1. 常用數據校驗方法有哪些
奇偶校驗」。內存中最小的單位是比特,也稱為「位」,位有隻有兩種狀態分別以1和0來標示,每8個連續的比特叫做一個位元組(byte)。不帶奇偶校驗的內存每個位元組只有8位,如果其某一位存儲了錯誤的值,就會導致其存儲的相應數據發生變化,進而導致應用程序發生錯誤。而奇偶校驗就是在每一位元組(8位)之外又增加了一位作為錯誤檢測位。在某位元組中存儲數據之後,在其8個位上存儲的數據是固定的,因為位只能有兩種狀態1或0,假設存儲的數據用位標示為1、1、 1、0、0、1、0、1,那麼把每個位相加(1+1+1+0+0+1+0+1=5),結果是奇數,那麼在校驗位定義為1,反之為0。當CPU讀取存儲的數據時,它會再次把前8位中存儲的數據相加,計算結果是否與校驗位相一致。從而一定程度上能檢測出內存錯誤,奇偶校驗只能檢測出錯誤而無法對其進行修正,同時雖然雙位同時發生錯誤的概率相當低,但奇偶校驗卻無法檢測出雙位錯誤。
MD5的全稱是Message-Digest Algorithm 5,在90年代初由MIT的計算機科學實驗室和RSA Data Security Inc 發明,由 MD2/MD3/MD4 發展而來的。MD5的實際應用是對一段Message(位元組串)產生fingerprint(指紋),可以防止被「篡改」。舉個例子,天天安全網提供下載的MD5校驗值軟體WinMD5.zip,其MD5值是,但你下載該軟體後計算MD5 發現其值卻是,那說明該ZIP已經被他人修改過,那還用不用該軟體那你可自己琢磨著看啦。
MD5廣泛用於加密和解密技術上,在很多操作系統中,用戶的密碼是以MD5值(或類似的其它演算法)的方式保存的,用戶Login的時候,系統是把用戶輸入的密碼計算成MD5值,然後再去和系統中保存的MD5值進行比較,來驗證該用戶的合法性。
MD5校驗值軟體WinMD5.zip漢化版,使用極其簡單,運行該軟體後,把需要計算MD5值的文件用滑鼠拖到正在處理的框里邊,下面將直接顯示其MD5值以及所測試的文件名稱,可以保留多個文件測試的MD5值,選定所需要復制的MD5值,用CTRL+C就可以復制到其它地方了。
參考資料:http://..com/question/3933661.html
CRC演算法原理及C語言實現 -來自(我愛單片機)
摘 要 本文從理論上推導出CRC演算法實現原理,給出三種分別適應不同計算機或微控制器硬體環境的C語言程序。讀者更能根據本演算法原理,用不同的語言編寫出獨特風格更加實用的CRC計算程序。
關鍵詞 CRC 演算法 C語言
1 引言
循環冗餘碼CRC檢驗技術廣泛應用於測控及通信領域。CRC計算可以靠專用的硬體來實現,但是對於低成本的微控制器系統,在沒有硬體支持下實現CRC檢驗,關鍵的問題就是如何通過軟體來完成CRC計算,也就是CRC演算法的問題。
這里將提供三種演算法,它們稍有不同,一種適用於程序空間十分苛刻但CRC計算速度要求不高的微控制器系統,另一種適用於程序空間較大且CRC計算速度要求較高的計算機或微控制器系統,最後一種是適用於程序空間不太大,且CRC計算速度又不可以太慢的微控制器系統。
2 CRC簡介
CRC 校驗的基本思想是利用線性編碼理論,在發送端根據要傳送的k位二進制碼序列,以一定的規則產生一個校驗用的監督碼(既CRC碼)r位,並附在信息後邊,構成一個新的二進制碼序列數共(k+r)位,最後發送出去。在接收端,則根據信息碼和CRC碼之間所遵循的規則進行檢驗,以確定傳送中是否出錯。
16位的CRC碼產生的規則是先將要發送的二進制序列數左移16位(既乘以 )後,再除以一個多項式,最後所得到的余數既是CRC碼,如式(2-1)式所示,其中B(X)表示n位的二進制序列數,G(X)為多項式,Q(X)為整數,R(X)是余數(既CRC碼)。
(2-1)
求CRC 碼所採用模2加減運演算法則,既是不帶進位和借位的按位加減,這種加減運算實際上就是邏輯上的異或運算,加法和減法等價,乘法和除法運算與普通代數式的乘除法運算是一樣,符合同樣的規律。生成CRC碼的多項式如下,其中CRC-16和CRC-CCITT產生16位的CRC碼,而CRC-32則產生的是32位的CRC碼。本文不討論32位的CRC演算法,有興趣的朋友可以根據本文的思路自己去推導計算方法。
CRC-16:(美國二進制同步系統中採用)
CRC-CCITT:(由歐洲CCITT推薦)
CRC-32:
接收方將接收到的二進制序列數(包括信息碼和CRC碼)除以多項式,如果余數為0,則說明傳輸中無錯誤發生,否則說明傳輸有誤,關於其原理這里不再多述。用軟體計算CRC碼時,接收方可以將接收到的信息碼求CRC碼,比較結果和接收到的CRC碼是否相同。
3 按位計算CRC
對於一個二進制序列數可以表示為式(3-1):
(3-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(3-2)所示:
(3-2)
可以設: (3-3)
其中 為整數, 為16位二進制余數。將式(3-3)代入式(3-2)得:
(3-4)
再設: (3-5)
其中 為整數, 為16位二進制余數,將式(3-5)代入式(3-4),如上類推,最後得到:
(3-6)
根據CRC的定義,很顯然,十六位二進制數 既是我們要求的CRC碼。
式(3 -5)是編程計算CRC的關鍵,它說明計算本位後的CRC碼等於上一位CRC碼乘以2後除以多項式,所得的余數再加上本位值除以多項式所得的余數。由此不難理解下面求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,0x1021與多項式有關。
