導航:首頁 > 使用方法 > 做數學選擇題的常用方法

做數學選擇題的常用方法

發布時間:2022-10-16 07:43:33

㈠ 選擇題的答題方法和技巧是什麼

解選擇題的基本原則是:「小題不能大做」,要充分利用題目中(包括題乾和選項)提供的各種信息,排除干擾,利用矛盾,做出正確的判斷。

選擇題的求解,一般有兩條思路:

一是從題干出發考慮,探求結果;

二是從題乾和選擇支聯合考慮或從選擇支出發探求是否滿足題干條件。

解答數學選擇題的主要方法包括直接對照法、概念辨析法、圖象分析法、特例檢驗法、排除法、逆向思維法等,這些方法既是數學思維的具體體現,也是解題的有效手段。

(1)做數學選擇題的常用方法擴展閱讀:

選擇題的分數一般佔全卷的40%左右,高考數學選擇題的基本特點是:

1、絕大部分數學選擇題屬於低中檔題,且一般按由易到難的順序排列,主要的數學思想和數學方法能通過它得到充分的體現和應用,並且因為它還有相對難度(如思維層次、解題方法的優劣選擇,解題速度的快慢等),所以選擇題已成為具有較好區分度的基本題型之一。

2、選擇題具有概括性強、知識覆蓋面廣、小巧靈活及有一定的綜合性和深度等特點,且每一題幾乎都有兩種或兩種。

以上的解法,能有效地檢測學生的思維層次及觀察、分析、判斷和推理能力。



㈡ 做數學方法選擇題蒙題技巧

大家在做數學選擇題的時候,可能都會遇到過某道選擇題不會做,無從下手的情況。也會遇到有些知識記不牢,記牢卻不會用的問題。下面給大家分享一些關於做數學 方法 選擇題蒙題技巧,希望對大家有所幫助。

一.做數學方法選擇題蒙題技巧

數學選擇題蒙題技巧1:代入法

代入法往往適合給定了一些條件的題型,比如說是未知數ab,它會分別給出a、b一個特定的條件,然後讓你求ab組合在一起的式子,這么看可能會很復雜。但是如果是選擇題,你可以把選項中的答案代入到式子中來計算,就會簡單很多!

數學選擇題蒙題技巧2:區間法

區間法也可以稱之為排除法,靠著大概計算出來的數據或是猜測的一些數據來選擇。比如說一個選擇題題目里給了好幾個角度,很明顯,答案一定和這幾個角度有關系。

數學選擇題蒙題技巧3:坐標法

如果做一些圖形題時可能會完全找不到思路,第一可以用比例法,第二就可以用坐標法,不管是哪類的三角函數,其實只要找到兩點坐標,就可以直接代入函數求垂直、求長度、求相切相離公式,直接就可以求出答案,不用一點點的找角度了。

數學選擇題蒙題技巧4:比例法

其實比例法很簡單也很無賴,遇到圖形題,首先把已知條件標上去,未知的可以用量角器量出來,之後就可以用尺子來量出兩條實線的比例關系,然後通過已知的一邊,用比例去估算求的那一邊就可以了。不要懷疑,就是這么神奇!

數學選擇題蒙題技巧5:函數法

函數法就是要把一些計算轉換成函數,然後代入答案,移項,把方程的一邊變為0,然後把函數表達式畫出來,看與零點有沒有唯一的焦點,這樣就可以根據函數的圖像判斷答案了!

數學選擇題蒙題技巧6: 經驗 法

經驗法可以在一些排序或是有規律的題目中使用。它會有一些答案明顯是為了湊數的答案,這樣一下就可以排除,另外還有一些找規律分類的題目,如果不會或是沒有思路,那麼就選重復答案最多的那幾個,那是最有可能的答案!

二.文科生數學解題技巧

方法一、調理大腦思緒,提前進入數學情境

考前要摒棄雜念,排除干擾思緒,使大腦處於「空白」狀態,創設數學情境,進而醞釀數學思維,提前進入「角色」,通過清點用具、暗示重要知識和方法、提醒常見解題誤區和自己易出現的錯誤等,進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩定情緒、增強信心,使思維單一化、數學化、以平穩自信、積極主動的心態准備應考。

方法二、「內緊外松」,集中注意,消除焦慮怯場

集中注意力是考試成功的保證,一定的神經亢奮和緊張,能加速神經聯系,有益於積極思維,要使注意力高度集中,思維異常積極,這叫內緊,但緊張程度過重,則會走向反面,形成怯場,產生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。

方法三、沉著應戰,確保旗開得勝,以利振奮精神

良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題後,不要急於求成、立即下手解題,而應通覽一遍整套試題,摸透題情,然後穩操一兩個易題熟題,讓自己產生「旗開得勝」的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態,即發揮心理學所謂的「門坎效應」,之後做一題得一題,不斷產生正激勵,穩拿中低,見機攀高。

方法四、「六先六後」,因人因卷制宜

在通覽全卷,將簡單題順手完成的情況下,情緒趨於穩定,情境趨於單一,大腦趨於亢奮,思維趨於積極,之後便是發揮臨場解題能力的黃金季節了,這時,考生可依自己的解題習慣和基本功,結合整套試題結構,選擇執行「六先六後」的戰術原則。

1.先易後難。就是先做簡單題,再做綜合題,應根據自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。

2.先熟後生。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對後者,不要驚慌失措,應想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩定,對全卷整體把握之後,就可實施先熟後生的方法,即先做那些內容掌握比較到家、題型結構比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發揮,達到拿下中高檔題目的目的。

3.先同後異。先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利於提高單位時間的效益。高考題一般要求較快地進行「興奮灶」的轉移,而「先同後異」,可以避免「興奮灶」過急、過頻的跳躍,從而減輕大腦負擔,保持有效精力,

