導航:首頁 > 使用方法 > 6n137使用方法

6n137使用方法

發布時間:2022-12-08 17:17:02

① 6N137的規格

產品種類: 高速光耦合器
配置: 1
額定速度: 10 Mbps
最大正向二極體電壓: 1.75 V
最大反向二極體電壓: 5 V
最大輸入二極體電流: 20 mA
最大功率耗散: 85 mW
最大工作溫度: + 85 C
最小工作溫度: - 40 C
封裝 / 箱體: DIP-8
封裝: Tube
輸入類型: AC/DC
絕緣電壓: 3750 Vrms
最大下降時間: 75 ns
最大上升時間: 75 ns
輸出設備: Logic Gate Photo IC
原理及典型用法:
6N137的結構原理如圖1所示,信號從腳2和腳3輸入,發光二極體發光,經片內光通道傳到光敏二極體,反向偏置的光敏管光照後導通,經電流-電壓轉換後送到與門的一個輸入端,與門的另一個輸入為使能端,當使能端為高時與門輸出高電平,經輸出三極體反向後光電隔離器輸出低電平。當輸入信號電流小於觸發閾值或使能端為低時,輸出高電平,但這個邏輯高是集電極開路的,可針對接收電路加上拉電阻或電壓調整電路。

簡單的原理如圖2所示,若以腳2為輸入,腳3接地,則真值表如附表所列,這相當於非門的傳輸,若希望在傳輸過程中不改變邏輯狀態,則從腳3輸入,腳2接高電平。
6N137真值表 輸入 使能 輸出
H H L
L H H
H L H
L L H
隔離器使用方法如圖2所示,假設輸入端屬於模塊I,輸出端屬於模塊II。輸入端有A、B兩種接法,分別得到反相或同相邏輯傳輸,其中RF為限流電阻。發光二極體正向電流0-250uA,光敏管不導通;發光二極體正向壓降1.2-1.7V,正向電流6.5-15mA,光敏管導通。若以B方法連接,TTL電平輸入,Vcc為5V時,RF可選500Ω左右。如果不加限流電阻或阻值很小,6N137仍能工作,但發光二極體導通電流很大對Vcc1有較大沖擊,尤其是數字波形較陡時,上升、下降沿的頻譜很寬,會造成相當大的尖峰脈沖雜訊,而通常印刷電路板的分布電感會使地線吸收不了這種雜訊,其峰-峰值可達100mV以上,足以使模擬電路產生自激,A/D不能正常工作。所以在可能的情況下,RF應盡量取大。
輸出端由模塊II供電,Vcc2=4.5-5.5V。在Vcc2(腳8)和地(腳5)之間必須接一個0.1uF高頻特性良好的電容,如瓷介質或鉭電容,而且應盡量放在腳5和腳8附近。這個電容可以吸收電源線上的紋波,又可以減小光電隔離器接受端開關工作時對電源的沖擊。腳7是使能端,當它在0-0.8V時強制輸出為高(開路);當它在2.0V-Vcc2時允許接收端工作,見附表。
腳6是集電極開路輸出端,通常加上拉電阻RL。雖然輸出低電平時可吸收電路達13mA,但仍應當根據後級輸入電路的需要選擇阻值。因為電阻太小會使6N137耗電增大,加大對電源的沖擊,使旁路電容無法吸收,而干擾整個模塊的電源,甚至把尖峰雜訊帶到地線上。一般可選4.7kΩ,若後級是TTL輸入電路,且只有1到2個負載,則用47kΩ或15kΩ也行。CL是輸出負載的等效電容,它和RL影響器件的響應時間,當RL=350Ω,CL=15pF時,響應延遲為48-75ns。注意:6N137不應使用太多,因為它的輸入電容有60pF,若過多使用會降低高速電路的性能。情況允許時,可考慮把並行傳輸的數據串列化,由一個光電隔離器傳送。
二 6N137應用實例
信號採集系統通常是模擬電路和數字電路的混合體,其中模數變換是不可缺少的。從信號通路來說,AD變換之前是模擬電路,之後是數字電路。模擬電路和AD變換電路決定了系統的信噪比,而這是評價採集系統優劣的關鍵參數。為了提高信噪比,通常要想辦法抑制系統中雜訊對模擬和AD電路的干擾。在各種雜訊當中,由數字電路產生並串入模擬及AD電路的雜訊普遍存在且較難克服。數字電平上下跳變時集成電路耗電發生突變,引起電源產生毛刺,通常對開關電源影響比線性電源大,因為開關電源在開關周期內不能響應電流突變,而僅由電容提供電流的變化部分。一般數字電路越復雜,數據速率越高,累積的電流跳變越強烈,高頻分量越豐富。而普通印刷電路的分布電感較大,使地線不能完全吸收邏輯電平跳變產生的電流高頻分量,產生電壓的毛刺,而這種毛刺進入地線後就不能靠旁路電容吸收了,而且會通過共同的地線或穿過變壓器,干擾模擬電路和AD轉換器,其幅度可高達幾百毫伏,足以使AD工作不正常。
本所研製的機載三通道紅外成像掃描儀的數據採集系統,要求信噪比1000,12位量化級別,並行數據傳輸,數據傳輸率500KB/s。要達到上述要求,AD能否達到轉換精度是個關鍵。在未採用光電隔離器的電路中,雖採取了一系列措施,但因各模塊間地線相連,數字電路中尖峰雜訊影響仍很大,系統信噪比僅達500.故我們採用6N137將模擬電路及AD變換器和數字電路徹底隔離,電路如圖3所示。
電源部分由隔離變壓器隔離,減少電網中的雜訊影響,數字電源和模擬電源不共地,由於模擬電路一般只有±15V,而AD轉換器還需要+5V電源,為使數字電路與模擬電路真正隔離,+5V電源由+15V模擬電源經DC-DC變換器得到。模擬電路以及AD轉換電路與數字電路的信號聯系都通過6N137。逐次比較型AD並行輸出12位數據,每一路信號經緩存器後送入6N137的腳3,進行同相邏輯傳輸至數字電路,輸入端限流電阻選用470Ω,輸出端上拉電阻選用47kΩ,輸出端電源和地間(即6N137的腳8與腳5間)接0.1uF瓷片電容,作為旁路電容以減少對電源的干擾,6N137的使能端接選通信號,使6N137在數據有效時才工作,減少工作電流。模擬電路和AD轉換所需的各路控制信號也通過6N137接收,接法同上,在時序設計中要特別注意6N137約有50ns的延時,與未採用光電隔離器的數據採集電路相比,系統信噪比提高了一倍以上,滿足了系統設計要求。

