⑴ 高中數學常用證明方法有哪些
反證法、數學歸納法(不局限於證明)、分析法(從結論出發導出一系列等價或充分命題)
⑵ 證明的方法有哪些方法
證明方法
編輯
用於邏輯證明的方法,出現《邏輯學》和《數學》里。綜合法是一種從題設到結論的邏輯推理方法,也就是由因導果的證明方法。
綜合法
編輯
綜合法是一種從題設到結論的邏輯推理方法,也就是由因導果的證明方法。
分析法
編輯
分析法是一種從結論到題設的邏輯推理方法,也就是執果索因法的證明方法。分析法的證明路徑與綜合法恰恰相反。
反證法
編輯
由於原命題與逆否命題等效,所以當證明原命題有困難或者無法證明時,可以考慮證明它的逆否命題,通過正確推理如果逆否命題正確或者推出與原命題題設、公理、定理等不相容的結論,從而判定結論的反面不成立,也就證明了原命題的結論是正確的。
反證法視逆否命題的題設也就是原命題的結論的反面的情況又分為兩種:
1)歸謬法:若結論的反面只有一種情況,那麼把這種情況推翻就達到證明的目的了。
2)窮舉法:若結論的反面不只一種情況,則必須將所有情況都駁倒,這樣才能達到證明的目的。
前三種方法也叫演繹法。都是按照「從一般到特殊」的思維過程進行推理的。
歸納法
編輯
歸納法或歸納推理,有時叫做歸納邏輯,是從個別性知識,引出一般性知識的推理,是由已知真的前提,引出可能真的結論。它把特性或關系歸結到基於對特殊的代表的有限觀察的類型;或公式表達基於對反復再現的現象的模式的有限觀察的規律。
⑶ 尋求所有常用的數學證明方法
證明命題的方法:
大多數命題都取下面兩種形式中的一種:
「若P,則Q」
P=>Q
「P,當且僅當Q」
P<=>Q
要證後一種。我們先證「P蘊涵Q」再證「Q蘊涵P」即可。
而證明「P蘊涵Q」通常有三種方法:
1。最直接的方法是,假設P使真的在設法去推導Q是真的。這里不必擔心P是假的的情況。因為「P蘊涵Q」自然是真的。(這涉及蘊涵的概念,相信你是清楚的)
2。第二種方法是寫出它的逆否「(非Q)蘊涵(非P)」然後證明它。
這時我們假定(非Q)是真的,然後設法推證非P是真的。
3。歸謬法。(反證法就是歸謬法!!!)
想真正弄清反證法,我們還得做些准備。
先看看什麼是矛盾吧,它的定義是精確的。
觀察P與(非P)這個命題。用真值表。
P
非P
P與(非P)
T
F
F
F
T
F
我們發現,無論P是T還是F,命題P與(非P)永遠是F.這時我們說P與(非P)是一個矛盾。
再看一個真值表,討論P與(非Q).
P
Q
非Q
P與(非Q)
非[P與(非Q)]
P蘊涵Q
T
T
F
F
T
T
T
F
T
T
F
F
F
T
F
F
T
T
F
F
T
F
T
T
我們發現非[P與(非Q)]和P蘊涵Q同T同F,他們是邏輯等價的。
現在我們可以討論反證法了。
運用反證法。假設P和非Q都是真的。然後尋找一個矛盾。由此斷定我們的假設是假的。即「非[P與(非Q)]」是真的。而這與
「P蘊涵Q
」等價。從而證明了P蘊涵Q真。
具體的證明需要運用具體數學知識,以上只是最一般的方法以及邏輯原理。
⑷ 有哪些數學證明方法
數學歸納法 反證法 邏輯法 假設法 推理法等等
⑸ 中考數學常用證明題方法
初中數學幾何題關鍵要能識別常見的幾何模型,嚴格按照幾何定理去證明。
⑹ 初,高中數學常用證明方法有哪些
1.比較法比較法是證明不等式的最基本、最重要的方法之一,它是兩個實數大小順序和運算性質的直接應用,比較法可分為差值比較法(簡稱為求差法)和商值比較法(簡稱為求商法)。
2.綜合法利用已知事實(已知條件、重要不等式或已證明的不等式)作為基礎,藉助不等式的性質和有關定理,經過逐步的邏輯推理,最後推出所要證明的不等式,其特點和思路是「由因導果」,從「已知」看「需知」,逐步推出「結論」。3.分析法分析法是指從需證的不等式出發,分析這個不等式成立的充分條件,進而轉化為判定那個條件是否具備,其特點和思路是「執果索因」,即從「未知」看「需知」,逐步靠攏「已知」。4.反證法有些不等式的證明,從正面證不好說清楚,可以從正難則反的角度考慮,即要證明不等式A>B,先假設A≤B,由題設及其它性質,推出矛盾,從而肯定A>B。凡涉及到的證明不等式為否定命題、惟一性命題或含有「至多」、「至少」、「不存在」、「不可能」等詞語時,可以考慮用反證法。