4.先小後大。小題一般是信息量少、運算量小,易於把握,不要輕易放過,應爭取在大題之前盡快解決,從而為解決大題贏得時間,創造一個寬松的心理基矗

5.先點後面。近年的高考數學解答題多呈現為多問漸難式的「梯度題」,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為後面問題准備了思維基礎和解題條件,所以要步步為營,由點到面6.先高後低。即在考試的後半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施「分段得分」,以增加在時間不足前提下的得分。

方法五、一「慢」一「快」,相得益彰

有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急於解答,豈不知欲速則不達,結果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的「基礎工程」,題目本身是 「怎樣解題」的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據。而思路一旦形成,則可盡量快速完成。

方法六、確保運算準確,立足一次成功

數學高考題的容量在120分鍾時間內完成大小26個題,時間很緊張,不允許做大量細致的解後檢驗,所以要盡量准確運算(關鍵步驟,力求准確,寧慢勿快),立足一次成功。解題速度是建立在解題准確度基礎上,更何況數學題的中間數據常常不但從「數量」上,而且從「性質」上影響著後繼各步的解答。所以,在以快為上的前提下,要穩扎穩打,層層有據,步步准確,不能為追求速度而丟掉准確度,甚至丟掉重要的得分步驟,假如速度與准確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。

方法七、講求規范書寫,力爭既對又全

考試的又一個特點是以卷面為唯一依據。這就要求不但會而且要對、對且全,全而規范。會而不對,令人惋惜;對而不全,得分不高;表述不規范、字跡不工整又是造成高考數學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、「感情分」也就相應低了,此所謂心理學上的「光環效應」。「書寫要工整,卷面能得分」講的也正是這個道理。

方法八、面對難題,講究方法,爭取得分

會做的題目當然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。

1.缺步解答。對一個疑難問題,確實啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什麼程度就解決到什麼程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數。如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表達式,設應用題的未知數,設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。還有象完成數學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產生頓悟,形成思路,獲得解題成功。

2.跳步解答。解題過程卡在一中間環節上時,可以承認中間結論,往下推,看能否得到正確結論,如得不出,說明此途徑不對,立即否得到正確結論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結論,就再回頭集中力量攻克這一過渡環節。若因時間限制,中間結論來不及得到證實,就只好跳過這一步,寫出後繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為「已知」,完成第二問,這都叫跳步解答。也許後來由於解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經努力而攻下了中間難點,可在相應題尾補上。

方法九、以退求進,立足特殊,發散一般

對於一個較一般的問題,若一時不能取得一般思路,可以採取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強條件,等等。總之,退到一個你能夠解決的程度上,通過對「特殊」的思考與解決,啟發思維,達到對「一般」的解決。

方法十、執果索因,逆向思考,正難則反

對一個問題正面思考發生思維受阻時,用 逆向思維 的方法去探求新的解題途徑,往往能得到突破性的進展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結論或中間步驟入手,找充分條件;用反證法,從否定結論入手找必要條件。


做數學方法選擇題蒙題技巧相關 文章 :

★ 高考數學答題時間分配及數學選擇題10大蒙題技巧

★ 高中數學選擇題蒙題技巧2020

★ 2020高考數學選擇題蒙題技巧有哪些

★ 高考數學選擇題蒙題方法歸納總結

★ 2020年高考數學蒙題技巧

★ 2020高考數學選擇題有哪些蒙題策略

★ 高考數學選擇題蒙題方法歸納

★ 2020高考數學選擇題蒙題技巧有哪些的

★ 2020高考選擇題答案有什麼規律

㈢ 中考數學選擇題解題方法

有關選擇題的解法的研究,可謂是仁者見仁,智者見智。當然,僅僅有思路還是不夠的,「解題思路」在某種程度上來說,屬於理論上的「定性」,要想解具體的題目,還得有科學、合理、簡便的 方法 。那麼接下來給大家分享一些關於中考數學選擇題解題方法,希望對大家有所幫助。

中考數學選擇題解題方法

1.直接法

有些選擇題是由計算題、應用題、證明題、判斷題改編而成的。這類題型可直接從題設的條件出發,利用已知條件、相關公式、公理、定理、法則,通過准確的運算、嚴謹的推理、合理的驗證得出正確的結論,從而確定選擇支的方法。

2.篩選法

初中數學選擇題的解題本質就是去偽存真,舍棄不符合題目要求的錯誤答案,找到符合題意的正確結論。可通過篩除一些較易判定的的、不合題意的結論,以縮小選擇的范圍,再從其餘的結論中求得正確的答案。如篩去不合題意的以後,結論只有一個,則為應選項。

3.驗證法

通過對試題的觀察、分析、確定,將各選擇支逐個代入題干中,進行驗證、或適當選取特殊值進行檢驗、或採取其他驗證手段,以判斷選擇支正誤的方法。

4.特殊值法

有些選擇題,用常規方法直接求解比較困難,若根據答案中所提供的信息,選擇某些特殊情況進行分析,或選擇某些特殊值進行計算,或將字母參數換成具體數值代入,把一般形式變為特殊形式,再進行判斷往往十分簡單。

5.圖象法

在解答選擇題的過程中,可先根椐題意,作出草圖,然後參照圖形的作法、形狀、位置、性質,綜合圖象的特徵,得出結論。

6.試探法

對於綜合性較強、選擇對象比較多的試題,要想條理清楚,可以根據題意建立一個幾何模型、代數構造,然後通過試探法來選擇,並注意靈活地運用上述多種方法。

數學填空題的技巧解析

一、直接法

這是解填空題的基本方法,它是直接從題設條件出發、利用定義、定理、性質、公式等知識,通過變形、推理、運算等過程,直接得到結果。它是解填空題的最基本、最常用的方法。使用直接法解填空題,要善於通過現象看本質,熟練應用解方程和解不等式的方法,自覺地、有意識地採取靈活、簡捷的解法。