② 關於光耦電路的原理

光耦電路即光電耦合器一般由三部分組成,光的發射、光的接收及信號放大。輸入的電信號驅動發光二極體(LED),使之發出一定波長的光,被光探測器接收而產生光電流,再經過進一步放大後輸出。這就完成了電—光—電的轉換,從而起到輸入、輸出、隔離的作用。

在光耦電路設計中,有兩個參數需要格外注意,一個是反向電壓Vr,是指原邊發光二極體所能承受的最大反向電壓,超過此反向電壓,可能會損壞LED。而一般光耦中,這個參數只有5V左右,在存在反壓或振盪的條件下使用時,要特別注意不要超過反向電壓。

另外一個參數是光耦的電流傳輸比是指在直流工作條件下,光耦的輸出電流與輸入電流之間的比值。光耦的CTR類似於三極體的電流放大倍數,是光耦的一個極為重要的參數,它取決於光耦的輸入電流和輸出電流值及電耦的電源電壓值,

這幾個參數共同決定了光耦工作在放大狀態還是開關狀態,其計算方法與三極體工作狀態計算方法類似。若輸入電流、輸出電流、電流傳輸比設計搭配不合理,可能導致電路不能工作在預想的工作狀態。

光耦電路中C-E飽和電壓Vce(sat),即光敏三極體的集電極-發射極飽和壓降。正向工作電壓Vf(ForwardVoltage),Vf是指在給定的工作電流下,LED本身的壓降。常見的小功率LED通常以If=10mA來測試正向工作電壓,當然不同的LED,測試條件和測試結果也會不一樣。

(2)6n137使用方法擴展閱讀;

線形光耦介紹,光隔離是一種很常用的信號隔離形式。常用光耦器件及其外圍電路組成。由於光耦電路簡單,在數字隔離電路或數據傳輸電路中常常用到,如UART協議的20mA電流環。對於模擬信號,光耦因為輸入輸出的線形較差,並且隨溫度變化較大,限制了其在模擬信號隔離的應用。

