㈠ 平面向量計算方法
向量的運算
加法運算
向量加法的定義
已知向量a、b,在平面上任意取一點A,作AB=a,BC=b,再作向量AC,則向量AC叫做a與b的和,記做a+b,即a+b=AB+BC=AC
AB+BC=AC,這種計演算法則叫做向量加法的三角形法則。(首尾相連,連接首尾,指向終點) 同樣,作AB=a,且AD=BC,再作平行AD的BC=b,連接DC,因為AD∥BC,且AD=BC,所以四邊形ABCD為平行四邊形,AC叫做a與b的和,表示為:AC=a+b.這種方法叫做向量加法的平行四邊形法則。(共起點,對角連)。
已知兩個從同一點O出發的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計演算法則叫做向量加法的平行四邊形法則。 對於零向量和任意向量a,有:0+a=a+0=a。
|a-b|≤|a+b|≤|a|+|b|。
向量的加法滿足所有的加法運算定律。
減法運算
AB-AC=CB,這種計演算法則叫做向量減法的三角形法則。(共起點,連終點,方向指向被減向量)
與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
數乘運算
實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ > 0時,λa的方向和a的方向相同,當λ < 0時,λa的方向和a的方向相反,當λ = 0時,λa= 0。
設λ、μ是實數,那麼:(1)(λμ)a= λ(μa)(2)(λ + μ)a= λa+ μa(3)λ(a± b) = λa± λb(4)(-λ)a=-(λa) = λ(-a)。
向量的加法運算、減法運算、數乘運算統稱線性運算。
坐標運算
已知a=(x1,y1),b=(x2,y2)
則a+b=(x1i+y1j)+(x2i+y2j)
=(x1+x2)i+(y1+y2)j
即 a+b=(x1+x2,y1+y2)。
同理可得 a-b=(x1-x2,y1-y2)。
這就是說,兩個向量和與差的坐標分別等於這兩個向量相應坐標的和與差。
由此可以得到:
一個向量的坐標等於表示此向量的有向線段的終點坐標減去始點的坐標。
根據上面的結論又可得
若a=(x,y),則λa=(λx,λy)
這就是說,實數與向量的積的坐標等於用這個實數乘原來向量的相應坐標。
向量的數量積
向量數量積定義:
(1)向量a與向量b的夾角:已知兩個非零向量,過O點做向量OA=a,向量OB=b,則角AOB=θ叫做向量a與b的夾角。
(2)已知兩個非零向量a、b,那麼|a||b|cos θ叫做a與b的數量積或內積,記作a·b,θ是a與b的夾角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。
a·b的幾何意義:數量積a·b等於a的長度|a|與b在a的方向上的投影|b|cos θ的乘積。
兩個向量的數量積等於它們對應坐標的乘積的和。即:若a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2 向量的數量積的性質
(1)a·a=∣a∣^2≥0
(2)a·b=b·a
(3)k(ab)=(ka)b=a(kb)
(4)a·(b+c)=a·b+a·c
(5)a·b=0<=>a⊥b
(6)a=kb<=>a//b
(7)e1·e2=|e1||e2|cosθ=cosθ
向量的混合積
定義:給定空間三向量a、b、c,向量a、b的向量積a×b,再和向量c作數量積(a×b)·c,所得的數叫做三向量a、b、c的混合積,記作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c
混合積具有下列性質:
1、三個不共面向量a、b、c的混合積的絕對值等於以a、b、c為棱的平行六面體的體積V,並且當a、b、c構成右手系時混合積是正數;當a、b、c構成左手系時,混合積是負數,即(abc)=εV(當a、b、c構成右手系時ε=1;當a、b、c構成左手系時ε=-1)
2、上性質的推論:三向量a、b、c共面的充要條件是(abc)=0
3、(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb)
4、(a×b)·c=a·(b×c)
㈡ 數學中關於平面向量的計算方法有哪些
平面向量主要注意加減兩種計算方式,弄清楚加法跟減法的計演算法則,做題的時候把圖給畫出來,這樣可以很快的做出題目。畫圖是很重要的一個計算步驟,沒畫圖,很多東西我們都「看」不到,只有把圖畫出來,我們才可以更快的看出裡面的玄機
㈢ 平面向量平行和垂直的判定方法!!
假設向量a//向量b
a=(x1,y1),b=(x2,y2)
則有a=λb
(x1,y1)=(λx2,λy2
即x1/x2=y1/y2=λ
變形得x1y2-x2y1=0
下面證明垂直,垂直很簡單,用數量積假設向量a⊥向量b,a=(x1,y1),b=(x2,y2)
∴向量a·向量b=0
∴x1x2+y1y2=0
(3)平面向量最常用的方法擴展閱讀:
已知兩個非零向量a、b,那麼a·b=|a||b|cosθ(θ是a與b的夾角)叫做a與b的數量積或內積,記作a·b。零向量與任意向量的數量積為0。數量積a·b的幾何意義是:a的長度|a|與b在a的方向上的投影|b|cos θ的乘積。
兩個向量的數量積等於它們對應坐標的乘積的和。即:若a=(x1,y1),b=(x2,y2),則a·b=x1·x2+y1·y2
數量積具有以下性質:
a·a=|a|2
a·b=b·a
a·(b+c)=a·b+a·c
a⊥b=0=>a·b=0
a·b=0=>a⊥b=0(a≠0,b≠0)
a=kb<=>a//b
|a·b|≤|a|·|b|
e1·e2=|e1||e2|cosθ
平行向量(共線向量):兩個方向相同或相反的非零向量叫做平行向量或共線向量。
單位向量:模等於1個單位長度的向量叫做單位向量,通常用e表示。
三個不共面向量a、b、c的混合積的絕對值等於以a、b、c為棱的平行六面體的體積V,並且當a、b、c構成右手系時混合積是正數;當a、b、c構成左手系時,混合積是負數,即(abc)=εV(當a、b、c構成右手系時ε=1;當a、b、c構成左手系時ε=-1)
㈣ 求問 向量的表示方法 有哪幾種
1、代數表示:一般印刷用黑體小寫字母α、β、γ … 或a、b、c … 等來表示,手寫用在a、b、c…等字母上加一箭頭表示。
2、幾何表示:向量可以用有向線段來表示.有向線段的長度表示向量的大小,箭頭所指的方向表示向量的方向。
(若規定線段AB的端點A為起點,B為終點,則線段就具有了從起點A到終點B的方向和長度.這種具有方向和長度的線段叫做有向線段.)