二、特殊化法

當填空題的結論唯一或題設條件中提供的信息暗示答案是一個定值時,而已知條件中含有某些不確定的量,可以將題中變化的不定量選取一些符合條件的恰當特殊值(或特殊函數,或特殊角,圖形特殊位置,特殊點,特殊方程,特殊模型等)進行處理,從而得出探求的結論。這樣可大大地簡化推理、論證的過程。

三、數形結合法

"數缺形時少直觀,形缺數時難入微。"數學中大量數的問題後面都隱含著形的信息,圖形的特徵上也體現著數的關系。我們要將抽象、復雜的數量關系,通過形的形象、直觀揭示出來,以達到"形幫數"的目的;同時我們又要運用數的規律、數值的計算,來尋找處理形的方法,來達到"數促形"的目的。對於一些含有幾何背景的填空題,若能數中思形,以形助數,則往往可以簡捷地解決問題,得出正確的結果。

四、等價轉化法

通過"化復雜為簡單、化陌生為熟悉",將問題等價地轉化成便於解決的問題,從而得出正確的結果。

數學填空題技巧

(1)不能憑映像做填空題,一般填空題中都有各式各樣的陷阱,因為它是沒過程的,所以跟選則題一樣是考你的細心程度的!看清題目是第一步!

(2)做填空題第二步:猜、試、特殊情況(例如另x=1什麼的),利用自己的感覺第一時間弄出答案,節省一點時間,在此同時別忘了思考一下是否猜、試出來的答案之外還有答案的可能性。

(3)第三步:第二步不成功沒關系,認真將它當做簡答題來做,但是需要注意的是一般填空題的難度不會很大(很多情況下都有簡便方法),所以一旦你發現沒有頭緒或者覺的計算什麼的太麻煩沒關系,這只是方法不對而已,你可以換方法或者跳過,不可纏斗。

(4)最後檢查的時候如果有時間的話可以用第三步去檢查下第二步。


中考數學選擇題解題方法相關 文章 :

★ 初三數學選擇題答題方法

★ 中考數學選擇題答題技巧

★ 6個方法巧解中考數學選擇題

★ 2020中考數學備考選擇題的解法技巧

★ 中考數學的各種題型做題方法

★ 2017中考數學答題時必知的解題技巧

★ 2017中考數學考試技巧大分析之解題步驟必知

★ 初中數學選擇填空答題技巧大全

★ 初三數學學習答題技巧

㈣ 考研數學選擇題有哪些解題方法

方法1:直推法


直推法即直接分析推導法。直推法是由條件出發,運用相關知識,直接分析、推導或計算出結果,從而作出正確的判斷和選擇。計算類選擇題一般都用這種方法,其它題也常用這種方法,這是最基本、最常用、重要的方法。


方法2:反推法


反推法即反向推導或反向代入法。反推法是由選項(即選擇題的各個選項)反推條件,與條件相矛盾的選項則排除,相吻合的則是正確選項,或者將某個或某幾個選項依次代入題設條件進行驗證分析,與題設條件相吻合的就是正確的選項。


方法3:反證法


在選擇題的4個選項中,若假設某個選項不正確(或正確)可以推出矛盾,則說明該選項是正確選項(或不正確選項)。選擇先從哪個選項著手證明,須根據題目條件具體分析和判斷,有時可能需要一些直覺。


方法4:反例法


如果某個選項是一個命題,要排除該選項或說明該命題是錯誤的,有時只要舉一個反例即可。舉反例通常是用一些常用的、比較簡單但又能說明問題的例子。如果大家在平時復習或做題時適當注意積累一下與各個知識點相關的不同反例,則在考試中可能會派上用場。


方法5:特例法(特值法)


如果題目是一個帶有普遍性的命題,則可以嘗試採取一種或幾種特殊情況、特殊值去驗證哪些選項是正確的、哪些是錯誤的,或者哪些極有可能是正確的或錯誤的,從而做出正確的選擇。


特例法用於以下幾種情況時特別有效:(1)條件和結論帶有一定的普遍性時,過取特例來確定或排除某些選項(2)對於不成立或極有可能不成立的結論需用舉反例的方法證明其是錯誤時(3)對於一些難以作出判斷的題,假設在特殊情況下來考察其正確與否。


方法6:數形結合法


根據條件畫出相應的幾何圖形,結合數學表達式和圖形進行分析,從而做出正確的判斷和選擇。這種方法常用於與幾何圖形有關的選擇題,如:定積分的幾何意義,二重積分的計算,曲線和曲面積分等。


方法7:排除法


如果可以過一種或幾種方法排除4個選項中的3個,則剩下的那個當然就是正確的選項,或者先排除4個選項中的2個,然後再對其餘的2個進行判斷和選擇。


方法8:直覺法


考研數學如果採用以上各種方法仍無法作出選擇,那就憑直覺或第一印象作選擇。雖然直覺法不是很可靠,但可以作為一種參考,況且人的直覺或第一印象有時還是有一定效果的。


考研數學選擇題有哪些解題方法?小編就說到這里了,更多關於考研報名入口,報名時間,考研成績查詢,報名費用,考研准考證列印入口及時間等問題,小編會及時更新。希望各位考生都能進入自己的理想院校。大家一定要掌握備考技巧。

㈤ 數學選擇題的八大方法

數學選擇題的八大方法

數學選擇題是有很多方法和技巧可以掌握的,下面是我搜集整理的數學選擇題的八大方法,歡迎閱讀,希望對大家有所幫助。

考研數學共有八個選擇題,都是單選題,每道題四分,雖說都是小題,但有很多同學卻對這些小題感到棘手,其中不乏重點大學中一些數學基礎很好的同學,究其原因,是因為選擇題的答題思路與填空題和解答題的答題思路有很大的差異。

