導航:首頁 > 使用方法 > 食用菌的蛋白的測定方法

食用菌的蛋白的測定方法

發布時間:2023-01-08 14:05:57

❶ 敘述生物樣品中蛋白質含量測定方法有哪些

蛋白質含量測定方法有:凱氏定氮法,雙縮脲(Biuret)法,酚試劑法(Lowry)法,考馬斯亮藍(Bradford)法,紫外吸收法,BCA法及杜馬斯燃燒法。其中BCA法與Bradford法成為當今實驗室最為常用的兩種蛋白濃度定量檢測方法

BCA法常用現成的試劑盒來做,操作簡單又穩定。以下是厚百上BCA蛋白定量試劑盒:

厚百holdbio提供生物試劑、耗材等全面實驗室用品及實驗技術服務,科研整體服務(課題設計-實驗-SCI)。

❷ 用什麼方法檢測蛋白質

目前食品中蛋白質的測定方法有蛋白質自動分析儀,近紅外自動測定儀,紫外分光光度法以及凱氏定氮法等。本文採用納氏試劑作為顯色劑測定食品中蛋白質含量,適用范圍廣,可用於各類食品及保健食品的檢測。用本法對標准品、質控樣品進行測定獲得滿意結果,對批量樣品的快速測定更具有實用性。現將結果報告如下。

材料與方法

儀器與試劑 WFZ800-D3型紫外分光光度計(北京第二光學儀器廠)。分析純硫酸、硫酸銅、硫酸鉀。(1)納氏試劑:稱取碘化汞100g及碘化鉀70g,溶於少量無氨蒸餾水中,將此溶液緩緩傾入己冷卻的32%氫氧化鈉溶液500ml中,並不停攪拌,再用蒸餾水稀釋至1L,貯於棕色瓶中,用橡皮塞塞緊,避光保存。(2)硫酸銨標准儲備溶液(1.0g/L):精確稱取經硫酸乾燥的硫酸銨0.4720g,加水溶解後移入100mL容量瓶中,並稀釋至刻度,混均此液每毫升相當於1.0mgNH3-N(10℃下冰箱內儲存穩定1年以上)。(3)硫酸銨標准使用溶液(0.01g/L):用移液管精密吸取1.0ml標准儲備液(1.0g/L)於100ml容量瓶內,加水稀釋至刻度,混勻,此溶液每毫升相當於10.0μg NH3-N。

方法

標准曲線繪制 取25ml比色管7支,分別准確吸取0.01g/L硫酸銨標准使用液0.00,0.5,1.0,3.0,5.0,7.0,10.0ml(相當於標准0.0,5.0,10.0,30.0,50.0,70.0,100.0μg),加水至10ml刻度,於標准系列管中各加2ml納氏試劑,混勻後放置10min,移入1cm比色皿內,以零管為參比,於波長420mm處測量吸光度,以標准管含量為橫坐標(μg),對應的吸光度(A)值為縱坐標繪制標准曲線。

樣品測定 選擇牛奶和奶粉為檢測樣品。精密稱取樣品0.1~2.0g置於250ml三角瓶中,加入0.2gCuSO4、1.0gK2SO4、硫酸10ml,先小火加熱,待內容物全部炭化,泡沫停止後,加大火力至液體呈藍色,使H2SO4剩餘量約為3ml左右為止,室溫放冷後,沿瓶壁慢慢加入10ml水,移入100ml容量瓶中,用少量蒸鎦水洗三角瓶3次,洗液全部並入容量瓶中,冷卻,加蒸餾水至刻度,混勻。測定時取0.5ml,加水至10ml刻度,以後操作同標准曲線。同時做空白試驗。

計算公式

X=c×Fm×V2V1×1000×1000×1000

式中:X-試樣中蛋白質含量(g/100g或g/100ml)

C-試樣測定液中扣除空白後氮的含量(μg)

V1-試樣消化液定容體積(ml)

V2-測定用消化液體積(ml)

m-樣品質量(g)或體積(ml)

F-氮換算為蛋白質的系數。

蛋白質的氮含量一般為15%~17.6%,按16%計算乘以6.25即為蛋白質,乳製品為6.38,麵粉為5.7,肉及肉製品為6.25,大豆為5.71。

結果

2.1 測定波長選擇 含氮量為30μg的標准管在顯色後,在波長400~440mm范圍內每間隔5nm進行測定,最大吸收波長為420mm。

顯色劑用量選擇 含氮量為30μg的標准管分別加入不同量的納氏試劑,在420mm的波長下分別測定其吸光度結果。納氏試劑顯色劑加入量為1.5~3.0ml時吸光度基本無變化,本法選擇加入納氏試劑2.0ml。

