示通道2的信號。選擇雙通道時,示波器同時顯示通道1信號和通道2信號。測試信號時,首先要將示波器的地與被測電路的地連接在一起。

根據輸入通道的選擇,將示波器探頭插到相應通道插座上,示波器探頭上的地與被測電路的地連接在一起,示波器探頭接觸被測點。示波器探頭上有一雙位開關。此開關撥到「×1」位置時,被測信號無衰減送到示波器,從熒光屏上讀出的電壓值是信號的實際電壓值。此開關撥到「×10"位置時,被測信號衰減為1/10,然後送往示波器,從熒光屏上讀出的電壓值乘以10才是信號的實際電壓值。

(2)輸入耦合方式

輸入耦合方式有三種選擇:交流(AC)、地(GND)、直流(DC)。當選擇「地」時,掃描線顯示出「示波器地」在熒光屏上的位置。直流耦合用於測定信號直流絕對值和觀測極低頻信號。交流耦合用於觀測交流和含有直流成分的交流信號。在數字電路實驗中,一般選擇「直流」方式,以便觀測信號的絕對電壓值。

觸發

第一節指出,被測信號從Y軸輸入後,一部分送到示波管的Y軸偏轉板上,驅動光點在熒光屏上按比例沿垂直方向移動;另一部分分流到x軸偏轉系統產生觸發脈沖,觸發掃描發生器,產生重復的鋸齒波電壓加到示波管的X偏轉板上,使光點沿水平方向移動,兩者合一,光點在熒光屏上描繪出的圖形就是被測信號圖形。

由此可知,正確的觸發方式直接影響到示波器的有效操作。為了在熒光屏上得到穩定的、清晰的信號波形,掌握基本的觸發功能及其操作方法是十分重要的。

(1)觸發源(Source)選擇

要使屏幕上顯示穩定的波形,則需將被測信號本身或者與被測信號有一定時間關系的觸發信號加到觸發電路。觸發源選擇確定觸發信號由何處供給。通常有三種觸發源:內觸發(INT)、電源觸發(LINE)、外觸發EXT)。

內觸發使用被測信號作為觸發信號,是經常使用的一種觸發方式。由於觸發信號本身是被測信號的一部分,在屏幕上可以顯示出非常穩定的波形。雙蹤示波器中通道1或者通道2都可以選作觸發信號。

電源觸發使用交流電源頻率信號作為觸發信號。這種方法在測量與交流電源頻率有關的信號時是有效的。特別在測量音頻電路、閘流管的低電平交流噪音時更為有效。

外觸發使用外加信號作為觸發信號,外加信號從外觸發輸入端輸入。外觸發信號與被測信號間應具有周期性的關系。由於被測信號沒有用作觸發信號,所以何時開始掃描與被測信號無關。

正確選擇觸發信號對波形顯示的穩定、清晰有很大關系。例如在數字電路的測量中,對一個簡單的周期信號而言,選擇內觸發可能好一些,而對於一個具有復雜周期的信號,且存在一個與它有周期關系的信號時,選用外觸發可能更好。

(2)觸發耦合(Coupling)方式選擇

觸發信號到觸發電路的耦合方式有多種,目的是為了觸發信號的穩定、可靠。這里介紹常用的幾種。

AC耦合又稱電容耦合。它只允許用觸發信號的交流分量觸發,觸發信號的直流分量被隔斷。通常在不考慮DC分量時使用這種耦合方式,以形成穩定觸發。但是如果觸發信號的頻率小於10Hz,會造成觸發困難。

直流耦合(DC)不隔斷觸發信號的直流分量。當觸發信號的頻率較低或者觸發信號的占空比很大時,使用直流耦合較好。

低頻抑制(LFR)觸發時觸發信號經過高通濾波器加到觸發電路,觸發信號的低頻成分被抑制;高頻抑制(HFR)觸發時,觸發信號通過低通濾波器加到觸發電路,觸發信號的高頻成分被抑制。此外還有用於電視維修的電視同步(TV)觸發。這些觸發耦合方式各有自己的適用范圍,需在使用中去體會。

(3)觸發電平(Level)和觸發極性(Slope)