如果用填空題和解答題的答題思路去做選擇題,很可能會遇到不少麻煩,或者題目做不出來,或者題目能做出來但卻花費了太多的時間,為了幫助大家克服這個問題,下面就和各位考生分享一下做選擇題解題的八大方法。

▶方法1:直推法

直推法即直接分析推導法。直推法是由條件出發,運用相關知識,直接分析、推導或計算出結果,從而作出正確的判斷和選擇。計算類選擇題一般都用這種方法,其它題也常用這種方法,這是最基本、最常用、最重要的方法。

▶方法2:反推法

反推法即反向推導或反向代入法。反推法是由選項(即選擇題的各個選項)反推條件,與條件相矛盾的選項則排除,相吻合的則是正確選項,或者將某個或某幾個選項依次代入題設條件進行驗證分析,與題設條件相吻合的就是正確的選項。

▶方法3:反證法

在選擇題的4個選項中,若假設某個選項不正確(或正確)可以推出矛盾,則說明該選項是正確選項(或不正確選項)。選擇先從哪個選項著手證明,須根據題目條件具體分析和判斷,有時可能需要一些直覺。

▶方法4:反例法

如果某個選項是一個命題,要排除該選項或說明該命題是錯誤的,有時只要舉一個反例即可。舉反例通常是用一些常用的、比較簡單但又能說明問題的例子。如果大家在平時復習或做題時適當注意積累一下與各個知識點相關的不同反例,則在考試中可能會派上用場。

▶方法5:特例法(特值法)

如果題目是一個帶有普遍性的命題,則可以嘗試採取一種或幾種特殊情況、特殊值去驗證哪些選項是正確的、哪些是錯誤的,或者哪些極有可能是正確的或錯誤的,從而做出正確的選擇。

特例法用於以下幾種情況時特別有效:(1)條件和結論帶有一定的普遍性時,通過取特例來確定或排除某些選項;(2)對於不成立或極有可能不成立的結論需用舉反例的方法證明其是錯誤時;(3)對於一些難以作出判斷的題,假設在特殊情況下來考察其正確與否。

▶方法6:數形結合法

根據條件畫出相應的幾何圖形,結合數學表達式和圖形進行分析,從而做出正確的判斷和選擇。這種方法常用於與幾何圖形有關的選擇題,如:定積分的幾何意義,二重積分的計算,曲線和曲面積分等。

▶方法7:排除法

如果可以通過一種或幾種方法排除4個選項中的3個,則剩下的那個當然就是正確的選項,或者先排除4個選項中的2個,然後再對其餘的2個進行判斷和選擇。

▶方法8:直覺法

如果採用以上各種方法仍無法作出選擇,那就憑直覺或第一印象作選擇。雖然直覺法不是很可靠,但可以作為一種參考,況且人的直覺或第一印象有時還是有一定效果的。

在以上方法中,基本的方法是直推法,就是運用數學基本知識和方法進行分析判斷,從四個選項中找出符合要求的那個選項;

排除法是對所有考試中做選擇題都適用的方法,是一種普遍性的方法;

反例法是針對以數學命題作為選項的題目很有用和有效的一種方法,運用得當可以很快找出答案;

數形結合法則是針對與幾何圖形有關的題目很有用的一種方法;

這些方法大家在考試中要靈活運用,運用得當則事半功倍!

拓展閱讀:2018考研數學首輪復習要點

▶"綱""本"為先

"綱"是《數學考試大綱》,"本"為課本。雖然今年的數學考試大綱尚未頒布,但萬變不離其宗,考研數學的基本內容一般變化不大,考生可以參照去年的大綱和試題進行復習。詳細了解本專業應考的數學卷種的基本要求,考試的題型、類別和難易度,以便更好的`展開復習。凡是在大綱中表述為"會"、"理解"、"掌握"等的考試內容往往都是主要考點,務必要作為復習的重點。

數學復習不像英語、政治對輔導書的依賴性很大,主要靠課本來打下堅實的基礎。翻一下數學大綱,上面列出的知識點全部來源於課本。提醒同學們一定要老老實實參照大綱的要求把原來的課本找出來,按照大綱對數學基本概念、基本方法、基本定理准確把握。

數學學習中最重要的莫過於堅實的基礎,包括對定理公式的深入理解,對基本運算的熟練和高正確率,對最基本的一些解題方法的掌握和運用。從這幾年的數學統考試題來看很少有偏題、怪題。很多考生由於對基本概念、定理記不全、記不牢,理解不準確而丟分。所以數學首輪復習一定要注重基礎。

▶練習輔助

研究生數學考試注重考察考生的綜合能力,最終要看你解題的真功夫,而能力的提高要通過大量的練習,所以不能眼高手低,只看書不做題,每天可以做適量的題目。在做題的過程中才會發現考試重點、難點以及自己的薄弱環節。以便及時彌補自己的缺陷、把握重難點。

近年來的數學考研試題的一大特徵是要求考生能將一些范圍並不固定的幾何、物理或者其它問題先建模抽象為數學問題,再利用相應的數學知識解答。(理工類已考過井底清污、雪堆融化、攀岩選址、壓力計算、海洋勘測、飛機滑行等問題)考研也考"熟練"度,只有通過針對性地實際訓練才能真正地理解和鞏固數學的基本概念、公式、結論。

