導航:首頁 > 使用方法 > 數列類型的常用方法

數列類型的常用方法

發布時間:2022-10-14 21:31:07

① 解數列題的常用方法

1、化成常用數列,如等差數列和等比數列、平方數列、立方數列等。
2、錯位相減法,對形如{a_n*b_n}的數列常用此法,其中a_n是等差數列,b_n是等比數列。常見方法。
3、公式法。如對差分方程a_n+2=p*a_n+1+q*a_n,(p、q為常數)可用特徵方程x^2=px+q解。若特徵方程有兩相異根x1和x2,通解為an=αx1^n+βx2^n;若兩根相同x1=x2,通解為(α+βn)x1^n,常數α和β由初始情況確定。
4、裂項法。裂項之後中間項能相互抵消而化簡。該法也很常見。
5、數學歸納法。先計算出前面幾項,然後對同項公式進行猜想,最後用數學歸納法嚴格證明之。這個方法使用很多,要重點掌握。

② 高中數學解數列問題有哪些常用方法

數列問題解題方法技巧
1.判斷和證明數列是等差(等比)數列常有三種方法:
(1)定義法:對於n≥2的任意自然數,驗證 為同一常數。
(2)通項公式法:
①若 = +(n-1)d= +(n-k)d ,則 為等差數列;
②若 ,則 為等比數列。
(3)中項公式法:驗證中項公式成立。
2. 在等差數列 中,有關 的最值問題——常用鄰項變號法求解:
(1)當 >0,d<0時,滿足 的項數m使得 取最大值.
(2)當 <0,d>0時,滿足 的項數m使得取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。
3.數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。
三、數列問題解題注意事項
1.證明數列 是等差或等比數列常用定義,即通過證明 或 而得。
2.在解決等差數列或等比數列的相關問題時,「基本量法」是常用的方法,但有時靈活地運用性質,可使運算簡便,而一般數列的問題常轉化為等差、等比數列求解。
3.注意 與 之間關系的轉化。如:
= , = .
4.數列極限的綜合題形式多樣,解題思路靈活,但萬變不離其宗,就是離不開數列極限的概念和性質,離不開數學思想方法,只要能把握這兩方面,就會迅速打通解題思路.
5.解綜合題的成敗在於審清題目,弄懂來龍去脈,透過給定信息的表象,抓住問題的本質,揭示問題的內在聯系和隱含條件,明確解題方向,形成解題策略.原文鏈接: http://www.90house.cn/shuxue/shi/288.html

③ 常用數列表示方法

數列的表示方法有圖像法、列表法、通項公式法、遞推公式法。數列是以正整數集(或它的有限子集)為定義域的函數,是一列有序的數。數列中的每一個數都叫做這個數列的項。排在第一位的數稱為這個數列的第1項(通常也叫做首項),排在第二位的數稱為這個數列的第2項,以此類推,排在第n位的數稱為這個數列的第n項,通常用an表示。

④ 高中數學數列答題技巧有哪些

(1)數列本身的有關知識,其中有等差數列與等比數列的概念、性質、通項公式及求和公式。

(2)數列與其它知識的結合,其中有數列與函數、方程、不等式、三角、幾何的結合。

(3)數列的應用問題,其中主要是以增長率問題為主。

試題的難度有三個層次,小題多以基礎題為主,解答題多以基礎題和中檔題為主,只有個別地方用數列與幾何的綜合與函數、不等式的綜合作為最後一題,難度較大。

接下來為大家介紹下高中數列解題中,經常會用到的幾種方法,大家可以按照這個解題思路來回答數列相關的問題,掌握了這幾點並融會貫通,你會發現,數列其實並不難。

(1)函數的思想方法

數列本身就是一個特殊的函數,而且是離散的函數,因此在解題過程中,尤其在遇到等差數列與等比數列這兩類特殊的數列時,可以將它們看成一個函數,進而運用函數的性質和特點來解決問題。

(2)方程的思想方法

數列這一章涉及了多個關於首項、末項、項數、公差、公比、第n項和前n項和這些量的數學公式,而公式本身就是一個等式,因此,在求這些數學量的過程中,可將它們看成相應的已知量和未知數,通過公式建立關於求未知量的方程,可以使解題變得清晰、明了,而且簡化了解題過程。

(3)不完全歸納法

不完全歸納法不但可以培養學生的數學直觀,而且可以幫助學生有效的解決問題,在等差數列以及等比數列通項公式推導的過程就用到了不完全歸納法。

(4)倒序相加法

等差數列前n項和公式的推導過程中,就根據等差數列的特點,很好的應用了倒序相加法,而且在這一章的很多問題都直接或間接地用到了這種方法。

(5)錯位相減法

錯位相減法是另一類數列求和的方法,它主要應用於求和的項之間通過一定的變形可以相互轉化,並且是多個數求和的問題。等比數列的前n項和公式的推導就用到了這種思想方法。

⑤ 高中數列問題常用解題方法

數列的求和
求數列的前n項和Sn,重點應掌握以下幾種方法:

1.倒序相加法:如果一個數列{an},與首末兩項等距的兩項之和等於首末兩項之和,可採用把正著寫和與倒著寫和的兩個和式相加,就得到一個常數列的和,這一求和的方法稱為倒序相加法.