觸發電平調節又叫同步調節,它使得掃描與被測信號同步。電平調節旋鈕調節觸發信號的觸發電平。一旦觸發信號超過由旋鈕設定的觸發電平時,掃描即被觸發。順時針旋轉旋鈕,觸發電平上升;逆時針旋轉旋鈕,觸發電平下降。當電平旋鈕調到電平鎖定位置時,觸發電平自動保持在觸發信號的幅度之內,不需要電平調節就能產生一個穩定的觸發。當信號波形復雜,用電平旋鈕不能穩定觸發時,用釋抑(HoldOff)旋鈕調節波形的釋抑時間(掃描暫停時間),能使掃描與波形穩定同步。

極性開關用來選擇觸發信號的極性。撥在「+」位置上時,在信號增加的方向上,當觸發信號超過觸發電平時就產生觸發。撥在「-」位置上時,在信號減少的方向上,當觸發信號超過觸發電平時就產生觸發。觸發極性和觸發電平共同決定觸發信號的觸發點。

掃描方式(SweepMode)

掃描有自動(Auto)、常態(Norm)和單次(Single)三種掃描方式。

自動: 當無觸發信號輸入,或者觸發信號頻率低於50Hz時,掃描為自激方式。

常態: 當無觸發信號輸入時,掃描處於准備狀態,沒有掃描線。觸發信號到來後,觸發掃描。

單次: 單次按鈕類似復位開關。單次掃描方式下,按單次按鈕時掃描電路復位,此時准備好(Ready)燈亮。觸發信號到來後產生一次掃描。單次掃描結束後,准備燈滅。單次掃描用於觀測非周期信號或者單次瞬變信號,往往需要對波形拍照。

上面扼要介紹了示波器的基本功能及操作。示波器還有一些更復雜的功能,如延遲掃描、觸發延遲、X-Y工作方式等,這里就不介紹了。示波器入門操作是容易的,真正熟練則要在應用中掌握。值得指出的是,示波器雖然功能較多,但許多情況下用其他儀器、儀表更好。例如,在數字電路實驗中,判斷一個脈寬較窄的單脈沖是 否發生時,用邏輯筆就簡單的多;測量單脈沖脈寬時,用邏輯分析儀更好一些。

四、數字示波器使用必須注意問題

前言

數字示波器因具有波形觸發、存儲、顯示、測量、波形數據分析處理等獨特優點,其使用日益普及。由於數字示波器與模擬示波器之間存在較大的性能差異,如果使用不當,會產生較大的測量誤差,從而影響測試任務。

區分模擬帶寬和數字實時帶寬

帶寬是示波器最重要的指標之一。模擬示波器的帶寬是一個固定的值,而數字示波器的帶寬有模擬帶寬和數字實時帶寬兩種。數字示波器對重復信號採用順序采樣或隨機采樣技術所能達到的最高帶寬為示波器的數字實時帶寬,數字實時帶寬與最高數字化頻率和波形重建技術因子K相關(數字實時帶寬=最高數字化速率/K),一 般並不作為一項指標直接給出。

從兩種帶寬的定義可以看出,模擬帶寬只適合重復周期信號的測量,而數字實時帶寬則同時適合重復信號和單次信號的測量。廠家聲稱示波器的帶寬能達到多少兆,實際上指的是模擬帶寬,數字實時帶寬是要低於這個值的。例如說TEK公司的TES520B的帶寬為500MHz,實際上是指其模擬帶寬為500MHz,而最高數字實時帶寬只能達到400MHz遠低於模擬帶寬。所以在測量單次信號時,一定要參考數字示波器的數字實時帶寬,否則會給測量帶來意想不到的誤差。

有關采樣速率

采樣速率也稱為數字化速率,是指單位時間內,對模擬輸入信號的采樣次數,常以MS/s表示。采樣速率是數字示波器的一項重要指標。

(1)如果采樣速率不夠,容易出現混迭現象

如果示波器的輸人信號為一個100KHz的正弦信號,示波器顯示的信號頻率卻是50KHz,這是怎麼回事呢?這是因為示波器的采樣速率太慢,產生了混迭現象。混迭就是屏幕上顯示的波形頻率低於信號的實際頻率,或者即使示波器上的觸發指示燈已經亮了,而顯示的波形仍不穩定。混迭的產生如圖1所示。