在練習過程中還要總結解題的技巧、套路,積累經驗,把分散的知識在實際運用中聯系起來,在理解的基礎上觸類旁通,熟能生巧後才能運用所學知識解決實際問題,以不變應萬變。

數學成績是長期積累的結果,因此准備時間一定要充分。首先對各個知識點做深入細致的分析,注意抓考點和重點題型,同時逐步進行一些訓練,積累解題思路,這有利於知識的消化吸收,徹底弄清楚有關知識的縱向與橫向聯系,轉化為自己真正掌握的東西。

;

㈥ 做數學題有何技巧方法

有一句話,人逼急了什麼事都做的出來,但是數學題做不出來,尤其遇到難題就腦袋空空,毫無頭緒。那麼如何讓數學題做起來變得容易和輕松呢?下面給大家分享一些關於做數學題有何技巧 方法 ,希望對大家有所幫助。

一.選擇題答題攻略

1、剔除法

利用已知條件和選項所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數值范圍時,取特殊點代入驗證即可排除。

2、特殊值檢驗法

對於具有一般性的數學問題,在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。

3、極端性原則

將所要研究的問題向極端狀態進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數應用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,採用極端性去分析,就能瞬間解決問題。

4、順推破-解法

利用數學定理、公式、法則、定義和題意,通過直接演算推理得出結果的方法。

5、逆推驗證法

將選項代入題干進行驗證,從而否定錯誤選項而得出正確答案的方法。

6、正難則反法

從題的正面解決比較難時,可從選項出發逐步逆推找出符合條件的結論,或從反面出發得出結論。

7、數形結合法

由題目條件,做出符合題意的圖形或圖象,藉助圖形或圖象的直觀性,經過簡單的推理或計算,從而得出答案的方法。數形結合的好處就是直觀,甚至可以用量角尺直接量出結果來。

8、遞推歸納法

通過題目條件進行推理,尋找規律,從而歸納出正確答案的方法。

9、特徵分析法

對題設和選擇項的特點進行分析,發現規律,歸納得出正確判斷的方法。

10、估值選擇法

有些問題,由於題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能藉助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。

二.填空題答題攻略

數學填空題,絕大多數是計算型(尤其是推理計算型)和概念(性質)判斷型的試題,應答時必須按規則進行切實的計算或者合乎邏輯的推演和判斷。求解填空題的基本策略是要在「准」、「巧」、「快」上下功夫。常用的方法有直接法、特殊化法、數行結合法、等價轉化法等。

1、直接法

這是解填空題的基本方法,它是直接從題設條件出發、利用定義、定理、性質、公式等知識,通過變形、推理、運算等過程,直接得到結果。

2、特殊化法

當填空題的結論唯一或其值為定值時,我們只須把題中的參變數用特殊值(或特殊函數、特殊角、特殊數列、圖形特殊位置、特殊點、特殊方程、特殊模型等)代替之,即可得到結論。

3、數形結合法

藉助圖形的直觀形,通過數形結合,迅速作出判斷的方法稱為圖像法。文氏圖、三角函數線、函數的圖像及方程的曲線等,都是常用的圖形。

4、等價轉化法

通過「化復雜為簡單、化陌生為熟悉」,將問題等價地轉化成便於解決的問題,從而得出正確的結果。


做數學題有何技巧方法相關 文章 :

★ 做數學選擇題的十種技巧

★ 做數學的思路技巧方法

★ 做六年級數學題的學習方法和做題方法

★ 數學選擇題答題的十大方法

★ 做好高考數學題的12種方法

★ 數學選擇題八大解題方法

★ 做小學數學作業各類題型的方法

★ 學好數學方法和技巧是什麼

★ 做數學蒙題的技巧

㈦ 數學選擇題答題技巧

數學選擇題的解題技巧——解題技巧(7)
會做的題當然要做對、做全、得滿分,而不會做的或是難題該怎樣得分呢?首先遇到難題不要放棄,豈不知"易題得滿分難,難題得小分易",一般的難題第一、二問都是能得分的,即使一點思路都沒有,我們不妨羅列一些相關的重要步驟和公式,也許不覺中已找到了解題的思路。再就是要學會"分段得分",高考數學解答題評分的總原則是"分段給分",即會多少知識給多少分,所以你可能前面某個地方卡住了,可以先跳過去,假定它是正確的,向後求解;或是前後兩問無聯系,只做其中某一問等等。

【對各類具體的題型,也有一些具體的對策,以最快最精確的解答。】

●選擇題的解法:選擇題得分關鍵是考生能否精確、迅速地解答。究。掌握這方面的技巧,充分發揮主觀能動性數學選擇題的求解有兩種思路:一是從題干出發考慮,探求結果;二是題乾和選擇的分支聯合考慮或從選擇的分支出發探求是否滿足題干條件,由於答案在四個中找一個,隨機分一定要拿到。選擇題解題的基本原則是:"充分利用選擇題的特點,小題盡量不要大做"。

●填空題的解法:填空題答案有著簡短、明確、具體的要求,解題基本原則是小題大做別馬虎,特別是解的個數和形式是否滿足題意,有沒有漏解和不滿足題目要求的解要認真區別對待。今年數學高考填空題的分值增加許多,其得分情況對高考成績大有影響,所以答題時要給予足夠的精力和時間,填空的解法主要有:直接求解法、特例求解法、數形結合法,解題時靈活應用。