顯色時間及穩定性 含氮量為30μg的標准管經顯色後,分別在10,30min,1,2,4,8h進行測定。顯色後10min~8h內吸光度穩定無變化。本法選顯色10min後測定。

標准曲線 回歸方程:y=0.016X-1.5×10-3,r=0.9998,最佳線性范圍0.0~100μg。

精密度 牛乳和奶粉2種樣品分別取6份按本法重復測定6次,牛乳和奶粉精密度測定結果:平均數分別為3.06,23.50;標准差分別為±0.029,±0.073;相對標准偏差分別為0.31%,0.94%。

對2種樣品利用標准加入法作回收試驗(表1) 結果可見,回收率為95.50%~99.44%。

2種方法測定結果比較 分別用GB/T5009.5-2003凱氏定氮法與本法測定。結果顯示,2種分析方法的測定結果差異無統計學意義(t=0.026,P>0.05)。

測定標准物質 用本法測定4種不同的蛋白質標准物質,測定結果與標准物質含量一致。

以納氏試劑作為顯色劑快速測定食品中蛋白質的方法特點簡單、快速,適用於批量樣品測定。在鹼性條件下NH3-N與納氏試劑反應生成的黃色化合物穩定。本法與國標凱氏定氮法進行比較t=0.026,P<0.05,n=32,2種方法測定結果無明顯差異。測定范圍廣,線性范圍寬0.0~100.0μg;精密度高;相對標准偏差為0.31%~0.94%;回收率好,加標回標率為95.50%~99.44%。用本法測定標准物質結果一致,用於質量控制樣本測定結果滿意。本法儀器試劑簡單,易於基層普及,有利於推廣應用。

❸ 檢測蛋白質的方法有哪些 檢測蛋白質的方法介紹

1、凱氏定氮法

凱氏定氮法是測定化合物或混合物中總氮量的一種方法。即在有催化劑的條件下,用濃硫酸消化樣品將有機氮都轉變成無機銨鹽,然後在鹼性條件下將銨鹽轉化為氨,隨水蒸氣蒸餾出來並為過量的硼酸液吸收,再以標准鹽酸滴定,就可計算出樣品中的氮量。

由於蛋白質含氮量比較恆定,可由其氮量計算蛋白質含量,故此法是經典的蛋白質定量方法。

2、雙縮脲法

雙縮脲法是一個用於鑒定蛋白質的分析方法。雙縮脲試劑是一個鹼性的含銅試液,呈藍色,由1%氫氧化鉀、幾滴1%硫酸銅和酒石酸鉀鈉配製。

當底物中含有肽鍵時(多肽),試液中的銅與多肽配位,配合物呈紫色。可通過比色法分析濃度,在紫外可見光譜中的波長為540nm。鑒定反應的靈敏度為5-160mg/ml。鑒定反應蛋白質單位1-10mg。

3、酚試劑法

取6支試管分別標號,前5支試管分別加入不同濃度的標准蛋白溶液,最後一支試管加待測蛋白質溶液,不加標准蛋白溶液,在室溫下放置30分鍾,以未加蛋白質溶液的第一支試管作為空白對照,於650nm波長處測定各管中溶液的吸光度值。

4、紫外吸收法

大多數蛋白質在280nm波長處有特徵的最大吸收,這是由於蛋白質中有酪氨酸,色氨酸和苯丙氨酸存在,可用於測定0.1~0.5mg/mL含量的蛋白質溶液。

取9支試管分別標號,前8支試管分別加入不同濃度的標准蛋白溶液,1號試管不加標准蛋白溶液,最後一支試管加待測蛋白質溶液,而不加標准蛋白溶液,每支試管液體總量通過加入蒸餾水補足而保持一致,將液體混合均勻,在280nm波長處進行比色,記錄吸光度值。

5、考馬斯亮藍法

考馬斯亮藍顯色法的基本原理是根據蛋白質可與考馬斯亮藍G-250 定量結合。當考馬斯亮藍 G-250 與蛋白質結合後,其對可見光的最大吸收峰從 465nm 變為 595nm。

在考馬斯亮藍 G-250 過量且濃度恆定的情況下,當溶液中的蛋白質濃度不同時,就會有不同量的考馬斯亮藍 G-250 從吸收峰為 465nm 的形式轉變成吸收峰為 595nm 的形式,而且這種轉變有一定的數量關系。

一般情況,當溶液中的蛋白質濃度增加時,顯色液在 595nm 處的吸光度基本能保持線性增加,因此可以用考馬斯亮藍 G-250 顯色法來測定溶液中蛋白質的含量。

❹ 食品國家標准(GB/T)