對於高頻交流模擬信號,變壓器隔離是最常見的選擇,但對於支流信號卻不適用。一些廠家提供隔離放大器作為模擬信號隔離的解決方案,如ADI的AD202,能夠提供從直流到幾K的頻率內提供0.025%的線性度,但這種隔離器件內部先進行電壓-頻率轉換。

對產生的交流信號進行變壓器隔離,然後進行頻率-電壓轉換得到隔離效果。集成的隔離放大器內部電路復雜,體積大,成本高,不適合大規模應用。

③ 求太陽能路燈電路圖與接線圖

一、路燈控制系統工作原理:白天光伏電池向蓄電池充電,晚上蓄電池提供電力供路燈照明。所以蓄電池將構成一個充放電循環。太陽能路燈照明控制電路包括光伏電池、蓄電池、路燈和控制器四部分。

1、設計中採用AT89S52單片機,並將其作為智能核心模塊。外圍電路主要包括太陽能電池電壓采樣模塊、蓄電池電壓采樣模塊、鍵盤電路模塊、LED顯示模塊、充放電控制模塊等。

2、圖1是太陽能路燈控制器結構設計圖。

12、定壓、穩壓電路

12.1、圖4的最左邊是光敏電阻,為檢測車燈的電路。光敏電阻受光越強,其電阻值越小。在夜晚時,光敏電阻的電阻值變大,單片機HT46R23的PB0所檢測到的電壓值較小;當車燈照射到光敏電阻時,光敏電阻的電阻值就會變小,單片機之PB0檢測到的電壓值就會比較大。

12.2、因此在夜晚,當單片機的PB0所檢測到的電壓值大於某臨界值時,即表示有車輛接近,則單片機將點亮LED燈。

12.3、圖中的人體紅外線感測器的檢測電路是當有人進入檢測范圍時,人體紅外線感測器會發出1個小脈波,因為此小脈波的功率很小,需要經過幾次放大器(LM324)的放大,其信號才能有效地被單片機接收,所以平時無人進人人體紅外線檢測器的檢測范圍時,此電路的輸出為低電位;當單片機的PC0收到高電位時,表示有人進人人體紅外線感測器的檢測范圍,單片機將點亮LED照明燈。

(1)在成品上方的太陽能發電板有受光的情形下,其輸出是否有7.5V以上的太陽能發電板之工作電壓。

(2)如果上述測試正常的話,在未接充電電池的情形下,定電壓電路.HT7544的輸出端應該會有約6V的電壓輸出。流經1個整流二極體後,約為5.4v的電壓,以供充電電池充電之用。

(3)將充電電池接至電路中穩壓電路,HT7551會輸出5V的電壓給單片機使用。

(4)以不透光物質遮蔽太陽能發電板,以模擬人夜的情形。當單片機的PB1所檢測到的太陽能發電板的輸出電壓值小於某一臨界值時,表示天色已暗。此時,單片機會輸出一高電位給控制信號c,以打開電源控制電路,使電池的電能流人LED驅動電路中。同時,單片機會輸出FWM信號以點亮LED燈。6h的時間較長,此時讓LED燈持續點亮1min,以模擬點亮6h,6h後應已過深夜,人車已少,所以熄滅LED燈。

(5)當已過6h而LED燈熄滅後,如果有人車接近,則裝在PB0的光敏電阻或裝在PCO的人體紅外線檢測器應會感應到車燈或人體所發出來的紅外線。此時,單片機會再點亮LED燈約30S,以作警示或照明之用。此情形直到單片機的PB1所檢測到的太陽能發電板所輸出的電壓值大於某1個臨界值時,表示天色已亮,程式再回到開始的狀態。

四、接線說明: 

1、 先接蓄電池的連接線

2、 再接蓄電池到控制器的線 

3、 再接太陽能板到控制器的線

4、 最後接負載到控制器的線 

5、 負載為低壓鈉燈時,在做燈具的時候應該先把整流器的輸出端接光源的兩端的線先連接好(低壓鈉燈光源無正負極可任意連接)。把整流器的輸入端連接兩根足夠長的線(要能區分正負極)。在最後接負載到控制器的接線時注意正負極不能接反。

④ 求單片機高手幫忙!