●解答題的解法:解答題得分的關鍵是考生能否對所答題目的每個問題有所取捨,一般來說在解答題中總是有一定數量的數學難題(通常在每題的後半部分和最後一、兩題中),如果不能判別出什麼是自己能做的題,而在不會做的題上花太多的時間和精力,得分肯定不會高。解答題解題時要注意:書寫規范,各式各樣的題型有各自不同的書寫要求,答題的形式對了基本分也就得到了,立體幾何題有規定的書寫要求,解題時務必注意。審題清晰,題讀懂了解題才能得到分,要快速在短時間內審清題意,知道題目表達的意思,題目要解決的是什麼問題,關鍵的字詞是什麼,特殊的情形有沒有,不能一知半解,做了一半才發現漏了條件推翻重來,費了精力影響情緒。壓軸題一般有3問,這樣的題目至少有兩問的,第一問,其實不難,你要有信心做出來,一般也就是個簡單的理論的應用,不會刁難你,所以,你要作出來。如果有第三問,那麼第二問多半是中繼作用,就是利用第一問的結論,然後第三問有要用到它自己。這一問,比較難一點,但是,如果你時間允許,還是可以做出來的。 第三問嘛,如果時間很緊張,我個人建議,放棄吧,回頭檢查你作的其他題目,效果更好。

究。掌握這方面的技巧,充分發揮主觀能動性
解答題中,由於是按步給分,應特別注意過程步驟的嚴謹和規范,追求"表達的准確、考慮的周密、書寫的規范、語言的科學",寫清得分點,清楚地呈現自己的思維層次。否則會做的題目若不注意准確表達和規范書寫,常常會被"分段扣分",如解概率題,要給出適當的文字說明,不能只列幾個式子或單純的結論;立體幾何證明題中注意定理使用的條件要缺一不可,不能疏漏等等。解答題應注意"大題小做,大題細作"。另外,注意 "快慢結合,合理把握時間"。慢主要體現在審題方面,看題要清,審題要透徹,合理方面腳步,防止錯看,漏看,從一定義上說:"成在審題,敗在審題"。快主要是解答要快速准確,一步到位,盡量減少反工檢查的時間。總體時間的把握上,在保證選填的基礎上,要留出充分的時間放在解答題上,保證充分的思維時空,另外還應預留時間對把握不足的題目進行復查。

每年高考試題總有創新,對新型的探索開放題的解題要訣有:(1)試:閱讀題意,分清條件和結論,嘗試最簡單、最基礎的運算。(2)猜:在前面嘗試的基礎上,大膽猜想,可以運用歸納、類比、推廣、化歸等思想方法多角度、多維度地猜想,合理進行猜想是關鍵的一步。(3)證:綜合運用數學知識進行求解與證明,要注意前後聯系,過程嚴謹。在探索開放題的解答過程中,要注意嘗試舉例,並進行多方位的聯想,將式子結構、運演算法則、解題方法、問題的結論等引申、推廣或遷移,從而進行大膽的猜想,最後再進行規范的證明。

㈧ 高考數學選擇題獲得滿分的技巧有哪些

高考數學一共有12道選擇題,每道5分,總共60分,光選擇題就佔了高考數學成績的三分之一還多,所以高考數學想要好,選擇題肯定不能丟分。下面是我分享的高考數學選擇題拿滿分的技巧,一起來看看吧。

高考數學選擇題拿滿分的技巧
排除選項法

選擇題因其答案是四選一,必然只有一個正確答案,那麼我們就可以採用排除法,從四個選項中排除掉易於判斷是錯誤的答案,那麼留下的一個自然就是正確的答案。

賦予特殊值法

即根據題目中的條件,選取某個符合條件的特殊值或作出特殊圖形進行計算、推理的 方法 。用特殊值法解題要注意所選取的值要符合條件,且易於計算。

通過猜想、測量的方法,直接觀察或得出結果

這類方法在近年來的高考題中常被運用於探索規律性的問題,此類題的主要解法是運用不完全歸納法,通過試驗、猜想、試誤驗證、 總結 、歸納等過程使問題得解。

極端性原則

將所要研究的問題向極端狀態進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數應用在求極值、取值范圍、解析幾何、立體幾何上面,很多計算步驟繁瑣、計算量大的題,採用極端性去分析,就能瞬間解決問題。如下題,直接取ab⊥cd的極端情況,取ab中點e,cd中點f,連結ef,令ef⊥ab且ef⊥cd,算出的值即最大值,無須過多說明。

順推破解法

利用數學定理、公式、法則、定義和題意,通過直接演算推理得出結果的方法。如下題,根據題意,依次將點代入函數及其反函數即可。

5.逆推驗證法(代答案入題干驗證法):將選項代入題干進行驗證,從而否定錯誤選項而得出正確答案的方法。常與排除法結合使用;如下題,代入x=0,顯然符合,排除ad;代入x=-1顯然不符,排除c。選b。

數形結合法

由題目條件,做出符合題意的圖形或圖象,藉助圖形或圖象的直觀性,經過簡單的推理或計算,從而得出答案的方法。數形結合的好處就是直觀,甚至可以用量角尺直接量出結果來。如下題,作圖後直接得出選項a符合。

遞推歸納法

通過題目條件進行推理,尋找規律,從而歸納出正確答案的方法,例如分析周期數列等相關問題時,就常用遞推歸納法。如下題,找找規律即可分析出答案。

特徵分析法

對題設和選擇項的特點進行分析,發現規律,歸納得出正確判斷的方法。如下題,如果不去分析該幾何體的特徵,直接用一般的割補方法去做,會比較頭疼。細細分析,其實該幾何體是邊長為2的正方形體積的一半,如此這般,不用算都知道選c。

估演算法

有些問題,由於題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能藉助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。如下題,這種沒辦法解的方程,只能通過估算求解。當然,在可以使用計算器的情況下,估算也可以也精確,使用table 或者solve功能,可計算約等於0.42。

做選擇題時注意各種方法的運用,比較簡單的自己會的題正常做就可以了,遇到比較復雜的題時,看看能否用做選擇題的技巧進行求解,一般可以綜合運用各種方法,達到快速做出選擇的效果。填空題也是,比較簡單的會的就正常做,復雜的題如果答案是一個確定的值時,看能否用特殊值代入法以及特例求解法。選擇填空題的答題時間要自己掌握好,遇到不會的先放下往後答,我們的目標是把卷子上所有會的題都答上了、都答對了,審題要仔細(一個字一個字讀題),計算要准確(一步一步計算),千萬不要有馬虎的地方。
高考數學答題技巧
1:充分利用考前五分鍾