5.換元法換元法是對一些結構比較復雜,變數較多,變數之間的關系不甚明了的不等式可引入一個或多個變數進行代換,以便簡化原有的結構或實現某種轉化與變通,給證明帶來新的啟迪和方法。主要有兩種換元形式。(1)三角代換法:多用於條件不等式的證明,當所給條件較復雜,一個變數不易用另一個變數表示,這時可考慮三角代換,將兩個變數都有同一個參數表示。此法如果運用恰當,可溝通三角與代數的聯系,將復雜的代數問題轉化為三角問題根據具體問題,實施的三角代換方法有:①若x2+y2=1,可設x=cosθ,y=sinθ;②若x2+y2≤1,可設x=rcosθ,y=rsinθ(0≤r≤1);③對於含有的不等式,由於|x|≤1,可設x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可設x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量換元法:在對稱式(任意交換兩個字母,代數式不變)和給定字母順序(如a>b>c等)的不等式,考慮用增量法進行換元,其目的是通過換元達到減元,使問題化難為易,化繁為簡。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t進行換元。
6.放縮法放縮法是要證明不等式A<B成立不容易,而藉助一個或多個中間變數通過適當的放大或縮小達到證明不等式的方法。放縮法證明不等式的理論依據主要有:(1)不等式的傳遞性;(2)等量加不等量為不等量;(3)同分子(分母)異分母(分子)的兩個分式大小的比較。常用的放縮技巧有:①舍掉(或加進)一些項;②在分式中放大或縮小分子或分母;③應用均值不等式進行放縮。
⑺ 在數學中有哪些比較經典而且奇妙的證明方法
1931年,奧地利數學家哥德爾,提出一條震驚學術界的定理——哥德爾不完備定理。該定理指出,我們目前的數學系統中,必定存在不能被證明也不能被證偽的定理。該定理一出,就粉碎了數學家幾千年的夢想——即建立完善的數學系統,從一些基本的公理出發,推導出一切數學的定理和公式。可哥德爾不完備定理指出:該系統不存在,因為其中一定存在,我們不能證明也不能證偽的「東西」,也就是數學系統不可能是完備的,至少它的完備性和相容性不能同時得到滿足。
⑻ 數學證明方法的分類
證明命題的方法:
大多數命題都取下面兩種形式中的一種:
「若P,則Q」 P=>Q
「P,當且僅當Q」 P<=>Q
要證後一種。我們先證「P蘊涵Q」再證「Q蘊涵P」即可。
而證明「P蘊涵Q」通常有三種方法:
1。最直接的方法是,假設P使真的在設法去推導Q是真的。這里不必擔心P是假的的情況。因為「P蘊涵Q」自然是真的。(這涉及蘊涵的概念,相信你是清楚的)
2。第二種方法是寫出它的逆否「(非Q)蘊涵(非P)」然後證明它。
這時我們假定(非Q)是真的,然後設法推證非P是真的。
3。歸謬法。(反證法就是歸謬法!!!)
想真正弄清反證法,我們還得做些准備。
先看看什麼是矛盾吧,它的定義是精確的。
觀察P與(非P)這個命題。用真值表。
P 非P P與(非P)
T F F
F T F
我們發現,無論P是T還是F,命題P與(非P)永遠是F.這時我們說P與(非P)是一個矛盾。
再看一個真值表,討論P與(非Q).
P Q 非Q P與(非Q) 非[P與(非Q)] P蘊涵Q
T T F F T T
T F T T F F
F T F F T T
F F T F T T
我們發現非[P與(非Q)]和P蘊涵Q同T同F,他們是邏輯等價的。
現在我們可以討論反證法了。
運用反證法。假設P和非Q都是真的。然後尋找一個矛盾。由此斷定我們的假設是假的。即「非[P與(非Q)]」是真的。而這與 「P蘊涵Q 」等價。從而證明了P蘊涵Q真。
具體的證明需要運用具體數學知識,以上只是最一般的方法以及邏輯原理。
⑼ 高等數學各種證明方法
方法1,直接用定義證明:
對於任給的ε>0,要找N,使得當n>N時,有|(n+2)cosn/(n^2-2)|<ε,
而|(n+2)cosn/(n^2-2)-0|≤|(n+2)/(n^2-2)|≤(當n>1時)|≤|(n+n)/(n^2-n^2/2)|
=|2n/n^2/2|=|2n/n^2/2|=4/n,因此只要n>4/ε,就有|(n+2)cosn/(n^2-2)-0|≤…≤4/n<ε,
故取N=[4/ε]+1即可。方法2,用「有界量乘無窮小量還是無窮小量」間接證明:
顯然,cosn是有界量,然後參照方法1用定義證明lim(n->無窮)(n+2)/(n²-2)=0,即得證。用定義證明極限的關鍵是「適當的放縮」,放縮的方法不是唯一的。
針對本題,是「適當的放大」,方法1採用的只是某一種放大方式,還可以用其他方式放大該不等式。另需注意cosn是有界量。
⑽ 數學證明題,要兩種方法