那麼,對於一個未知頻率的波形,如何判斷所顯示的波形是否已經產生混迭呢?可以通過慢慢改變掃速t/div到較快的時基檔,看波形的頻率參數是否急劇改變,如果是,說明波形混迭已經發生;或者晃動的波形在某個較快的時基檔穩定下來,也說明波形混迭已經發生。根據奈奎斯特定理,采樣速率至少高於信號高頻成分的2倍才不會發生混迭,如一個500MHz的信號,至少需要1GS/s的采樣速率。有如下幾種方法可以簡單地防止混迭發生:

a.調整掃速;

b.採用自動設置(Autoset);

c.試著將收集方式切換到包絡方式或峰值檢測方式,因為包絡方式是在多個收集記錄中尋找極值,而峰值檢測方式則是在單個收集記錄中尋找最大最小值,這兩種方法都能檢測到較快的信號變化。

如果示波器有InstaVu採集方式,可以選用,因為這種方式採集波形速度快,用這種方法顯示的波形類似於用模擬示波器顯示的波形。

(2)采樣速率與t/div的關系

每台數字示波器的最大采樣速率是一個定值。但是,在任意一個掃描時間t/div,采樣速率fs由下式給出:

fs=N/(t/div)N為每格采樣點

當采樣點數N為一定值時,fs與t/div成反比,掃速越大,采樣速率越低。

綜上所述,使用數字示波器時,為了避免混迭,掃速檔最好置於掃速較快的位置。如果想要捕捉到瞬息即逝的毛刺,掃速檔則最好置於主掃速較慢的位置。

❹ 使用模擬示波器時,如何用游標功能測量一列正弦波峰-波值

1.測量方法: x0dx0a將兩個水平游標分別與波形的波峰波谷相切,可得到波形的峰峰值,從顯示器左上方讀出 將兩個豎直游標夾住一個周期的波形(即相鄰的兩個波峰或波谷),可測量其周期或頻率,從顯示器左上方讀出。x0dx0a2.測量原理: x0dx0a示波器自動計算兩個水平游標間的電壓差或兩個豎直游標間的時間差。x0dx0a3.測量按鈕x0dx0a(1)△V-△T-1/△T-OFFx0dx0a選擇測量功能,使用此按鈕可開啟或關閉測量功能,可測量的參數有波形的峰峰值,周期以及頻率;該按鈕為循環功能按鈕,可反復按它來選擇需要的功能。x0dx0a(2)C1-C2-TRK x0dx0a選擇游標,水平游標的左側或豎直游標的上方有三角形符號,該符號所在的游標即選旅碰跡中,該按鈕是循環功能按鈕,可反復按它來選擇其中任意一拆並個游標或兩個同時被選中。x0dx0a(3)VARIABLE x0dx0a移動游標,旋轉它可改變游標在屏幕上的位置,該旋鈕同時也是按鈕,按一下再吵世旋轉即可在微調和粗調(FINE/COARSE)間切換 。

❺ 示波器操作和使用方法

示波器操作和使用方法

①熒光屏

熒光屏是示波管的顯示部分。屏上水平方向和垂直方向各有多條刻度線,指示出信號波形的電壓和時間之間的關系。根據被測信號在屏幕上占的格數乘以適當的比例常數(V/DIV,TIME/DIV)能得出電壓值與時間值。

②示波管和電源系統

1)電源(Power)-示波器主電源開關。當此開關按下時,電源指示燈亮,表示電源接通。

2)輝度(Intensity)-旋轉此旋鈕能改變光點和掃描線的亮度。觀察低頻信號時可小些,高頻信號時大些。一般不應太亮,以保護熒光屏。

3)聚焦(Focus)-聚焦旋鈕調節電子束截面大小,將掃描線聚焦成最清晰狀態。

4)標尺亮度(Illuminance)-此旋鈕調節熒光屏後面的照明燈亮度。正常室內光線下,照明燈暗一些好。室內光線不足的環境中,可適當調亮照明燈。

③垂直偏轉因數和水平偏轉因數

1)垂直偏轉因數選擇(VOLTS/DIV)和微調

在單位輸入信號作用下,光點在屏幕上偏移的距離稱為偏移靈敏度,這一定義對X軸和Y軸都適用。靈敏度的倒數稱為偏轉因數。垂直靈敏度的單位是為cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏轉因數的單位是V/cm,mV/cm或者V/DIV,mV/DIV。