基於單片機交通燈智能控制系統研究

隨著經濟發展,汽車數量急劇增加,城市道路日漸擁擠,交通擁塞已成為一個國際性的問題。因此,設計可靠、安全、便捷的多功能交通燈控制系統有極大的現實必要性。通常情況下,交通信號燈控制主要有兩個缺陷:1、車道放行車輛時,時間設定相同且固定,十字路口經常出現主車道車輛多,放行時間短,車流無法在規定時間內通過,而副車道車輛少,放行時間明顯過長;2、未考慮急車強通(譬如,消防車執行緊急任務時,兩車道都應等待消防車通過)。由於交通信號燈控制系統缺乏有效的應急措施,導致十字路口交通受阻,造成不必要的經濟損失。
本系統利用單片機AT89C51,藉助CAN匯流排作為現場通信匯流排實現智能交通信號燈控制系統設計,實現了根據區域車流、紅外遙控以及PC機進行十字路口交通信號燈智能控制,並在軟、硬體方面採取一些改進措施,實現了根據十字路口車流、紅外遙控進行交通信號燈智能控制,使交通信號燈現場控制靈活、有效。從一定程度上解決了交通路口堵塞、車輛停車等待時間不合理、急車強通等問題。系統具有結構簡單、可靠性高、成本低、實時性好、安裝維護方便等優點,有廣泛的應用前景。
2 設計方案與系統結構
本智能交通信號燈控制系統硬體主要由車流信息檢測電路、鍵盤時間設置電路、紅外遙控發射/接收電路、單片機控制器、CAN匯流排控制器、CAN匯流排收發器、光電隔離晶元、單片機並行介面、看門狗電路等電路組成。本系統設置與上位PC機相連的上位節點為主節點,各路口信號燈控制裝置為底層節點,共同構成區域交通信號燈控制系統。系統原理框圖如圖1所示。

系統利用紅外遙控裝置實現各十字路口現場信號燈控制,紅外發射器發射出的編碼信號經接收器接收後送入單片機控制器,控制信號燈紅綠變換、等待時間、急車強通。另外,車流檢測裝置安放在各十字路口東西、南北道路方向實時檢測車道車流信息。並將檢測到的信息輸至單片機進行處理,通過單片機編程技術實現信號燈綠、紅切換及等待時間設定。此外,PC機通過通訊串口與節點上的單片機控制器進行通信,實現數據信息在CAN匯流排上的發送與接收。PC機負責網路上所有信號燈控制裝置的集中管理功能;同時向各信號燈控制器下傳工作模式控制信息。3 系統設計
3.1 紅外遙控發射電路
由於系統需實現十字路口不同方向信號燈變化。假設兩方向為東西、南北方向。則需實現東西、南北兩個方向信號燈的選定、時間增減、急車強通等功能。紅外遙控發射電路原理框圖如圖2所示。

紅外遙控發射器與外接陶瓷諧振器、電容器組成振盪電路,分頻產生一定脈沖寬度的載頻信號。輸出編碼信號,經達林頓管放大後,驅動紅外線發射二極體向外發射。
3.2 紅外遙控接收電路
紅外接收、解調模塊接收來自發射器的紅外信號,經內部集成電路放大、解調後,由輸出端輸出編碼脈沖信號,經三極體反相放大後,送至接收器,由接收器解調模塊進行解碼。當發射器相應鍵按下時,接收器輸出高電平信號,通過或非門接入單片機控制器的外中斷,申請中斷,由中斷服務程序檢測鍵按下狀態,從而完成相應的中斷服務。紅外接收器與單片機控制器介面電路如圖3所示。

3.3 CAN匯流排節點介面電路
各路口交通信號燈控制器與上位機的通訊都通過各自的CAN匯流排介面模塊完成。匯流排系統節點硬體電路原理框圖如圖4所示。

單片機控制器負責CAN匯流排控制器初始化,控制實現數據的接收和發送等通信任務。CAN匯流排收發器與CAN匯流排介面部分採用了一定的安全和抗干擾措施。為增強CAN匯流排節點的抗干擾能力,CAN控制器不直接與CAN收發器相連,而是通過加接高速光電隔離器晶元,實現匯流排上各節點間的電氣隔離。但是,光耦電路所採用的VCC和VDD電源必須完全隔離,否則採用光耦電路就失去了意義,可採用小功率電源隔離模塊或不大於5V隔離輸出開關電源模塊實現。
3.4 看門狗電路
由於單片機控制器自身抗干擾能力較差,尤其在一些條件比較惡劣、雜訊大的場合,常會出現單片機因受外界干擾輕者導致系統內部數據出錯,重者將嚴重影響程序的運行而死機,造成系統不能正常工作。設置看門狗是為了防止單片機死機、提高單片機系統抗干擾性的一種重要途徑。考慮系統可靠性設計,滿足苛刻環境下的正常運行,本設計中採用硬體看門狗電路。電路原理框圖如圖5所示。