[code]
unsigned int cal_crc(unsigned char *ptr, unsigned char len) {
unsigned char i;
unsigned int crc=0;
while(len--!=0) {
for(i=0x80; i!=0; i/=2) {
if((crc&0x8000)!=0) {crc*=2; crc^=0x1021;} /* 余式CRC乘以2再求CRC */
else crc*=2;
if((*ptr&i)!=0) crc^=0x1021; /* 再加上本位的CRC */
}
ptr++;
}
return(crc);
}
[code]
按位計算CRC雖然代碼簡單,所佔用的內存比較少,但其最大的缺點就是一位一位地計算會佔用很多的處理器處理時間,尤其在高速通訊的場合,這個缺點更是不可容忍。因此下面再介紹一種按位元組查錶快速計算CRC的方法。
4 按位元組計算CRC
不難理解,對於一個二進制序列數可以按位元組表示為式(4-1),其中 為一個位元組(共8位)。
(4-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(4-2)所示:
(4-2)
可以設: (4-3)
其中 為整數, 為16位二進制余數。將式(4-3)代入式(4-2)得:
(4-4)
因為:
(4-5)
其中 是 的高八位, 是 的低八位。將式(4-5)代入式(4-4),經整理後得:
(4-6)
再設: (4-7)
其中 為整數, 為16位二進制余數。將式(4-7)代入式(4-6),如上類推,最後得:
(4-
很顯然,十六位二進制數 既是我們要求的CRC碼。
式(4 -7)是編寫按位元組計算CRC程序的關鍵,它說明計算本位元組後的CRC碼等於上一位元組余式CRC碼的低8位左移8位後,再加上上一位元組CRC右移8位(也既取高8位)和本位元組之和後所求得的CRC碼,如果我們把8位二進制序列數的CRC全部計算出來,放如一個表裡,採用查表法,可以大大提高計算速度。由此不難理解下面按位元組求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,CRC余式表是按0x11021多項式求出的。
[code]
unsigned int cal_crc(unsigned char *ptr, unsigned char len) {
unsigned int crc;
unsigned char da;
unsigned int crc_ta[256]={ /* CRC余式表 */
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x 1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};
crc=0;
while(len--!=0) {
da=(uchar) (crc/256); /* 以8位二進制數的形式暫存CRC的高8位 */
crc<<=8; /* 左移8位,相當於CRC的低8位乘以 */
crc^=crc_ta[da^*ptr]; /* 高8位和當前位元組相加後再查表求CRC ,再加上以前的CRC */
ptr++;
}
return(crc);
}
很顯然,按位元組求CRC時,由於採用了查表法,大大提高了計算速度。但對於廣泛運用的8位微處理器,代碼空間有限,對於要求256個CRC余式表(共512位元組的內存)已經顯得捉襟見肘了,但CRC的計算速度又不可以太慢,因此再介紹下面一種按半位元組求CRC的演算法。
5 按半位元組計算CRC
同樣道理,對於一個二進制序列數可以按位元組表示為式(5-1),其中 為半個位元組(共4位)。
(5-1)
求此二進制序列數的CRC碼時,先乘以 後(既左移16位),再除以多項式G(X),所得的余數既是所要求的CRC碼。如式(4-2)所示:
(5-2)
可以設: (5-3)
其中 為整數, 為16位二進制余數。將式(5-3)代入式(5-2)得:
(5-4)
因為:
(5-5)
其中 是 的高4位, 是 的低12位。將式(5-5)代入式(5-4),經整理後得:
(5-6)
再設: (5-7)
其中 為整數, 為16位二進制余數。將式(5-7)代入式(5-6),如上類推,最後得:
(5-
很顯然,十六位二進制數 既是我們要求的CRC碼。
式(5 -7)是編寫按位元組計算CRC程序的關鍵,它說明計算本位元組後的CRC碼等於上一位元組CRC碼的低12位左移4位後,再加上上一位元組余式CRC右移4位(也既取高4位)和本位元組之和後所求得的CRC碼,如果我們把4位二進制序列數的CRC全部計算出來,放在一個表裡,採用查表法,每個位元組算兩次(半位元組算一次),可以在速度和內存空間取得均衡。由此不難理解下面按半位元組求CRC碼的C語言程序。*ptr指向發送緩沖區的首位元組,len是要發送的總位元組數,CRC余式表是按0x11021多項式求出的。
unsigned cal_crc(unsigned char *ptr, unsigned char len) {
unsigned int crc;
unsigned char da;
unsigned int crc_ta[16]={ /* CRC余式表 */
0x0000,0x1021,0x2042,0x3063,0x4084,0x50a5,0x60c6,0x70e7,