蹤示波器中每個通道各有一個垂直偏轉因數選擇波段開關。每個波段開關上往往還有一個小旋鈕,微調每檔垂直偏轉因數。將它沿順時針方向旋到底,處於「校準」位置,此時垂直偏轉因數值與波段開關所指示的值一致。逆時針旋轉此旋鈕,能夠微調垂直偏轉因數。

垂直偏轉因數微調後,會造成與波段開關的指示值不一致,這點應引起注意。許多示波器具有垂直擴展功能,當微調旋鈕被拉出時,垂直靈敏度擴大若干倍(偏轉因數縮小若干倍)。

2)時基選擇(TIME/DIV)和微調

時基選擇和微調的使用方法與垂直偏轉因數選擇和微調類似。時基選擇也通過一個波段開關實現,按1、2、5方式把時基分為若干檔。波段開關的指示值代表光點在水平方向移動一個格的時間值。例如在1μS/DIV檔,光點在屏上移動一格代表時間值1μS。

「微調」旋鈕用於時基校準和微調。沿順時針方向旋到底處於校準位置時,屏幕上顯示的時基值與波段開關所示的標稱值一致。逆時針旋轉旋鈕,則對時基微調。

TDS實驗台上有10MHz、1MHz、500kHz、100kHz的時鍾信號,由石英晶體振盪器和分頻器產生,准確度很高,可用來校準示波器的時基。示波器的標准信號源CAL,專門用於校準示波器的時基和垂直偏轉因數。示波器前面板上的位移(Position)旋鈕調節信號波形在熒光屏上的位置。



(5)模擬示波器使用方法擴展閱讀

示波器的應用

示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點(這是傳統的模擬示波器的工作原理)。

在被測信號的作用下,電子束就好像一支筆的筆尖,可以在屏面上描繪出被測信號的瞬時值的變化曲線。利用示波器能觀察各種不同信號幅度隨時間變化的波形曲線,還可以用它測試各種不同的電量,如電壓、電流、頻率、相位差、調幅度等等。

❻ 示波器的使用方法

使用方法:

1、示波器初次使用前或久藏復用時,有必要進行一次能否工作的簡單檢查和進行掃描電路穩定度、垂直放大電路直流平衡的調整。示波器在進行電壓和時間的定量測試時,還必須進行垂直放大電路增益和水平掃描速度的校準。

(6)模擬示波器使用方法擴展閱讀:

1、示波器是一種用途十分廣泛的電子測量儀器。它能把肉眼看不見的電信號變換成看得見的圖像,便於人們研究各種電現象的變化過程。示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點(這是傳統的模擬示波器的工作原理)。在被測信號的作用下,電子束就好像一支筆的筆尖,可以在屏面上描繪出被測信號的瞬時值的變化曲線。

2、數字示波器則是數據採集,A/D轉換,軟體編程等一系列的技術製造出來的高性能示波器。數字示波器的工作方式是通過模擬轉換器(ADC)把被測電壓轉換為數字信息。數字示波器捕獲的是波形的一系列樣值,並對樣值進行存儲,存儲限度是判斷累計的樣值是否能描繪出波形為止,隨後,數字示波器重構波形。數字示波器可以分為數字存儲示波器(DSO),數字熒光示波器(DPO)和采樣示波器。