通過硬體看門狗電路設計,可有效防止運行程序進入「死循環」。保證系統不受惡劣天氣及環境條件造成的干擾。
3.5 分布式檢測控制系統由於CAN匯流排具有較強的抗干擾能力,通訊中沒有地址的概念及節點數不受限制等優點,已經被廣泛應用於汽車、數控機床、儀器儀表、現場匯流排控制等領域[1]。本設計將若干智能交通信號燈控制器、上位節點介面和PC機組成CAN匯流排通信系統方便實現智能分布式區域信號燈實時監控、高速數據採集等。單片機控制器與PC機實現串列通信,設置CAN匯流排控制器工作在Intel模式,由PC機發送數據寫入單片機控制器,再通過控制信號由單片機將數據寫入CAN匯流排控制器並通過CAN匯流排收發器發送。接收數據通過中斷進行,CAN BUS數據經CAN匯流排收發器接收並寫入CAN匯流排控制器。然後通過中斷提請單片機讀取數據上傳PC機。
4 實驗分析
本系統單片機控制器選用MSC-51系列IntelAT89C51晶元,紅外遙控發射/接收器使用BA5104/BA5302設計。利用MAX692設計看門狗監控電路。匯流排通信介面中選取PHILIPS公司的SJA1000 CAN匯流排控制器及82C250匯流排收發器[2] [3]。光耦合器採用6N137晶元。系統硬體電路利用Protel DXP設計並制板。
通過實驗測試,按下紅外遙控發射器按鍵K1-K6有效地控制了東西、南北方向時間設定、急車強通,時間增、減。持續使WDI低電平時間>1.6s後,看門狗RESET端產生200ms負溢出脈沖信號使AT89C51復位,均有效地達到了系統設計要求。
為了提高系統通訊抗干擾性及可靠性,在匯流排收發器82C250的CANH和CANL引腳通過5Ω電阻與CAN匯流排相連,保護其免受過流沖擊的影響;82C250的CANH和CANL與地之間分別並聯30pF電容,濾除匯流排高頻干擾並起到防電磁輻射的作用;匯流排兩端接入120Ω終端電阻[4],匹配匯流排阻抗。此外,在CAN匯流排輸入端與地之間接防雷擊管,當兩輸入端與地之間出現瞬變干擾時,通過防雷擊管放電起到保護匯流排的作用,避免了雷電天氣對系統通訊的影響。這些部分雖然增加了節點的復雜度,但卻有效保證了數據通信的穩定性和安全性。
5 結語
交通信號燈智能控制系統為改善城市交通擁堵,提高道路的交通運輸能力發揮了積極作用。本系統設計實現了十字路口信號燈自動化、智能化、人性化實時控制。通過系統功能擴展,系統亦可應用於其他控制領域,應用前景廣闊。

⑤ 太陽能路燈接線圖

一、路燈控制系統工作原理:白天光伏電池向蓄電池充電,晚上蓄電池提供電力供路燈照明。所以蓄電池將構成一個充放電循環。太陽能路燈照明控制電路包括光伏電池、蓄電池、路燈和控制器四部分。

1、設計中採用AT89S52單片機,並將其作為智能核心模塊。外圍電路主要包括太陽能電池電壓采樣模塊、蓄電池電壓采樣模塊、鍵盤電路模塊、LED顯示模塊、充放電控制模塊等。

2、圖1是太陽能路燈控制器結構設計圖。

向左轉|向右轉

12、定壓、穩壓電路

12.1、圖4的最左邊是光敏電阻,為檢測車燈的電路。光敏電阻受光越強,其電阻值越小。在夜晚時,光敏電阻的電阻值變大,單片機HT46R23的PB0所檢測到的電壓值較小;當車燈照射到光敏電阻時,光敏電阻的電阻值就會變小,單片機之PB0檢測到的電壓值就會比較大。