有一定的限定,要分食品的類別,比如禽蛋製品,肉製品,糧油製品,面製品,糖製品等不同。食品類別不同,所含營養素含量就有限定。你可以參考中華人民共和國食品標准,上面都有限定數值。

本人是學習食品專業的,對這方面有些了解,希望我的回答對你有幫助

❺ 常用的蛋白質含量測定方法有哪些

①凱氏定氮法
原理:蛋白質平均含氮量為16%。當樣品與濃硫酸共熱,蛋白氮轉化為銨鹽,在強鹼性條件下將氨蒸出,用加有指示劑的硼酸吸收,最後用標准酸滴定硼酸,通過標准酸的用量即可求出蛋白質中的含氮量和蛋白質含量。
②雙縮脲法
原理:尿素在180℃下脫氨生成雙縮脲,在鹼性溶液中雙縮脲可與Cu2+形成穩定的紫紅色絡合物。蛋白質中的肽鍵實際上就是醯胺鍵,故多肽、蛋白質等都有雙縮脲(biuret)反應,產生藍色或紫色復合物。比色定蛋白質含量。
缺點:靈敏度低,樣品必須可溶,在大量糖類共存和含有脯氨酸的肽中顯色不好。其 精確度 較差 (數mg),且會受樣品中 硫酸銨 及 Tris 的干擾,但 准確度 較高,不受蛋白質的種類影響。
③Folin酚法(Lowry)
Folin酚法是biuret 法的延伸,所用試劑由試劑甲和乙兩部分組成。試劑甲相當於雙縮脲試劑(鹼性銅試劑),試劑乙中含有磷鉬酸和磷鎢酸。
在鹼性條件下,蛋白質中的巰基和酚基等可將Cu2+還原成Cu+, Cu+能定量地與Folin-酚試劑反應生成藍色物質,600nm比色測定蛋白質含量。
靈敏度較高(約 0.1 mg),但較麻煩,也會受 硫酸銨 及 硫醇化合物 的干擾。 步驟中各項試劑的混合,要特別注意均勻澈底,否則會有大誤差。
④紫外法
280nm光吸收法:利用Tyr在280nm在吸收進行測定。
280nm-260nm的吸收差法:若樣品液中有少量核酸共存按下式計算:
蛋白質濃度(mg/ml)=1.24E280-0.74E260 (280 260為角標)
⑤色素結合法(Bradford 法)
直接測定法:利用蛋白質與色素分子(Coomassie Brilliant Blue G-250)結合物的光吸收用分光光度法進行測定。
考馬斯亮蘭(CBG)染色法測定蛋白質含量。CBG 有點像指示劑,會在不同的酸鹼度下變色;在酸性下是茶色,在中性下為藍色。當 CBG接到蛋白質上去的時候,因為蛋白質會提供 CBG一個較為中性的環境,因此會變成藍色。當樣本中的蛋白質越多,吸到蛋白質上的CBG也多,藍色也會增強。因此,藍色的呈色強度,是與樣本中的蛋白質量成正比。
間接測定法:蛋白質與某些酸性或鹼性色素分子結合形成不溶性的鹽沉澱。用分光光度計測定未結合的色素,以每克樣品結合色素的量來表示蛋白質含量的多少。
⑥BCA法
BCA(Bicinchoninc acid procere,4,4』-二羧-2,2』-二喹啉)法與Lowry法相似,主要差別在鹼性溶液中,蛋白質使Cu2+轉變Cu+後,進一步以BCA 取代Folin試劑與Cu+結合產生深紫色,在波長562 nm有強的吸收。
它的優點在於鹼性溶液中BCA 比Folin試劑穩定,因此BCA與鹼性銅離子溶液結合的呈色反應只需一步驟即完成。靈敏度Lowry法相似。
本方法對於陰離子、非離子性及二性離子的清潔劑和尿素較具容忍度,較不受干擾,但會受還原糖 及EDTA的干擾。
⑦膠體金測定法
膠體金(colloidal gold)是氯金酸(chloroauric acid)的水溶膠,呈洋紅色,具有高電子密度,並能與多種生物大分子結合。
膠體金是一種帶負電荷的疏水膠體遇蛋白質轉變為藍色,顏色的改變與蛋白質有定量關系,可用於蛋白質的定量測定。
⑧其他方法
有些蛋白質含有特殊的 非蛋白質基團,如 過氧化物酶含有 亞鐵血紅素基團,可測 403 nm 波長的吸光來定量之。 含特殊金屬的酶 (如鎘),則可追蹤該金屬。