❼ 示波器的使用方法有什麼

在使用前要進行一次能否工作的簡單檢查和進行掃描電路穩定度、垂直放大電路直流平衡的調整,檢查完成後,首先根據被測信號頻率的高低選擇Y軸耦合方式,再根據被測信號的峰值選擇Y軸靈敏度,接著選擇觸發信號來源與極性,然後根據被測信號周期選擇掃描速度,最後輸入被測信號即可。
拓展資料:
一、示波器是一種用途十分廣泛的電子測量儀器。它能把肉眼看不見的電信號變換成看得見的圖像,便於人們研究各種電現象的變化過程。
二、示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點(這是傳統的模擬示波器的工作原理)。在被測信號的作用下,電子束就好像一支筆的筆尖,可以在屏面上描繪出被測信號的瞬時值的變化曲線。利用示波器能觀察各種不同信號幅度隨時間變化的波形曲線,還可以用它測試各種不同的電量,如電壓、電流、頻率、相位差、調幅度等等。
三、使用步驟
(1)先預調:反時針旋轉輝度旋鈕到底,豎直和水平位移轉到中間,衰減置於最高檔,掃描置於「外X檔」;
(2)再開電源,指示燈亮後等待一兩分鍾進行預熱後再進行相關的操作;
(3)先調輝度,再調聚焦,進而調水平和豎直位移使亮點在中心合適區域;
(4)調掃描、掃描微調和X增益,觀察掃描;
(5)把外X檔拔開到掃描范圍檔合適處,觀察機內提供的豎直方向按正餘弦規律變化的電壓波形;
(6)把待研究的外加電壓由Y輸入和地間接入示波器,調節各檔到合適位置,可觀察到此電壓的波形(與時間變化的圖象)(調同步極性開關可使圖象的起點從正半周或負半周開始;
(7)如欲觀察亮斑(如外加一直流電壓時)的豎直偏移,可把掃描調節到「外X」檔。
(不同的示波器可能操作方法不同)

❽ 示波器的正確使用方法是什麼

示波器是一種用途十分廣泛的電子測量儀器。它能把肉眼看不見的電訊號變換成看得見的影象,便於人們研究各種電現象的變化過程。下面是我帶來的關於示波器的正確用法的內容,歡迎大家閱讀!

示波器的用法
步驟一:選擇Y軸耦合方式。根據被測電訊號頻率,將Y軸輸入耦合方式選擇「AC-地-DC」開關置於AC或DC;

步驟二:選擇Y軸靈敏度。根據被測電訊號的峰峰值,將Y軸靈敏度選擇「V/div」開關置於適當檔級在實際使用過程中,若無需讀取被測電壓值,則只需適當調節Y軸靈敏度微調旋鈕,使得螢幕上顯示所需高度波形即可;

步驟三:選擇觸發訊號來源與極性。通常將觸發訊號極性開關置於「+」或「-」檔位上;

步驟四:選擇掃描速度。根據被測訊號周期,將將X軸掃描速度「t/div」開關置於適當檔級在實際使用過程中,若無需讀取被測時間值,則只需適當調節掃描速度「t/div」微調旋鈕,使得螢幕上顯示所需周期數波形即可;

步驟五:輸入被測訊號。被測訊號由探頭衰減後通過Y軸輸入端輸入示波器。
使用示波器的注意事項
1、通用示波器通過調節亮度和聚焦旋鈕使光點直徑最小以使波形清晰,減小測試誤差;不要使光點停留在一點不動,否則電子束轟擊一點宜在熒光屏上形成暗斑,損壞熒光屏。

2、測量系統- 例如示波器、訊號源;印表機、計算機等裝置等。被測褲前電子裝置- 例如儀器、電子部件、電路板、被測裝置供電電源等裝置接地線必須與公共地大地相連。

3、TDS200/TDS1000/TDS2000 系列數字示波器配合探頭使用時,只能測量被測訊號- 訊號地就是大地,訊號端輸出幅度小於300V CAT II訊號的波形。絕對不能測量市電AC220V 或與市電AC220V 不能隔離的電子裝置的浮地訊號。浮地是不能接大地的,否則造成儀器損壞,如測試電磁爐。

4、通用示波器的外殼,訊號輸入端BNC 插座金屬外圈,探頭接地線,AC220V 電源插座接地線端都是相通的。如儀器使用時不接大地線,直接用探頭對浮地訊號測量,則儀器相對大地會產生電位差;電壓值等於探頭接地線接觸被測裝置點與大地之間的電位差。這將對儀器操作人員、示波器、被測電子裝置帶來嚴重安全危險。

5、 使用者如須要測量開關電源開關電源初級,控制電路 、UPS不間斷電源、電子整流器、胡鍵清節能燈、變頻器等型別產品或其它與市電AC220V 不能隔離的電子裝置進行浮地訊號測試時,必使用DP100高壓隔離差分探頭。