12.2、因此在夜晚,當單片機的PB0所檢測到的電壓值大於某臨界值時,即表示有車輛接近,則單片機將點亮LED燈。

12.3、圖中的人體紅外線感測器的檢測電路是當有人進入檢測范圍時,人體紅外線感測器會發出1個小脈波,因為此小脈波的功率很小,需要經過幾次放大器(LM324)的放大,其信號才能有效地被單片機接收,所以平時無人進人人體紅外線檢測器的檢測范圍時,此電路的輸出為低電位;當單片機的PC0收到高電位時,表示有人進人人體紅外線感測器的檢測范圍,單片機將點亮LED照明燈。

(1)在成品上方的太陽能發電板有受光的情形下,其輸出是否有7.5V以上的太陽能發電板之工作電壓。

(2)如果上述測試正常的話,在未接充電電池的情形下,定電壓電路.HT7544的輸出端應該會有約6V的電壓輸出。流經1個整流二極體後,約為5.4v的電壓,以供充電電池充電之用。

(3)將充電電池接至電路中穩壓電路,HT7551會輸出5V的電壓給單片機使用。

(4)以不透光物質遮蔽太陽能發電板,以模擬人夜的情形。當單片機的PB1所檢測到的太陽能發電板的輸出電壓值小於某一臨界值時,表示天色已暗。此時,單片機會輸出一高電位給控制信號c,以打開電源控制電路,使電池的電能流人LED驅動電路中。同時,單片機會輸出FWM信號以點亮LED燈。6h的時間較長,此時讓LED燈持續點亮1min,以模擬點亮6h,6h後應已過深夜,人車已少,所以熄滅LED燈。

(5)當已過6h而LED燈熄滅後,如果有人車接近,則裝在PB0的光敏電阻或裝在PCO的人體紅外線檢測器應會感應到車燈或人體所發出來的紅外線。此時,單片機會再點亮LED燈約30S,以作警示或照明之用。此情形直到單片機的PB1所檢測到的太陽能發電板所輸出的電壓值大於某1個臨界值時,表示天色已亮,程式再回到開始的狀態。

四、接線說明: 

1、 先接蓄電池的連接線

2、 再接蓄電池到控制器的線 

3、 再接太陽能板到控制器的線

4、 最後接負載到控制器的線 

5、 負載為低壓鈉燈時,在做燈具的時候應該先把整流器的輸出端接光源的兩端的線先連接好(低壓鈉燈光源無正負極可任意連接)。把整流器的輸入端連接兩根足夠長的線(要能區分正負極)。在最後接負載到控制器的接線時注意正負極不能接反。

⑥ ADuM磁耦與常用高速光耦6N136比較2020-12-18

為了更進一步形象的說明ADuM磁耦與常用高速光耦6N136與6N137的實際使用效果,我們分別以光耦6N137(東芝)和磁耦ADuM1201為代表,來進行實際的比較。

1、封裝:6N137是DIP-8的封裝,而ADuM1201是SOP-8的封裝。從兩者的實際測量體積我們也可以看出6N137是9.66mm*6.4mm(平均),而ADuM1201是5.00mm*6.2mm(最大)。前者在PCB面積上是後者的兩倍。

2、通道分布:6N137是單通道隔離,而ADuM1201是雙通道隔離,且通道方向分布是一收一發。從這個方面講ADuM1201可以節省75%以上的PCB面積。

3、工作電壓:兩者均為5V供電,6N137需20mA,而ADuM1201僅需0.8mA/通道。所以ADuM1201功耗僅為其1/10.

4、速率:6N137的最大傳輸速率是10MBPS,ADuM1201的速率可分1M、10M、25M三個級別。

5、工作溫度范圍:6N137為0℃to+70℃,ADuM1201是?40°C to +105°C.

6、傳輸延遲時間:6N137是75nS. ADuM1201則是30nS.

7、隔離電壓:兩者均為2500V.(ADuM2201是5000V).

8、典型電路:6N137是電流型器件,其輸入的高壓電流一般在15mA左右,使用時要注意輸入電流滿足其要求,因為裡面有發光二極體,輸入電流不同,發光二極體的光強就不同,這直接影響到信號的輸出,另外輸出要接上拉電阻,電阻的選擇應根據輸出電流的要求進行計算,(據I=V/R),輸出信號的延遲和上升/下降時間會根據上拉電阻而不同,應仔細計算。所以6N137需要三極體與電阻等分立元件共同使用,來完其功能。ADuM1201是電壓型器件,只要保證輸出信號在其電壓范圍之內(2.7V--5.5V),電流不用去管。所以ADuM1201除兩個通用的旁路電容外,無需分立元件配合就可工作。