❻ 菌體蛋白飼料中真蛋白的測定方法 (含有真菌)

實驗室常用考馬斯亮藍G-250法,不是以測定"氮"含量為基礎。馬斯亮藍是一種甲基取代的三苯基甲烷,分子中磺酸基的藍色染料,在465nm處有最大吸收值。考馬斯亮藍G-250能與蛋白質通過范得華相互作用形成蛋白質-考馬斯亮藍復合物藍色溶液,引起該染料的最大吸收λmax的位置發生紅移,在595nm處有最大吸收值。由於蛋白質-考馬斯亮藍復合物在595nm處的光吸收遠高於考馬斯亮藍在465nm處的光吸收,因此,可大大地提高蛋白質的測定靈敏度。蛋白質-考馬斯亮藍復合物溶液顏色的深淺與蛋白質的濃度成正比。利用溶液顏色的差異進行比色測定,適合於蛋白質類的定量分析,呈色反應顏色穩定、靈敏度高,最低測試蛋白質量在1ug左右。但是考馬斯亮藍G250分子含苯環。

也可以用「紫外吸收法」,它也不是以測定「氮」含量為基礎,其中以280nm處的吸光度值是最常用的紫外吸收法。其原理是蛋白質分子中酪氨酸、苯丙氨酸和色氨酸殘基的苯環含有共軛雙鍵,使蛋白質具有吸收紫外光的性質。吸收高峰在280nm處,其吸光度(即光密度值)與蛋白質含量成正比。此外,蛋白質溶液在238nm的光吸收值與肽鍵含量成正比,利用一定波長下,蛋白質溶液的光吸收值與蛋白質濃度的正比關系,可以進行蛋白質含量的測定,三聚氰胺等化合物含有共軛雙鍵的苯環,但是沒有肽鍵,所以238nm處的吸光度值可以排除其它苯環共軛雙鍵的干擾。

❼ 食品中蛋白質含量怎麼

目前食品中蛋白子含量的測定通常採用凱氏定氮法。

凱氏定氮法是測定化合物或混合物中總氮量的一種方法。即在有催化劑的條件下,用濃硫酸消化樣品將有機氮都轉變成無機銨鹽,然後在鹼性條件下將銨鹽轉化為氨,隨水蒸氣餾出並為過量的酸液吸收,再以標准鹼滴定,就可計算出樣品中的氮量。由於蛋白質含氮量比較恆定,可由其氮量計算蛋白質含量,故此法是經典的蛋白質定量方法。

凱氏定氮法檢測的是粗蛋白,原理是檢測其中的氮含量,因為氮含量在真蛋白中大約 是16%左右,倒數就是6.25,所以,檢測出氮含量後,乘以6.25就是粗蛋白含量了。

凱氏定氮法的缺點是把非蛋白中的氮也算進去了,所以,才會有前幾年出現的三聚氰胺的事件,三聚氰胺是非蛋白氮,用凱氏定氮法檢測時,也把它算進去了,這就是奶粉造假的依據。