示波器使用中的其他注意事項

1熱電子儀器一般要避免頻繁開機、關機,示波器也是這樣。

2如果發現波形受外界干擾,可將示波器外殼接地、

3「Y輸入」的電壓不可太高,以免損壞儀器,在最大衰減時也不能超過400 V、「Y輸入」導線懸空時,受外界電磁干擾出現干擾波形,應避免出現這種現象。

4關機前先將輝度調節旋鈕沿逆時針方向轉到底,使亮度減到最小,然後再斷開電源開關、

5在觀察熒屏上的亮斑並進行調節時,亮斑的亮度要適中,不能過亮。

示波器分為萬用示波表,數字示波器,模擬示波器,虛擬示波器,任意波形示波器,手持示波表,數字熒光示波器,資料採集示波器。
示波器的分類
按照訊號亮宏的不同分類

模擬示波器採用的是類比電路示波管,其基礎是電子槍電子槍向螢幕發射電子,發射的電子經聚焦形成電子束,並打到螢幕上。螢幕的內表面塗有熒光物質,這樣電子束打中的點就會發出光來。

數字示波器則是資料採集,A/D轉換,軟體程式設計等一系列的技術製造出來的高效能示波器。數字示波器的工作方式是通過模擬轉換器ADC把被測電壓轉換為數字資訊。數字示波器捕獲的是波形的一系列樣值,並對樣值進行儲存,儲存限度是判斷累計的樣值是否能描繪出波形為止,隨後,數字示波器重構波形。數字示波器可以分為數字儲存示波器DSO,數字熒光示波器DPO和取樣示波器。

模擬示波器要提高頻寬,需要示波管、垂直放大和水平掃描全面推進。數字示波器要改善頻寬只需要提高前端的A/D轉換器的效能,對示波管和掃描電路沒有特殊要求。加上數字示波管能充分利用記憶、儲存和處理,以及多種觸發和超前觸發能力。廿世紀八十年代數字示波器異軍突起,成果累累,大有全面取代模擬示波器之勢,模擬示波器的確從前台退到後台。

按照結構和效能不同分類

①普通示波器。電路結構簡單,頻帶較窄,掃描線性差,僅用於觀察波形。

②多用示波器。頻帶較寬,掃描線性好,能對直流、低頻、高頻、超高頻訊號和脈沖訊號進行定量測試。藉助幅度校準器和時間校準器,測量的准確度可達±5%。

③多線示波器。採用多束示波管,能在熒光屏上同時顯示兩個以上同頻訊號的波形,沒有時差,時序關系准確。

④多蹤示波器。具有電子開關和門控電路的結構,可在單束示波管的熒光屏上同時顯示兩個以上同頻訊號的波形。但存在時差,時序關系不準確。

⑤取樣示波器。採用取樣技術將高頻訊號轉換成模擬低頻訊號進行顯示,有效頻帶可達GHz級。

⑥記憶示波器。採用儲存示波管或數字儲存技術,將單次電訊號瞬變過程、非周期現象和超低頻訊號長時間保留在示波管的熒光屏上或儲存在電路中,以供重復測試。

⑦數字示波器。內部帶有微處理器,外部裝有數字顯示器,有的產品在示波管熒光屏上既可顯示波形,又可顯示字元。被測訊號經模一數變換器A/D變換器送入資料儲存器,通過鍵盤操作,可對捕獲的波形引數的資料,進行加、減、乘、除、求平均值、求平方根值、求均方根值等的運算,並顯示出答案數字。

❾ 示波器的使用方法

示波器是一種使用非常廣泛,且使用相對復雜的儀器。下面由我整理了幾種,希望對大家有所幫助。

1、顯示部分

顯示部分包括電源開關、電源指示燈、輝度調整光點亮度、聚焦調整光點或波形清晰度、輔助聚焦配合「聚焦」旋鈕調節清晰度、標尺亮度調節座標片上刻度線亮度、尋跡 當按鍵向下按時,使偏離熒光屏的光點回到顯辯行示區域,從而尋到光點位置和標准訊號輸出1kHz、1V方波校準訊號由此引出,加到Y軸輸入端,用以校準Y軸輸入靈敏度和X軸掃描速盯灶蔽度。

2、垂直Y軸部分

垂直Y軸部分包括顯示方式選擇開關用以轉換兩個Y軸前置放大器YA與YB 工作狀態、「DC-地-AC」Y軸輸入選擇開關用以選擇被測訊號接至輸入端的耦合方式、「微調V/div」靈敏度選擇開關及微調裝置、「↑↓」Y軸位移電位器用以調節波形的垂直位置、「極性、拉YA 」YA 通道的極性轉換按拉式開關、「內觸發、拉YB 」觸發源選擇開關和Y軸輸入插座。