按照大型的考試的要求,考前五分鍾是發卷時間,考生填寫准考證。這五分鍾是不準做題的,但是這五分鍾可以看題。我發現很多考生拿到試卷之後,就從第一個題開始看,我給大家的建議是,拿過這套卷子來,這五分鍾是用來制定整個戰略的關鍵時刻。之前沒看到題目,你只是空想,當你看到題目以後,你得利用這五分鍾迅速制定出整個考試的戰略來。

學生拿著數學卷子,不要看選擇,不要看填空,先看後邊的六個大題。這六個大題的難度分布一般是從易到難。我們為了應付這樣的一次考試,提前做了大量的習題,試卷上有些題目可能已經做過了,或者你一目瞭然,感覺很輕松,我建議先把這樣的大題拿下來。大題一般12分左右,這12分如囊中取物,你就有底氣了,心情也好了。特別是要看看最後那個大題,一看那個題目壓根兒就不是自己力所能及的,就把它砍掉,只想著後邊只有五個題,這樣在做題的時候,就能夠控制速度和質量。如果倒數第二題也沒有什麼感覺,你就想,可能今年這個題出得比較難,那麼我現在最好的做法應該是把前邊會做的題目踏踏實實做好,不要急於去做後邊的題目,因為後邊的題目不是正常人能做的題目。

2:進入考試階段先要審題

審題一定要仔細,一定要慢。我發現數學題經常在一個字、一個數據里邊暗藏著解題的關鍵,這個字、這個數據沒讀懂,要麼找不著解題的關鍵,要麼你誤讀了這個題目。你在誤讀的基礎上來做的話,你可能感覺做得很輕松,但這個題一分不得。所以審題一定要仔細,你一旦把題意弄明白了,這個題目也就會做了。會做的題目是不耽誤時間的,真正耽誤時間的是在審題的過程中,在找思路的過程中,只要找到思路了,單純地寫那些步驟並不佔用多少時間。

3:培養自己一次就做對的習慣

現在有些學生,好不容易遇到一個會做的題目,就快速地把會做的題目做錯,爭取時間去做不會做的題目。殊不知,前面的選擇題和後邊的大題,難易差距是很大的,但是分值的含金量是一樣的,有些學生以為前邊題目的分數不值錢,後邊大題的分數才值錢,不知道這是什麼心理。所以我希望學生在考試的時候,一定要培養自己一次就做對的習慣,不要指望騰出時間來檢查。越是重要的考試,往往越沒有時間回來檢查,因為題目越往後越難,可能你陷在那些難題裡面出不來,抬起頭來的時候已經開始收卷了。

4:要由易到難

一般大型的考試是要有一個鋪墊的,比如說前邊的題目,往往入手比較簡單,越往後越難,這樣有利於學生正常的發揮。1979年的高考,數學就嚇倒了很多人。它第一個題就是一個大題,很多學生就被嚇蒙了,於是整個考試考得一塌糊塗,就出現一些心態的不穩。所以後期,就因為這樣的一些事故性的試題的出現,不能讓一個學生正常發揮,我們國家在命題的時候一般遵循由易到難的規律,先讓學生慢慢地進入狀態,再去慢慢地加大難度。有些學生自以為水平很高,對那些簡單的題目不屑一顧,所以乾脆從最後一個題開始做,這種做法風險太大。因為最後一個題一般來講,難度都很大,你一旦在這個地方卡殼,不僅耽誤了你的時間,而且會讓你的心情受到很大的影響,甚至影響整場考試的發揮。

當然由易到難並不是說從第一題一直做到最後一個,以數學高考題為例,一般數學高考題有三個小高峰:第一個小高峰出現在選擇題的最後一題,它的難度屬於難題的層次;第二個小高峰是填空題的最後一題,也是比較難的;第三個小高峰出現在大題的最後一題。我說由易到難,是說要把握住這三個小高峰。

5:控制速度

平常有學生問我:“我在做題的時候多長時間做一個選擇題,多長時間做一個填空題,才是比較合理的呢?” 我覺得這個不能一概而論,應該說你平常用什麼樣的速度做題,考試的時候就用什麼樣的速度,不要人為地告訴自己,考試的時候要加快速度。其實你考試的時候,速度要是和平常訓練的速度差距比較大的話,很可能因為你速度一加快,反而導致了質量的下降。一場大型的考試,你會做的題目本身就那麼多,如果你加快速度,結果把會做的題目做錯,而你騰出的時間去做後邊的難題,又長時間地解不出來,那麼很可能造成會做的題目得不著分,不會做的題目根本不得分。不要擔心“做慢了,做不完”,把握住一點,一個學生的正常考試,如果始終在自己會做的題目上全神貫注的話,這場考試一定是正常發揮的,甚至是超水平發揮。你一直投入到會做的題目中,按照你平常訓練的速度,踏踏實實地往前推進。即使你發現時間到了,後邊還有題目可能會做但來不及了,我也不認為這是一個令你後悔的結果。最後結果出來你會發現,你最後得到的分數往往會比你的實際水平要高。所以考試的時候要控制速度,我覺得這是考試技巧的一個很重要的方面。

6:抓住得分點

考數學時,有人考完以後說某個大題能得滿分,結果卻並非如此。一個大題12分,結果呢他這兒扣點兒那兒扣點兒,最後只能得個八九分。學生還覺得挺委屈的,這個題明明會做,怎麼被扣分了呢?其實是過程出問題了,數學解題的步驟是有分數的,而且這個分數還有比較明確的界定。學生在考試的時候,一定注意這些學科評分的得分點。比如讓你求出一個橢圓的方程,你可能不會求,但你只要寫上“解:設所求橢圓的方程為x2/a2+y2/b2=1”,就很可能得1分,這1分是不需要任何付出的。你要解數學應用題的時候,你做完了,你得寫上“答:以上結果是什麼”,要是沒有這句話就被扣分了。