3、坐標表示:
(1)在平面直角坐標系中,分別取與x軸、y軸方向相同的兩個單位向量i,j作為一組基底.a為平面直角坐標系內的任意向量,以坐標原點O為起點作向量OP=a。
由平面向量基本定理知,有且只有一對實數(x,y),使得 a=向量OP=xi+yj,因此把實數對(x,y)叫做向量a的坐標,記作a=(x,y).這就是向量a的坐標表示.其中(x,y)就是點P的坐標.向量OP稱為點P的位置向量。
(2) 在立體三維坐標系中,分別取與x軸、y軸,z軸方向相同的3個單位向量i,j,k作為一組基底.若a為該坐標系內的任意向量,以坐標原點O為起點作向量OP=a。
由空間基本定理知,有且只有一組實數(x,y,z),使得 a=向量OP=xi+yj+zk,因此把實數對(x,y,k)叫做向量a的坐標,記作a=(x,y,z).這就是向量a的坐標表示.其中(x,y,k),也就是點P的坐標.向量OP稱為點P的位置向量。
(3) 當然,對於空間多維向量,可以通過類推得到 。
註:
向量的定義:
在數學中,向量(也稱為歐幾里得向量、幾何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示為帶箭頭的線段。箭頭所指:代表向量的方向;線段長度:代表向量的大小。與向量對應的只有大小,沒有方向的量叫做數量(物理學中稱標量)。
向量的記法:印刷體記作粗體的字母(如a、b、u、v),書寫時在字母頂上加一小箭頭「→」。 如果給定向量的起點(A)和終點(B),可將向量記作AB(並於頂上加→)。在空間直角坐標系中,也能把向量以數對形式表示,例如Oxy平面中(2,3)是一向量。
在物理學和工程學中,幾何向量更常被稱為矢量。許多物理量都是矢量,比如一個物體的位移,球撞向牆而對其施加的力等等。與之相對的是標量,即只有大小而沒有方向的量。一些與向量有關的定義亦與物理概念有密切的聯系,例如向量勢對應於物理中的勢能。
幾何向量的概念在線性代數中經由抽象化,得到更一般的向量概念。此處向量定義為向量空間的元素,要注意這些抽象意義上的向量不一定以數對表示,大小和方向的概念亦不一定適用。因此,平日閱讀時需按照語境來區分文中所說的"向量"是哪一種概念。
不過,依然可以找出一個向量空間的基來設置坐標系,也可以透過選取恰當的定義,在向量空間上介定范數和內積,這允許我們把抽象意義上的向量類比為具體的幾何向量。
(4)平面向量最常用的方法擴展閱讀:
向量的運演算法則:(向量的加法滿足平行四邊形法則和三角形法則)
1、向量的加法
OB+OA=OC.
a+b=(x+x',y+y').
a+0=0+a=a.
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c).
2、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0.0的反向量為0
AB-AC=CB.
a=(x,y)b=(x',y') 則a-b=(x-x',y-y').
3、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣.
當λ>0時,λa與a同方向;
向量的數乘法則:
當λ<0時,λa與a反方向;
向量的數乘當λ=0時,λa=0,方向任意.
當a=0時,對於任意實數λ,都有λa=0.
註:按定義知,如果λa=0,那麼λ=0或a=0.
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮.
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或××反方向(λ<0)上縮短為原來的∣λ∣倍.
註:數與向量的乘法滿足下面的運算律 :
①結合律:(λa)·b=λ(a·b)=(a·λb).
②向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
③數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
④數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b.② 如果a≠0且λa=μa,那麼λ=μ.
4、向量的數量積
定義:已知兩個非零向量a,b.作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π
定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b.若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣.
向量的數量積的坐標表示:a·b=x·x'+y·y'.
向量的數量積的運算律 :
①a·b=b·a(交換律);
②(λa)·b=λ(a·b)(關於數乘法的結合律);
③(a+b)·c=a·c+b·c(分配律);
向量的數量積的性質 :
a·a=|a|的平方.
a⊥b 〈=〉a·b=0.
|a·b|≤|a|·|b|.(該公式證明如下:|a·b|=|a|·|b|·|cosα| 因為0≤|cosα|≤1,所以|a·b|≤|a|·|b|)
註:向量的數量積與實數運算的主要不同點 :
①向量的數量積不滿足結合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.
②向量的數量積不滿足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.
③|a·b|≠|a|·|b|
④由 |a|=|b| ,推不出 a=b或a=-b.
⑤向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b(這里並不是乘號,只是一種表示方法,與「·」不同,也可記做「∧」)。
若a、b不共線,則a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系.若a、b共線,則a×b=0。
向量的向量積性質:
∣a×b∣是以a和b為邊的平行四邊形面積.
a×a=0.
a垂直b〈=〉a×b=|a||b|.
向量的向量積運算律 :
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
a×(b+c)=a×b+a×c.
註:向量沒有除法,「向量AB/向量CD」是沒有意義的。