3、水平X軸部分

水平X軸部分包括「t/div」掃描速度選擇開關及微調旋鈕、「擴充套件、拉×10」掃描速度擴充套件裝置、「→←」 X軸位置調節旋鈕、「外觸發、X外接」插座、「觸發電平」旋鈕、「穩定性」觸發穩定性微調旋鈕用以改變掃描電路的工作狀態、「內、外」觸發源選擇開關、「AC-ACH-DC」觸發耦合方式開關、「高頻-常態-自動」觸發方式開關和「+、-」觸發極性開關。

下面具體講解使用示波器觀察電訊號波形的具體步驟:

步驟一:選擇Y軸耦合方式。根據被測電訊號頻率,將Y軸輸入耦合方式選擇「AC-地-DC」開關置於AC或DC;

步驟二:選擇Y軸靈敏度。根據被測電訊號的峰峰值,將Y軸靈敏度選擇「V/div」開關置於適當檔級在實際使用過程中,若無需讀取被測電壓值,則只需適當調節Y軸靈敏度微調旋鈕,使得螢幕上顯示所需高度波形即可;

步驟三:選擇觸發訊號來源與極性。通常將觸發訊號極性開關置於「+」或「-」檔位上;

步驟四:選擇掃描速度。根據被測訊號周期,將將X軸掃描速度「t/div」開關置於適當檔級在實際使用過程中,若無需讀取被測時間值,則只需適當調節掃描速度「t/div」微調旋鈕,使得螢幕上顯示所需周期數波形即可;

步驟五:輸入被測訊號。被測訊號由探頭衰減後通過Y軸輸入端輸入示波器。

1.顯示系統

2.電源開關

3.亮度控制開關

4.聚焦調節開關

5.掃描光極限水平調節器

6.從左往右依次是;校準訊號輸出端、輸出一千赫茲、0.6伏的方波

7.垂直系統

8.垂直位移調節旋鈕

9.垂直靈敏度選擇開關

10.水平系統

11.水平位移調扭

12.水平位移微調扭

13.水平掃描因素掃描選擇開關 示波器相關知識拓展:

示波器能把肉眼看不見的電訊號變換成看得見的影象,便於人們研究各種電現象的變化過程。示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點這是傳統的模擬示波器的工作原理。在被測訊號的作用下,電子束就好像一支筆的筆尖,可以在屏面上描繪出被測訊號的瞬時值的變化曲線。利用示波器能觀察各種不同訊號幅度隨時間變化的波形曲線,還可以用它測試各種不同的電量,如電壓凱州、電流、頻率、相位差、調幅度等等。

按照結構和效能不同分類

①普通示波器。電路結構簡單,頻帶較窄,掃描線性差,僅用於觀察波形。

②多用示波器。頻帶較寬,掃描線性好,能對直流、低頻、高頻、超高頻訊號和脈沖訊號進行定量測試。藉助幅度校準器和時間校準器,測量的准確度可達±5%。

③多線示波器。採用多束示波管,能在熒光屏上同時顯示兩個以上同頻訊號的波形,沒有時差,時序關系准確。

④多蹤示波器。具有電子開關和門控電路的結構,可在單束示波管的熒光屏上同時顯示兩個以上同頻訊號的波形。但存在時差,時序關系不準確。

⑤取樣示波器。採用取樣技術將高頻訊號轉換成模擬低頻訊號進行顯示,有效頻帶可達GHz級。

⑥記憶示波器。採用儲存示波管或數字儲存技術,將單次電訊號瞬變過程、非周期現象和超低頻訊號長時間保留在示波管的熒光屏上或儲存在電路中,以供重復測試。⑦數字示波器。內部帶有微處理器,外部裝有數字顯示器,有的產品在示波管熒光屏上既可顯示波形,又可顯示字元。被測訊號經模一數變換器A/D變換器送入資料儲存器,通過鍵盤操作,可對捕獲的波形引數的資料,進行加、減、乘、除、求平均值、求平方根值、求均方根值等的運算,並顯示出答案數字。