0x8108,0x9129,0xa14a,0xb16b,0xc18c,0xd1ad,0xe1ce,0xf1ef,
}
crc=0;
while(len--!=0) {
da=((uchar)(crc/256))/16; /* 暫存CRC的高四位 */
crc<<=4; /* CRC右移4位,相當於取CRC的低12位)*/
crc^=crc_ta[da^(*ptr/16)]; /* CRC的高4位和本位元組的前半位元組相加後查表計算CRC,
然後加上上一次CRC的余數 */
da=((uchar)(crc/256))/16; /* 暫存CRC的高4位 */
crc<<=4; /* CRC右移4位, 相當於CRC的低12位) */
crc^=crc_ta[da^(*ptr&0x0f)]; /* CRC的高4位和本位元組的後半位元組相加後查表計算CRC,
然後再加上上一次CRC的余數 */
ptr++;
}
return(crc);
}
[code]
5 結束語
以上介紹的三種求CRC的程序,按位求法速度較慢,但佔用最小的內存空間;按位元組查表求CRC的方法速度較快,但佔用較大的內存;按半位元組查表求CRC的方法是前兩者的均衡,即不會佔用太多的內存,同時速度又不至於太慢,比較適合8位小內存的單片機的應用場合。以上所給的C程序可以根據各微處理器編譯器的特點作相應的改變,比如把CRC余式表放到程序存儲區內等。[/code]
hjzgq 回復於:2003-05-15 14:12:51
CRC32演算法學習筆記以及如何用java實現 出自:csdn bootcool 2002年10月19日 23:11 CRC32演算法學習筆記以及如何用java實現
CRC32演算法學習筆記以及如何用java實現
一:說明
論壇上關於CRC32校驗演算法的詳細介紹不多。前幾天偶爾看到Ross N. Williams的文章,總算把CRC32演算法的來龍去脈搞清楚了。本來想把原文翻譯出來,但是時間參促,只好把自己的一些學習心得寫出。這樣大家可以更快的了解CRC32的主要思想。由於水平有限,還懇請大家指正。原文可以訪問:http://www.repairfaq.org/filipg/LINK/F_crc_v31.html 。
二:基本概念及相關介紹
2.1 什麼是CRC
在遠距離數據通信中,為確保高效而無差錯地傳送數據,必須對數據進行校驗即差錯控制。循環冗餘校驗CRC(Cyclic Rendancy Check/Code)是對一個傳送數據塊進行校驗,是一種高效的差錯控制方法。
CRC校驗採用多項式編碼方法。多項式乘除法運算過程與普通代數多項式的乘除法相同。多項式的加減法運算以2為模,加減時不進,錯位,如同邏輯異或運算。
2.2 CRC的運算規則
CRC加法運算規則:0+0=0
0+1=1
1+0=1
1+1=0 (注意:沒有進位)
CRC減法運算規則:
0-0=0
0-1=1
1-0=1
1-1=0
CRC乘法運算規則:
0*0=0
0*1=0
1*0=0
1*1=1
CRC除法運算規則:
1100001010 (注意:我們並不關心商是多少。)
_______________
10011 11010110110000
10011,,.,,....
-----,,.,,....
10011,.,,....
10011,.,,....
-----,.,,....
00001.,,....
00000.,,....
-----.,,....
00010,,....
00000,,....
-----,,....
00101,....
00000,....
-----,....
01011....
00000....
-----....
10110...
10011...
-----...
01010..
00000..
-----..
10100.
10011.
-----.
01110
00000
-----
1110 = 余數
2.3 如何生成CRC校驗碼
(1) 設G(X)為W階,在數據塊末尾添加W個0,使數據塊為M+ W位,則相應的多項式為XrM(X);
(2) 以2為模,用對應於G(X)的位串去除對應於XrM(X)的位串,求得余數位串;
(3) 以2為模,從對應於XrM(X)的位串中減去余數位串,結果就是為數據塊生成的帶足夠校驗信息的CRC校驗碼位串。
2.4 可能我們會問那如何選擇G(x)
可以說選擇G(x)不是一件很容易的事。一般我們都使用已經被大量的數據,時間檢驗過的,正確的,高效的,生成多項式。一般有以下這些:
16 bits: (16,12,5,0) [X25 standard]
(16,15,2,0) ["CRC-16"]
32 bits: (32,26,23,22,16,12,11,10,8,7,5,4,2,1,0) [Ethernet]
三: 如何用軟體實現CRC演算法
現在我們主要問題就是如何實現CRC校驗,編碼和解碼。用硬體實現目前是不可能的,我們主要考慮用軟體實現的方法。
以下是對作者的原文的翻譯:
我們假設有一個4 bits的寄存器,通過反復的移位和進行CRC的除法,最終該寄存器中的值就是我們所要求的余數。
3 2 1 0 Bits
+---+---+---+---+
Pop <-- | | | | | <----- Augmented message(已加0擴張的原始數據)
+---+---+---+---+
1 0 1 1 1 = The Poly
(注意: The augmented message is the message followed by W zero bits.)