9、輸出波形:6N137輸出信號上升時間較長,如果要接數字I/O口,如FPGA、DSP等,則要接74HC14進行施密特整形與波形翻轉,並增加驅動能力。而ADuM1201則在內部集成了輸出施密特整形電路,所以其輸出信號很好。

10、價格:6N137目前是最常用的高速光電隔離器件,人民幣約合3塊左右;ADuM1201是ADI於2003年推出的隔離器,人民幣約合4塊左右/通道。

我們以16M晶振接74HC742分頻的得到的8M的方波作為輸出波形來分別對其實際隔離效果進行測試,兩者得出的結果有很明顯的區別

⑦ 求利用6N137將3.3V電壓轉換為5V電壓的電路

6N137是光偶電路,不能直接升電壓的。這個電路只能隔離兩個電源。不過可以用6N137控制升壓電路工作。能夠升壓的集成電路很多,而且電路也很簡單。你能告訴我你希望你的5V電源的功率是多少么?你的3.3V電壓的功率有是多少呢?可以根據你的需要向你提供參考電路,供你使用。

⑧ 光耦要工作必須得有足夠的電流,這個圖中是6N137光耦,幫我分析一下這個圖中的前相電流多大

沒有看到你的圖,不過根據你的描述我可以大概的猜到。附圖是我使用的元件PC817,與你使用的參數部分相同,我的電路的前級電流只有一毫安多點,但事實證明這樣是可行的,我的產品已經量產並且沒有出現什麼不良,所以說你使用5.1K的電阻也是沒有問題的,只是需要你注意電阻的功率容量的考慮,你的電阻上的功耗為0.1275W,這樣你至少要使用0.25W功率容量的元件:插件1/4W或者貼片1206封裝,否則散熱也是一個問題

⑨ 6n137無輸出問題,誰用過137幫忙指導一下 非常感激 本人q q 444061642,謝謝

6N137光耦合器的使用需要注意兩點:第一是6N137光耦合器的第6腳Vo輸出電路屬於集電極開路電路,必須上拉一個電阻;第二是6N137光耦合器的第2腳和第3腳之間是一個LED,必須串接一個限流電阻。
網上有很多資料自己可以查一下