7:不會也能得3分

大型考試最後的那個難題可用四個字概括——防不勝防。這不是正常人做的題目,正常人也別指望在這個題上能夠有多大的收獲。因此高考時,不必費力去做最後一題,但絕不是說這個難題就不能得分。你應該有什麼心態呢?反正最後這個題,我也不想做你,那我還怕你嗎?無知者無畏,你一不怕它,反而就有勇氣了。我也不要求多得分,能得個三四分就行了。可能你突然發現這個題,解出來比較難,但要想得三四分還是比較容易的。我在平常訓練學生的時候,有一句話就是“不會也能得3分”。

8:防止慌場

所謂慌場,就是考試的時候,本來以為這個題對自己來講難度不大,結果一看第一道題,當頭一棒,怎麼也找不著感覺。乾脆把第一題放過去,再看第二題,發現第二題更難。連續碰上這么幾個難題,心裡就慌了。這一慌,腦子出現一片空白,本來會做的題目也不會做了。這種現象稱為慌場,幾乎每個學生都會遇到這樣的現象。

高考時真遇到這樣的事情,你先閉目沉思,然後深呼吸,控制自己的情緒,心裡就這么想:反正這一場考試已經這樣了,我也別著急了,能做出一個是一個,也許我先把最簡單的題目做出來,心態就平和了,頭腦就冷靜了,再回過頭來看剛才這些題目,就找到思路了。所以把剛才遇到挫折的那幾個題目放棄,去看其他的題目,而且看其他的題目時,也別指望有大的收獲,這樣很容易冷靜下來,可能很快又找著感覺了。最重要的一點是,你應該這樣想:同樣的老師、同樣的教材,這個題目我既然不會,其他同學也不會輕松的,大家是公平競爭。這樣一想,你不就不慌了嗎?

9:檢查試卷

考完以後千萬別急著離開考場。考完試之後一定要檢查一下,你的試卷集中了沒有,一卷、二卷是不是都交齊了。很多考試,包括高考,經常會有老師把學生的卷子收走了,卻把答題卡落下了,或者本來五張試卷,只收了四張。還有些考生考完了,把卷子放到桌面上走了,結果下一場來考試的時候,突然發現還有一張卷子沒收。這還是比較幸運的,交給老師以後,大不了老師受點處分,學生的卷子還沒丟。但是你仔細想一想,要是你下一場沒發現落下試卷,人家五張卷子,你只有四張卷子,受損失的是你本人。所以考完試以後,不要急於離開考場,要確認該交的卷子都被老師收走了以後再離開。
高考數學各題型的解題技巧
一、三角函數題

注意歸一公式、誘導公式的正確性(轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!)。

二、數列題

1、證明一個數列是等差(等比)數列時,最後下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;

2、最後一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設後,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;

3、證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。

三、立體幾何題

1、證明線面位置關系,一般不需要去建系,更簡單;

2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;

3、注意向量所成的角的餘弦值(范圍)與所求角的餘弦值(范圍)的關系(符號問題、鈍角、銳角問題)。

四、概率問題

1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;

2、搞清是什麼概率模型,套用哪個公式;

3、記准均值、方差、標准差公式;

4、求概率時,正難則反(根據p1+p2+...+pn=1);

5、注意計數時利用列舉、樹圖等基本方法;

6、注意放回抽樣,不放回抽樣;

7、注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;

8、注意條件概率公式;

9、注意平均分組、不完全平均分組問題。

五、圓錐曲線問題

1、注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數法、待定系數法;

2、注意直線的設法(法1分有斜率,沒斜率;法2設x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變數的取值范圍等等;

3、戰術上整體思路要保7分,爭9分,想12分。

六、導數、極值、最值、不等式恆成立(或逆用求參)問題

1、先求函數的定義域,正確求出導數,特別是復合函數的導數,單調區間一般不能並,用“和”或“,”隔開(知函數求單調區間,不帶等號;知單調性,求參數范圍,帶等號);

2、注意最後一問有應用前面結論的意識;

3、注意分論討論的思想;

4、不等式問題有構造函數的意識;

5、恆成立問題(分離常數法、利用函數圖像與根的分布法、求函數最值法);

閱讀全文

與做數學選擇題的常用方法相關的資料

熱點內容
vivo手機語音控制在哪裡設置方法 瀏覽:247
足外翻治療方法如何治療 瀏覽:382
做小扇子的簡單方法 瀏覽:226
醫美洗臉的正確方法 瀏覽:37
腦膜炎引起癱瘓哪裡可以治療方法 瀏覽:632
橋梁搭建方法視頻 瀏覽:344
哮喘的長期治療方法 瀏覽:30
如何處理活的大龍蝦的方法 瀏覽:264
新手機密碼鎖定方法 瀏覽:579
水晶玉器真假鑒別方法 瀏覽:29
如何只用一種方法就能減肥 瀏覽:105
什麼是大學計算方法 瀏覽:703
敏感肌怎樣才能好有哪些方法 瀏覽:745
面對問題要能夠找到解決方法作文 瀏覽:379
毛豆的種植方法和技術視頻 瀏覽:435
全自動免疫熒光分析儀操作方法 瀏覽:974
如何挑選牛仔褲的裁剪方法 瀏覽:361
甲亢的常用診斷方法 瀏覽:360
天固智能門鎖安裝方法 瀏覽:460
pc肌鍛煉方法教學 瀏覽:183