依據這個模型,我們得到了一個最最簡單的演算法:
把register中的值置0.
把原始的數據後添加r個0.
While (還有剩餘沒有處理的數據)
Begin
把register中的值左移一位,讀入一個新的數據並置於register的0 bit的位置。
If (如果上一步的左移操作中的移出的一位是1)
register = register XOR Poly.
End
現在的register中的值就是我們要求的crc余數。
我的學習筆記:
可為什麼要這樣作呢?我們從下面的實例來說明:
1100001010
_______________
10011 11010110110000
10011,,.,,....
-----,,.,,....
-》 10011,.,,....
10011,.,,....
-----,.,,....
-》 00001.,,....
00000.,,....
-----.,,....
00010,,....
00000,,....
-----,,....
00101,....
00000,....
我們知道G(x)的最高位一定是1,而商1還是商0是由被除數的最高位決定的。而我們並不關心商究竟是多少,我們關心的是余數。例如上例中的G(x)有5 位。我們可以看到每一步作除法運算所得的余數其實就是被除數的最高位後的四位於G(x)的後四位XOR而得到的。那被除數的最高位有什麼用呢?我們從打記號的兩個不同的余數就知道原因了。當被除數的最高位是1時,商1然後把最高位以後的四位於G(x)的後四位XOR得到余數;如果最高位是0,商0然後把被除數的最高位以後的四位於G(x)的後四位XOR得到余數,而我們發現其實這個余數就是原來被除數最高位以後的四位的值。也就是說如果最高位是0就不需要作XOR的運算了。到這我們總算知道了為什麼先前要這樣建立模型,而演算法的原理也就清楚了。
以下是對作者的原文的翻譯:
可是這樣實現的演算法卻是非常的低效。為了加快它的速度,我們使它一次能處理大於4 bit的數據。也就是我們想要實現的32 bit的CRC校驗。我們還是假設有和原來一樣的一個4 "bit"的register。不過它的每一位是一個8 bit的位元組。
3 2 1 0 Bytes
+----+----+----+----+
Pop <-- | | | | | <----- Augmented message
+----+----+----+----+
1<------32 bits------> (暗含了一個最高位的「1」)
根據同樣的原理我們可以得到如下的演算法:
While (還有剩餘沒有處理的數據)
Begin
檢查register頭位元組,並取得它的值
求不同偏移處多項式的和
register左移一個位元組,最右處存入新讀入的一個位元組
把register的值和多項式的和進行XOR運算
End
我的學習筆記:
可是為什麼要這樣作呢? 同樣我們還是以一個簡單的例子說明問題:
假設有這樣的一些值:
當前register中的值: 01001101
4 bit應該被移出的值:1011
生成多項式為: 101011100
Top Register
---- --------
1011 01001101
1010 11100 + (CRC XOR)
-------------
0001 10101101
首4 bits 不為0說明沒有除盡,要繼續除:
0001 10101101
1 01011100 + (CRC XOR)
-------------
0000 11110001
^^^^
首4 bits 全0說明不用繼續除了。
那按照演算法的意思作又會有什麼樣的結果呢?
1010 11100
1 01011100+
-------------
1011 10111100
1011 10111100
1011 01001101+
-------------
0000 11110001
現在我們看到了這樣一個事實,那就是這樣作的結果和上面的結果是一致的。這也說明了演算法中為什麼要先把多項式的值按不同的偏移值求和,然後在和 register進行異或運算的原因了。另外我們也可以看到,每一個頭位元組對應一個值。比如上例中:1011,對應01001101。那麼對於 32 bits 的CRC 頭位元組,依據我們的模型。頭8 bit就該有 2^8個,即有256個值與它對應。於是我們可以預先建立一個表然後,編碼時只要取出輸入數據的頭一個位元組然後從表中查找對應的值即可。這樣就可以大大提高編碼的速度了。
+----+----+----+----+
+-----< | | | | | <----- Augmented message
| +----+----+----+----+
| ^
| |
| XOR
| |
| 0+----+----+----+----+
v +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
+-----> +----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
255+----+----+----+----+
以下是對作者的原文的翻譯:
上面的演算法可以進一步優化為:
1:register左移一個位元組,從原始數據中讀入一個新的位元組.