想了解更多關於凱氏定氮法的詳細信息可參閱:網路-凱氏定氮法。也可追問我哦~

❽ 食品中蛋白質測定是怎麼操作的

食品中蛋白質的測定
1 原理
蛋白質是含氮的有機化合物.食品與硫酸和硫酸銅、硫酸鉀一同加熱消化,使蛋白質分解,分解的氨與硫酸結合生成硫酸銨.然後鹼化蒸餾使氨游離,用硼酸吸收後以硫酸或鹽酸標准滴定溶液滴定,根據酸的消耗量乘以換算系數,即為蛋白質的含量.
2 分析步驟
2.1 試樣處理:稱取0.20g~2.00g固定試樣或2.00g~5.00g半固體試樣或吸取10.00ml~25.00ml液體試樣(約相當氮30mg~40mg),移入乾燥的100ml或500ml定氮瓶中,加入0.2g硫酸銅,6g硫酸鉀及20ml硫酸,稍搖勻後於瓶口放一小漏斗,將瓶以45°角斜支於有小孔的石棉網上.小心加熱,待內容物全部炭化,泡沫完全停止後,加強火力,並保持瓶內液體沸騰,至液體呈藍綠色澄清透明後,再繼續加熱0.5h~1h.取下放冷,小心加20ml水.放冷後,移入100ml容量瓶中.並用少量水洗定氮瓶,洗液並入容量瓶中,再加水至刻度,混勻備用.同時做試劑空白試驗.
2.2 測定:按上圖裝好定氮裝置,於水蒸氣發生瓶內裝水至三分之二處,加入數粒玻璃珠,加甲基紅指示液數滴及數毫升硫酸,以保持水呈酸性,用調壓器控制,加熱煮沸水蒸氣發生瓶內的水.2.3 向接收瓶內加入10ml硼酸溶液(20g/L)及1~2滴混合指示液,並使冷凝管的下端插入液面下,准確吸取10ml試樣處 理液由小漏洞流入反應室,並以10ml水洗滌小燒杯使流入反應室內,棒狀玻塞塞緊.將10ml氫氧化鈉溶液(400g/L)倒入小玻杯,提起玻塞使其緩緩流入反應室,立即將玻塞蓋緊.並加水於小玻杯以防漏氣.夾緊螺旋夾,開始蒸餾.蒸餾5min.移動接收瓶,液面離開冷凝管下端,再蒸餾1min.然後用少量水沖洗冷凝管下端外部.取下接收瓶.以硫酸或鹽酸標准滴定溶液(0.05mol/L)滴定至灰色或藍紫色為終點.同時准確吸取10ml.
試劑空白消化液按2.2操作.
3 結果計算
試樣中蛋白質的含量按下列公式計算.
式中:
X—試樣中蛋白質的含量,單位為克每百克或克每百毫升(g/100g或g/100ml)
V1—試樣消耗硫酸或鹽酸標准滴定液的體積,單位為毫升(ml) V2—試劑空白消耗硫酸或鹽酸標准滴定液的體積,單位為毫升.
(ml)
C—硫酸或鹽酸標准滴定液的濃度,單位為摩爾每升(mol/L) 0.0140—1.0ml
硫酸[c(1/2H2SO4)=1.000mol/L]或鹽酸
[c(HCL)=1.000mol/L]標准滴定溶液相當的氮的質量,單位為克(g)
m—試樣的質量或體積,單位為克或毫升(g或ml)
F—氮換算為蛋白質的系數,一般食物為6.25;乳製品為6.38;麵粉為5.70;玉米、高粱為6.24;花生為5.46;米為5.95;大豆及其製品為5.71;肉與肉製品為6.25;大麥、小米、燕麥、裸麥為5.83;芝麻、向日葵為5.30.計算結果保留三位有效數字.
4 精密度
在重復性條件下獲得的兩次獨立測定結果的絕對差不得超過算數平均值的10%.
zttn037 2014-11-19

❾ 食品中蛋白質的測定

食品中蛋白質的測定如下:
蛋白質的檢測原理是基於食品中蛋白質含量與食品中氮含量的比例關系換算的。如乳中蛋白質與氮含量的比值為6.38,大豆中蛋白質與氮含量的比值為5.71,普通食品中蛋白質與氮含量的比值為6.25。因此是通過測定食品中氮含量後再根據換算系數得到食品中蛋白質含量。
蛋白質的檢測方法:
1、凱氏定氮法:樣品在高溫濃硫酸的消化作用下,將樣品中的有機氮轉化為無機銨,待消化液冷卻後,加入過量的鹼,使無機銨轉化為揮發性的氨,再將氨蒸出後,利用鹽酸標准溶液滴定,最後根據消耗的鹽酸標液體積推算樣品中的氮含量。
2、杜馬斯定氮法:樣品在高純氧中充分燃燒的過程中,將氮元素轉化為氮氣或氮氧化物,再經過高溫銅的還原,使所有的氮轉化為N2,然後利用熱導檢測器檢測N2的含量來推算樣品中氮含量。因此杜馬斯定氮法也稱為杜馬斯燃燒法或燃燒定氮法。

閱讀全文

與食用菌的蛋白的測定方法相關的資料

熱點內容
金鋼窗安裝方法 瀏覽:123
測排卵什麼方法最准確 瀏覽:850
抒情方法有哪些 瀏覽:432
青島梅毒治療最好的方法 瀏覽:998
臉上汗斑的治療方法 瀏覽:60
好的教育方法的視頻 瀏覽:58
快速上枕頭荷葉邊方法 瀏覽:736
手機拍照的視頻在哪裡設置方法 瀏覽:934
什麼方法治口臭 瀏覽:173
幼兒美術活動教學方法 瀏覽:126
瑞典輕症治療方法 瀏覽:616
原始股退出計算方法 瀏覽:409
水泵間隙的測量方法 瀏覽:520
材料分析方法視頻 瀏覽:332
杜蘭特真正的訓練方法 瀏覽:319
網上買床安裝方法 瀏覽:784
奶奶教裁剪方法簡單好用 瀏覽:451
老人機簡訊中心在哪裡設置方法 瀏覽:857
化肥中氮的含量檢測方法視頻 瀏覽:79
照片如何加水印方法 瀏覽:536