⑩ 光耦的實用技巧

光耦以光信號為媒介來實現電信號的耦合與傳遞,輸入與輸出在電氣上完全隔離,具有抗干擾性能強的特 點。對於既包括弱電控制部分,又包括強電控制部分的工業應用測控系統,採用光耦隔離可以很好地實現弱電和強電的隔離,達到抗干擾目的。但是,使用光耦隔離需要考慮以下幾個問題:
①光耦直接用於隔離傳輸模擬量時,要考慮光耦的非線性問題;
②光耦隔離傳輸數字量時,要考慮光耦的響應速度問題;
③如果輸出有功率要求的話,還得考慮光耦的功率介面設計問題。
1:光電耦合器非線性的克服
光電耦合器的輸入端是發光二極體,因此,它的輸入特性可用發光二極體的伏安特性來表示;輸出端是光敏三極體,因此光敏三極體的伏安特性就是它的輸出特性。由此可見,光電耦合器存在著非線性工作區域,直接用來傳輸模擬量時精度較差。
解決方法之一,利用2個具有相同非線性傳輸特性的光電耦合器,T1和T2,以及2個射極跟隨器A1和A2組成。如果T1和T2是同型號同批次的光電耦合器,可以認為他們的非線性傳輸特性是完全一致的,即K1(I1)=K2(I1),則放大器的電壓增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。由此可見,利用T1和T2電流傳輸特性的對稱性,利用反饋原理,可以很好的補償他們原來的非線性。
另一種模擬量傳輸的解決方法,就是採用VFC(電壓頻率轉換)方式。現場變送器輸出模擬量信號(假設電壓信號),電壓頻率轉換器將變送器送來的電壓信號轉換成脈沖序列,通過光耦隔離後送出。在主機側,通過一個頻率電壓轉換電路將脈沖序列還原成模擬信號。此時,相當於光耦隔離的是數字量,可以消除光耦非線性的影響。這是一種有效、簡單易行的模擬量傳輸方式。
當然,也可以選擇線性光耦進行設計,如精密線性光耦TIL300,高速線性光耦6N135/6N136。線性光耦一般價格比普通光耦高,但是使用方便,設計簡單;隨著器件價格的下降,使用線性光耦將是趨勢。
2:提高光電耦合器的傳輸速度
當採用光耦隔離數字信號進行控制系統設計時,光電耦合器的傳輸特性,即傳輸速度,往往成為系統最大數據傳輸速率的決定因素。在許多匯流排式結構的工業測控系統中,為了防止各模塊之間的相互干擾,同時不降低通訊波特率,我們不得不採用高速光耦來實現模塊之間的相互隔離。常用的高速光耦有6N135/6N136,6N137/6N138。但是,高速光耦價格比較高,導致設計成本提高。這里介紹兩種方法來提
高普通光耦的開關速度。由於光耦自身存在的分布電容,對傳輸速度造成影響,光敏三極體內部存在著分布電容Cbe和Cce。由於光耦的電流傳輸比較低,其集電極負載電阻不能太小,否則輸出電壓的擺幅就受到了限制。但是,負載電阻又不宜過大,負載電阻RL越大,由於分布電容的存在,光電耦合器的頻率特性就越差,傳輸延時也越長。
用2隻光電耦合器T1,T2接成互補推挽式電路,可以提高光耦的開關速度。當脈沖上升為「1」電平時,T1截止,T2導通。相反,當脈沖為「0」電平時,T1導通,T2截止。這種互補推挽式電路的頻率特性大大優於單個光電耦合器的頻率特性。
此外,在光敏三極體的光敏基極上增加正反饋電路,這樣可以大大提高光電耦合器的開關速度。通過增加一個晶體管,四個電阻和一個電容,實驗證明,這個電路可以將光耦的最大數據傳輸速率提高10倍左右。
3:光耦的功率介面設計
微機測控系統中,經常要用到功率介面電路,以便於驅動各種類型的負載,如直流伺服電機、步進電機、各種電磁閥等。這種介面電路一般具有帶負載能力強、輸出電流大、工作電壓高的特點。工程實踐表明,提高功率介面的抗干擾能力,是保證工業自動化裝置正常運行的關鍵。
就抗干擾設計而言,很多場合下,既能採用光電耦合器隔離驅動,也能採用繼電器隔離驅動。一般情況下,對於那些響應速度要求不很高的啟停操作,我們採用繼電器隔離來設計功率介面;對於響應時間要求很快的控制系統,採用光電耦合器進行功率介面電路設計。這是因為繼電器的響應延遲時間需幾十ms,而光電耦合器的延遲時間通常都在10us之內,同時採用新型、集成度高、使用方便的光電耦合器進行功率驅動介面電路設計,可以達到簡化電路設計,降低散熱的目的。
對於交流負載,可以採用光電可控硅驅動器進行隔離驅動設計,例如TLP541G,4N39。光電可控硅驅動器,特點是耐壓高,驅動電流不大,當交流負載電流較小時,可以直接用它來驅動。當負載電流較大時,可以外接功率雙向可控硅。其中,R1為限流電阻,用於限制光電可控硅的電流;R2為耦合電阻,其上的分壓用於觸發功率雙向可控硅。當需要對輸出功率進行控制時,可以採用光電雙向可控硅驅動器,例如MOC3010。

閱讀全文

與6n137使用方法相關的資料

熱點內容
中式棉襖製作方法圖片 瀏覽:65
五菱p1171故障碼解決方法 瀏覽:860
男士修護膏使用方法 瀏覽:548
電腦圖標修改方法 瀏覽:609
濕氣怎麼用科學的方法解釋 瀏覽:539
910除以26的簡便計算方法 瀏覽:807
吹東契奇最簡單的方法 瀏覽:706
對腎臟有好處的食用方法 瀏覽:100
電腦四線程內存設置方法 瀏覽:514
數字電路通常用哪三種方法分析 瀏覽:17
實訓課程的教學方法是什麼 瀏覽:527
苯甲醇乙醚鑒別方法 瀏覽:84
蘋果手機微信視頻聲音小解決方法 瀏覽:702
控制箱的連接方法 瀏覽:77
用什麼簡單的方法可以去痘 瀏覽:791
快速去除甲醛的小方法你知道幾個 瀏覽:805
自行車架尺寸測量方法 瀏覽:126
石磨子的製作方法視頻 瀏覽:154
行善修心的正確方法 瀏覽:405
土豆燉雞湯的正確方法和步驟 瀏覽:278