2:利用剛從register移出的位元組作為下標定位 table 中的一個32位的值
3:把這個值XOR到register中。
4:如果還有未處理的數據則回到第一步繼續執行。
用C可以寫成這樣:
r=0;
while (len--)
r = ((r << | p*++) ^ t[(r >> 24) & 0xFF];
可是這一演算法是針對已經用0擴展了的原始數據而言的。所以最後還要加入這樣的一個循環,把W個0加入原始數據。
我的學習筆記:
注意不是在預處理時先加入W個0,而是在上面演算法描述的循環後加入這樣的處理。
for (i=0; i<W/4; i++)
r = (r << ^ t[(r >> 24) & 0xFF];
所以是W/4是因為若有W個0,因為我們以位元組(8位)為單位的,所以是W/4個0 位元組。注意不是循環w/8次
以下是對作者的原文的翻譯:
1:對於尾部的w/4個0位元組,事實上它們的作用只是確保所有的原始數據都已被送入register,並且被演算法處理。
2:如果register中的初始值是0,那麼開始的4次循環,作用只是把原始數據的頭4個位元組送入寄存器。(這要結合table表的生成來看)。就算 register的初始值不是0,開始的4次循環也只是把原始數據的頭4個位元組把它們和register的一些常量XOR,然後送入register中。
3A xor B) xor C = A xor (B xor C)
總上所述,原來的演算法可以改為:
+-----<Message (non augmented)
|
v 3 2 1 0 Bytes
| +----+----+----+----+
XOR----<| | | | |
| +----+----+----+----+
| ^
| |
| XOR
| |
| 0+----+----+----+----+
v +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
| +----+----+----+----+
+----->+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
+----+----+----+----+
255+----+----+----+----+
演算法:
1:register左移一個位元組,從原始數據中讀入一個新的位元組.
2:利用剛從register移出的位元組和讀入的新位元組XOR從而產生定位下標,從table中取得相應的值。
3:把該值XOR到register中
4:如果還有未處理的數據則回到第一步繼續執行。
我的學習筆記:
對這一演算法我還是不太清楚,或許和XOR的性質有關,懇請大家指出為什麼?
謝謝。
到這,我們對CRC32的演算法原理和思想已經基本搞清了。下章,我想著重根據演算法思想用java語言實現。
hjzgq 回復於:2003-05-15 14:14:51
數學演算法一向都是密碼加密的核心,但在一般的軟路加密中,它似乎並不太為人們所關心,因為大多數時候軟體加密本身實現的都是一種編程上的技巧。但近幾年來隨著序列號加密程序的普及,數學演算法在軟體加密中的比重似乎是越來越大了。
我們先來看看在網路上大行其道的序列號加密的工作原理。當用戶從網路上下載某個Shareware -- 共享軟體後,一般都有使用時間上的限制,當過了共享軟體的試用期後,你必須到這個軟體的公司去注冊後方能繼續使用。注冊過程一般是用戶把自己的私人信息(一般主要指名字)連同信用卡號碼告訴給軟體公司,軟體公司會根據用戶的信息計算出一個序列碼出來,在用戶得到這個序列碼後,按照注冊需要的步驟在軟體中輸入注冊信息和注冊碼,其注冊信息的合法性由軟體驗證通過後,軟體就會取消掉本身的各種限制。這種加密實現起來比較簡單,不需要額外的成本,用戶購買也非常方便,在網上的軟體80%都是以這種方式來保護的。
我們可以注意到軟體驗證序列號的合法性過程,其實就是驗證用戶名與序列號之間的換算關系是否正確的過程。其驗證最基本的有兩種,一種是按用戶輸入的姓名來生成注冊碼,再同用戶輸入的注冊碼相比較,公式表示如下:
序列號 = F(用戶名稱)
2. 有哪些常用的調查方法
在我們的學習、工作中,有時會涉及到一些需要進行調查研究的工作。如何開展調研工作?都有哪些調查方法?用什麼方法比較合適?回收擺在初入調研行業人面前的幾個問題。綜合調研工作的實際情況,我們總結了9種比較常用的調研方法,供大家參考:
01
實地觀察法
調查者在通過實地觀察獲得直接、生動、真實可靠的第一手資料。但因為所觀察到的往往是事物的表面現象或外部聯系,帶有一定的偶然性,且受調查者主觀因素影響較大,因此,不能進行大樣本觀察,需結合其他調查方法共同使用。
02
訪談調查法
比實地觀察法更深一層次的調查方法,能獲得更多、更有價值的信息,適用於調查的問題比較深入、調查的對象差別較大、調查的樣本較小,或調查的場所不易接近等情況。