❿ 示波器如何使用

示波器的使用方法。示波器種類、型號很多,功能也不同。數字電路實驗中使用較多的是20MHz或者40MHz的雙蹤示波器。這些示波器用法大同小異。本節不針對某一型號的示波器,只是從概念上介紹示波器在數字電路實驗中的常用功能。
2.1 熒光屏
熒光屏是示波管的顯示部分。屏上水平方向和垂直方向各有多條刻度線,指示出信號波形的電壓和時間之間的關系。水平方向指示時間,垂直方向指示電壓。水平方向分為10格,垂直方向分為8格,每格又分為5份。垂直方向標有0%,10%,90%,100%等標志,水平方向標有10%,90%標志,供測直流電平、交流信號幅度、延遲時間等參數使用。根據被測信號在屏幕上占的格數乘以適當的比例常數(V/DIV,TIME/DIV)能得出電壓值與時間值。
2.2 示波管和電源系統
1.電源(Power)
示波器主電源開關。當此開關按下時,電源指示燈亮,表示電源接通。
2.輝度(Intensity)
旋轉此旋鈕能改變光點和掃描線的亮度。觀察低頻信號時可小些,高頻信號時大些。
一般不應太亮,以保護熒光屏。
3.聚焦(Focus)
聚焦旋鈕調節電子束截面大小,將掃描線聚焦成最清晰狀態。
4.標尺亮度(Illuminance)
此旋鈕調節熒光屏後面的照明燈亮度。正常室內光線下,照明燈暗一些好。室內光線不足的環境中,可適當調亮照明燈。
2.3 垂直偏轉因數和水平偏轉因數
1.垂直偏轉因數選擇(VOLTS/DIV)和微調
在單位輸入信號作用下,光點在屏幕上偏移的距離稱為偏移靈敏度,這一定義對X軸和Y軸都適用。靈敏度的倒數稱為偏轉因數。垂直靈敏度的單位是為cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏轉因數的單位是V/cm,mV/cm或者V/DIV,mV/DIV。實際上因習慣用法和測量電壓讀數的方便,有時也把偏轉因數當靈敏度。
蹤示波器中每個通道各有一個垂直偏轉因數選擇波段開關。一般按1,2,5方式從 5mV/DIV到5V/DIV分為10檔。波段開關指示的值代表熒光屏上垂直方向一格的電壓值。例如波段開關置於1V/DIV檔時,如果屏幕上信號光點移動一格,則代表輸入信號電壓變化1V。
每個波段開關上往往還有一個小旋鈕,微調每檔垂直偏轉因數。將它沿順時針方向旋到底,處於「校準」位置,此時垂直偏轉因數值與波段開關所指示的值一致。逆時針旋轉此旋鈕,能夠微調垂直偏轉因數。垂直偏轉因數微調後,會造成與波段開關的指示值不一致,這點應引起注意。許多示波器具有垂直擴展功能,當微調旋鈕被拉出時,垂直靈敏度擴大若干倍(偏轉因數縮小若干倍)。例如,如果波段開關指示的偏轉因數是1V/DIV,採用×5擴展狀態時,垂直偏轉因數是0.2

閱讀全文

與模擬示波器使用方法相關的資料

熱點內容
海螺吃了頭暈有什麼方法解決 瀏覽:808
如何寫通項方法 瀏覽:670
小學生如何寫作業快的方法 瀏覽:341
衛星手機夜景拍攝方法 瀏覽:93
怎麼做瘦肚子最快方法 瀏覽:7
考場查詞典技巧和方法 瀏覽:637
魔芋水的製作方法視頻 瀏覽:491
同分母分數加減法教學方法分析 瀏覽:321
平焊單面焊雙面成型的教學方法 瀏覽:600
查詢電腦圖片有多張的方法 瀏覽:429
兒童口腔炎的治療方法 瀏覽:340
七星漂走漂解決方法 瀏覽:978
醫療垃圾微生物殺滅率檢測方法 瀏覽:124
漢服打結方法圖片 瀏覽:259
花繩最簡便的方法怎麼樣玩 瀏覽:521
宮頸糜爛最好的治療方法 瀏覽:695
檢測大分子蛋白質的方法 瀏覽:668
如何創建新的教學方法 瀏覽:897
痘印快速消除的方法 瀏覽:907
用白醋美白的正確方法 瀏覽:209