03
會議調查法
因為比較簡便易行,在調查研究工作中比較常用。通過邀請若干調查對象以座談會形式來搜集資料、分析和研究社會問題。優點是工作效率高,可以較快了解到比較詳細、可靠的社會信息,節省人力和時間。
04
問卷調查法
優點是方便、快捷,對眾多的調查對象同時進行調查,適用於對現時問題、較大樣本、較短時期、相對簡單的調查。
05
專家調查法
這是一種預測方法,是以專家作為索取信息的對象,依靠其知識和經驗,通過調查研究,對問題作出判斷和評估。優點是簡便直觀,特別適用於缺少信息資料和歷史數據,而又較多地受到社會的、政治的、人為的因素影響的信息分析與預測課題。
06
抽樣調查法
按照一定方式,從調查總體中抽取部分樣本進行調查,並用所得結果說明總體情況。優點是節約人力、物力和財力,能在較短的時間內取得相對准確的調查結果,具有較強的時效性。組織全面調查范圍廣、耗時長、難度大,常採用抽樣調查的方法進行檢查和驗證。
07
典型調查法
在特定范圍內選出具有代表性的特定對象進行調查研究,藉以認識同類事物的發展變化規律及本質的一種方法。在調查樣本太大時,可以採用典型調查。但必須注意對象的選擇,要准確地選擇對總體情況比較了解、有代表性的對象。
08
統計調查法
通過分析固定統計報表的形式,把下邊的情況反映上來的一種調查方法。由於統計報表的內容是比較固定的,因此適用於分析某項事物的發展軌跡和未來走勢。
09
文獻調查法
通過對文獻的搜集和摘取,以獲得關於調查對象信息的方法。適用於研究調查對象在一段時期內的發展變化,研究角度往往是探尋一種趨勢,或弄清一個演變過程。
在實際的調查研究工作中,調查者一般不局限於某種特定方法,而是相互交錯、靈活的運用這些方法。而這些調查方法,調研工廠全都可以支持,而且是免費。
01調研工廠:網路調查
好用的網路問卷編輯與回收工具,免費支持微信紅包獎勵功能,加速問卷回收。
02調研工廠:明察暗訪
專業的實地考察、暗訪調查、閉環整改工具。
使用場景:門店網點巡查,設備普查、安全普查;神秘客巡店,服務質量/營商環境暗訪;創城檢查,垃圾分類檢查,園林綠地檢查,人居環境監測等。
03調研工廠:面對面訪問
通過APP開展面對面訪問,監督訪問員工作並進行勞務費結算。
使用場景:人口普查、居民用水/用電調查等需要入戶訪問的調查統計;知曉度、滿意度、新品測試記錄等街頭攔訪;地下商超、偏遠山區等無網路環境離線調查。
調研工廠:CATI雲電話調查
雲端CATI電話調查,在線自動撥號,多坐席管理,通話狀態跟蹤,全過程錄音。
使用場景:消費者調研、市場調研、產品調查、社情民意調查;服務質量、教學質量、物業後勤、政府工作滿意度調查;客戶維系、客戶管理、服務滿意度回訪。
05調研工廠:深度訪談
豐富的企業高管、專家、政府公務員、消費者樣本庫,一對一訪談,深度了解被調查者潛在動機、態度和情感、決策因素、產品/服務使用情況等。
06調研工廠:座談會
18年專業調研經驗,服務政企客戶 10000+,協助政府、企業、機構,組織調查社情民意、消費決策、產品/服務使用等小組座談會近千場。
3. 常見的信息收集方法有哪些
目前有五種方法:
1.查閱資料法:報紙、行業網站、文獻、雜志、廣播電視等傳媒專訪。
2.調查法:(1)拜訪調查法;(2)電話采訪法;(3)問卷調查法。
3.觀察法:通過開會、深入現場、參加生產和經營、實地采樣、進行現場觀察並准確記錄(包括測繪、錄音、錄相、拍照、筆錄等)調研情況。主要包括兩個方面:一是對人的行為的觀察,二是對客觀事物的觀察。觀察法應用很廣泛,常和詢問法、搜集實物結合使用,以提高所收集信息的可靠性。
4.實驗法:通過實驗室實驗、現場實驗、計算機模擬實驗、計算機網路環境下人機結合實驗等過程獲取信息或結論。可主動控制實驗條件,包括對參與者類型的恰當限定、對信息產生條件的恰當限定和對信息產生過程的合理設計,獲得重要的、能客觀反映事物運動表徵的有效信息,在一定程度上直接觀察研究某些參量之間的相互關系,有利於對事物本質的研究。
5.互聯網信息收集法:通過計算機網路發布、傳遞和存儲的各種信息。互聯網信息收集的最終目標是給廣大用戶提供網路信息資源服務,整個過程包括網路信息搜索、整合、保存和服務四個步驟。
拓展資料:
為了保證信息收集的質量,要遵循幾個原則:
1.准確性:收集的信息一定要真實可靠,這是最基本的原則,因此,收集者要對收集的信息反復核實、不斷檢驗。
2.全面性:全面、廣泛地收集信息,才能完整的反映調查對象的全貌,保障科學決策。
3.時效性:信息的利用價值取決於該信息是否能及時地提供,信息只有及時、迅速地提供給它的使用者才能有效地發揮作用。
4. 遙感變化信息檢測的主要方法
本節所研究的主要是基於像元級的遙感變化信息檢測方法。當今國內外常用的遙感變化信息檢測方法主要有分類後比較法、代數運演算法、光譜特徵變異法、主成分分析法等。
( 一) 光譜特徵變異法
光譜特徵變異法是使用最為廣泛的一種遙感變化信息檢測方法,其原理是將兩時相遙感影像的相關波段進行融合、組合,如果地物類型發生了變化,該區域的光譜就會發生變異或突變,與周圍地物失去協調性,使得能通過肉眼識別出來。該方法容易受到研究區域地物光譜特徵的影響,可能會丟失細小的變化圖斑,但是在一般情況下總體效果良好 ( 馮德俊,2004) 。
圖 4 -8 HIS 融合法結果
把研究區震前 IKONOS 的全色波段影像和震後QuickBird 的多光譜影像運用光譜特徵變異法中的 HIS進行了融合,結果見圖 4 -8。從圖中可以看出,沒有發生變化的區域光譜特徵和解析度都得到了加強 ( 空間解析度變為 1m) ,其中水體、河流為藍色,山地為褐色,植被信息為綠色,白色區域明顯與四周的地物和背景信息光譜不協調,這就是發生變化的區域。
( 二) 主成分分析法
主成分分析法在遙感變化信息檢測中使用很多,一般能夠取得很好的檢測效果,它能夠在一定程度上消除影像內部各波段間的相關性,提高變化信息檢測的效率和精度。
圖 4 - 9 為 IKONOS 融合後影像與 QuickBird 融合後影像求差並取絕對值後進行主成分變換的第一個主成分圖像。由主成分變換的特性知道,變換結果的第一分量集中了影像絕大部分的變化信息,而其他分量則主要反映了波段之間的差異性。第一分量就代表著變化信息。圖 4 -9 中白色區域為發生變化的區域。
基於主成分分析的遙感變化信息檢測方法仍然存在著一些缺陷: ① 由於主成分變換所得到的各個分量往往失去了原有的物理意義,所以還需要參考其他數據來分析地物類型變化與否及其因果關系。② 主成分分析 ( PCA) 是基於二階統計的方法,只有在信號的統計分布滿足高斯分布的條件下,才能完全消除信號間的相關性,而對於非高斯信號則只能去除信號間的二階相關性 ( 鍾家強、王潤生,2006) 。在多時相遙感影像中,各種地類的光譜特性幾乎都不能滿足高斯分布,因此經過主成分變換後的各成分圖像間仍然存在高階相關性,而這些相關信息會直接影響到變化信息的檢測和提取。由於這個原因,在做主成分分析時,常常導致把這些高階相關信息轉變為雜訊,如圖 4 -9 所示,白色的 「斑點」遍布整個分量影像,又和變化信息摻雜在一起 ( 變化的區域也為高亮的白色) ,這使得在提取真正變化信息的時候遇到困難,如何有效地消除多時相圖像間的高階相關信息,避免這些 「偽變化」的雜訊,對於變化信息的檢測和提取具有非常重要的意義。
5. 時序法是常用的信息鑒別方法
是的。對信息進行鑒別的基本方法有類比法、時序法和差重法,時序法是按照事物、事件的發生發展過程或人物的生平事跡存貯和檢索文獻信息的方法,這種方法廣泛用於編制歷表、年表和人物年譜。
6. 信息技術教學檢測有哪幾種方法
7. Win10查看磁碟檢查信息的方法
通過查看Win10磁碟檢查結果,用戶能夠及時掌握系統的`運行狀態,但Win10系統查看磁碟檢查結果的方法並不像之前的系統那麼簡單,下面我就教大家如何查看Win10磁碟檢查結果。
具體方法如下:
1、在Cortana搜索欄輸入「事件查看器」後回車,或者在開始按鈕點右鍵,選擇「事件查看器」
2、在左邊欄展開「Windows日誌」,選擇「應用程序」,從右邊欄選擇「篩選當前日誌」,如下圖——
3、在窗口正中間一行輸入事件ID「26226」,點擊「確定」,如下圖——
4、在「事件查看器」主窗口中間就可以看到目前已有的日誌。單擊所需日誌,下方就會給出該日誌信息,此時點擊「詳細信息」可查看日誌內容。
注意:上述「事件ID」序號只適用於Win8.1/Win10,Win7用戶若想查看,需輸入「1001」。
8. 涉密計算機檢查工具有哪些
涉密計算機檢查工具
解密、破密系統
針對司法機關辦案中遇到的加密計算機及設備,效率源司法專用計算機取證平台可以快速智能地進行破密,並對目標電子證據進行提取,幫助司法機關有效解決加密存儲產品破密難題,實現指定目標數據安全讀取。
鏡像復制系統
針對司法機關對計算機取證過程中對電子證據的提取和分析不能直接在原盤操作的特殊需求,效率源司法專用計算機取證平台提供了目標電子證據快速鏡像拷貝功能,將電子證據統一儲存管理,保障司法機關在計算機取證中電子證據的可靠、安全。
過濾系統
依賴效率源科技超強的數據恢復技術後盾,效率源司法專用計算機取證平台可針對缺陷存儲介質中被刪除、修改、隱藏的電子證據進行完整快速的數據恢復,並對電子證據進行分析、查找、搜索、過濾。效率源司法專用計算機取證平台保證整個操作過程絕對「物理只讀」,並且可與司法機關常用的計算機取證分析軟體進行無縫對接,實現目標數據「一機」搜索、過濾、獲取、固化、分析。
固化系統
效率源司法專用計算機取證平台採用USB介面設計,設備可直接通過USB介面與嫌疑存儲設備連接,通過底層的「防寫」控制,可有效保障手機、相機、攝像機等目標存儲只讀無損取證,達到非破壞性取證和分析的目的,以保證司法機關獲取電子證據的客觀真實性,以免日後對電子證據的有效性滋生爭議。
網路「效率源」第一位就是可以進入官網!
9. 常用的信息檢索方法有哪些
信息檢索方法包括:普通法、追溯法和分段法。
1、普通法是利用書目、文摘、索引等檢索工具進行文獻資料查找的方法。運用這種方法的關鍵在於熟悉各種檢索工具的性質、特點和查找過程,從不同角度查找。普通法又可分為順檢法和倒檢法。
2、追溯法是利用已有文獻所附的參考文獻不斷追蹤查找的方法,在沒有檢索工具或檢索工具不全時,此法可獲得針對性很強的資料,查准率較高,查全率較差。
3、分段法是追溯法和普通法的綜合,它將兩種方法分期、分段交替使用,直至查到所需資料為止。
(9)常用信息檢查方法擴展閱讀
檢索原因
信息檢索是獲取知識的捷徑
美國普林斯頓大學物理系一個年輕大學生名叫約瀚·菲利普,在圖書館里借閱有關公開資料,僅用四個月時間,就畫出一張製造原子彈的設計圖。
他設計的原子彈,體積小(棒球大小)、重量輕(7.5公斤)、威力大(相當廣島原子彈3/4的威力),造價低(當時僅需兩千美元),致使一些國家(法國、巴基斯坦等)紛紛致函美國大使館,爭相購買他的設計拷貝。
二十世紀七十年代,美國核專家泰勒收到一份題為《製造核彈的方法》的報告,他被報告精湛的技術設計所吸引,驚嘆地說:「至今我看到的報告中,它是最詳細、最全面的一份。」
但使他更為驚異的是,這份報告竟出於哈佛大學經濟專業的青年學生之手,而這個四百多頁的技術報告的全部信息來源又都是從圖書館那些極為平常的、完全公開的圖書資料中所獲得的。
10. 計算機檢修時應遵循什麼原則 計算機故障常用的檢測方法有什麼
1.計算機檢修時應遵循什麼原則? 2.簡述計算機故障常用的檢測方法?
1.先軟後硬
電腦出了故障時,先從操作系統和軟體上來分析故障原因,如:分區表丟失、CMOS設置不當、病毒破壞了主引導扇區、注冊表文件出錯等。在排除軟體方面的原因後,再來檢查硬體的故障。一定不要一開始就盲目的拆卸硬體,以免走彎路。
2.先外後內
先外設、再主機,根據系統報錯信息進行檢修。先檢查列印機、鍵盤、滑鼠、掃描儀等外設,查看電源的連接、各種連線是否連接得當,在排除這些方面的原因後,再來檢查主機。
3.先電源後部件
電源是電腦是否正常工作的關鍵,首先要檢查電源部分,如是否有電壓通到主機,工作電壓是否正常、穩定,主機電源的功率是否能負載各部件的正常運行等,然後再檢查各個部件。
4.先一般後特殊
在遇到故障時,應最先考慮最可能引起故障的原因,比如硬碟不能正常工作了,應先檢查一下電源線、數據線是否松動,把它們重新插接,有時問題就能解決。如不成,再考慮其它原因。
5.先簡單後復雜
在排除故障時,先排除簡單而易修的故障,再去排除困難的不好解決的故障,有時在排除了簡單易修的故障後,不好解決的故障也變得很好解決了,而像需要電路的焊接等就需要有一定的電子維修基礎,此類故障不要貿然下手,最好送修。
電腦故障的經典檢修方法
對於電腦故障我們可以採用如下方法進行檢修:
1.直接觀察法
也就是直接觀察。看看是否有燒焦、變形、脫落等現象,有沒有短路、接觸不良等現象,元器件是否有生銹和損壞的明顯痕跡,各種電風扇運轉是否正常等,看看電源線是否插上(記得有個菜鳥沒插上電源線或沒打開交流電源開關,愣說無法開機,嚇出一身冷汗)。聽聽是否有異常聲音,還可從開機的出錯報警聲音分析故障的范圍,聞一下是否有異常味道,看看是出自主機還是顯示器,以便縮小故障的范圍。
2.拔插法
檢查電源線、各板卡間是否有松動或接觸不良的現象,可以把懷疑的板卡拆下,用橡皮擦將金手指擦乾凈再重新插好,以保證接觸良好。還可以利用手指輕輕敲擊可能產生故障的部件,比如硬碟的磁頭有時無法歸位,輕輕用手指頭敲擊硬碟可把硬碟從「沉睡」中喚醒過來。
3.替換法
可嘗試使用相同功能的板卡替換有故障的部件。如音效卡不發聲,可找一塊能正常使用的音效卡來判斷是主板的擴展槽問題還是音效卡的問題等等。
4.升溫降溫法
利用手指的靈敏感覺觸摸有關發熱部件,是否過熱現象,可人為的利用電吹風對可能出現故障的部件進行升溫試驗,促使故障提前出現,從而找出故障的原因,或利用酒精對可疑部件進行人為降溫試驗,如故障消失了,則證明此部件熱穩定性差,應予以更換。此方法適用於電腦運行時而正常、時而不正常的故障的檢修。
5.最小系統法
除了採取以上辦法外,對於一台能夠顯示但卻無法開機的電腦,我們可以採取最小系統法進行診斷。也就是只安裝CPU、顯卡、主板,然後再試試看,如果沒有問題時,才把硬碟接上去重新開機。如果這時候電腦能正常開機。我們就可以確定問題不在主板上的任何元件,也不會是顯卡或是硬碟。此時,我們只要把餘下的板卡逐一裝上去,當電腦又無法開機時,我們就可知道導致電腦不能正常工作的元兇是誰了。