2.錯位相減法:如果一個數列的各項是由一個等差數列與一個等比數列對應項乘積組成,此時求和可採用錯位相減法.

3.分組轉化法:把數列的每一項分成兩項,或把數列的項「集」在一塊重新組合,或把整個數列分成兩部分,使其轉化為等差或等比數列,這一求和方法稱為分組轉化法.

4.裂項相消法:把數列的通項拆成兩項之差,即數列的每一項都可按此法拆成兩項之差,在求和時一些正負項相互抵消,於是前n項的和變成首尾若干少數項之和,這一求和方法稱為裂項相消法.

5.公式法求和:所給數列的通項是關於n的多項式,此時求和可採用公式法求和,常用的公式有:

6.無窮遞縮等比數列求和公式:

考點練習
1.數列{an}的前n項和Sn=n2+1,則an= _____________.

2.已知{an}的前n項和Sn=n2-4n+1,則|a1|+|a2|+…|a10|=( )
(A)67 (B)65
(C)61 (D)56
3.一個項數是偶數的等比數列,它的偶數項的和是奇數項和的2倍,又它的首項為1,且中間兩項的和為24,則此等比數列的項數為( )
(A) 12 (B) 10
(C) 8 (D) 6
4.計算機是將信息轉換成二進制進行處理的,二進制即「逢2進1」,如(1101)2表示二進制數,將它轉換成十進制形式是1×23+1×22+0×21+1×20=13,那麼將二進制數(111…11)2位轉換成十進制形式是( )
(A) 217-2 (B) 216-2 (C) 216-1 (D)215-1

5.數列 的前n項之和為Sn,則Sn的值得等於( )

(A) (B)

(C) (D)

6、設 利用課本中等差數列前n項和公式的推導方法,求

f(–5)+f(–4)……+f(0)+……+f(5)+f(6)的值為__________.

典型題選講
1.求下列各數列前n項的和Sn:

(1) 1×4,2×5,3×6,…n(n+3);

(2)

(3)

【解題回顧】對類似數列(3)的求和問題,我們可以推廣到一般情況:設{an}是公差為d的等差數列,則有

特別地,以下等式都是①式的具體應用:

上述方法也稱為「升次裂項法」.

2.求數列a,2a2,3a3,…,nan,…(a為常數)的前n項的和.

【解題回顧】若一個數列的各項是由一個等差數列與一個等比數列的對應項乘積組成,則求此數列的前n項和多採用錯位相減法.

3.已知數列{an}中的a1=1/2,前n項和為Sn.若Sn=n2an,求Sn與an的表達式.
【解題回顧】
當本題解出Sn+1/Sn=(n+1)2/(n+2)n,下面要想到迭代法求Sn,(即選乘),同樣如得出Sn+1-Sn=f(n),可用迭差.

4.若數列{an}中,an=-2[n-(-1) n],
求S10和S99 .
【解題回顧】若構成數列的項中含有(-1)n,則在求和Sn時,一般要考慮n是奇數還是偶數.
5.等比數列的首項為a,公比為q,Sn為前n項的和,求S1+S2+……+Sn.
6.在數列{an}中,an>0, 2√Sn = an +1(n∈N)
①求Sn和an的表達式;

②求證:

【解題回顧】利用 ,再用裂項法求和.利用

此法求和時,要細心觀察相消的規律,保留哪些項等.必要時可適當地多寫一些項,防止漏項或增項.

誤解分析
1.求數列通項時,漏掉n=1時的驗證是致命錯誤.
2.求數列前n項和時,一定要數清項數,選好方法,否則易錯.

⑥ 解數列題的常用方法

1、化成常用數列,如等差數列和等比數列、平方數列、立方數列等。
2、錯位相減法,對形如{a_n*b_n}的數列常用此法,其中a_n是等差數列,b_n是等比數列。常見方法。
3、公式法。如對差分方程a_n+2=p*a_n+1+q*a_n,(p、q為常數)可用特徵方程x^2=px+q解。若特徵方程有兩相異根x1和x2,通解為an=αx1^n+βx2^n;若兩根相同x1=x2,通解為(α+βn)x1^n,常數α和β由初始情況確定。
4、裂項法。裂項之後中間項能相互抵消而化簡。該法也很常見。
5、數學歸納法。先計算出前面幾項,然後對同項公式進行猜想,最後用數學歸納法嚴格證明之。這個方法使用很多,要重點掌握。

⑦ 根據數列中各項大小的變化規律,數列又可分為哪幾種類型分別叫什麼名稱

一、數列的分類:

1.按數列中項數是有限還是無限分:有窮數列和無窮數列。

有窮數列:項數有限的數列。例如,數列①是有窮數列;

無窮數列:項數無限的數列。

2.按數列中項與項之間的大小關系分:單調數列(遞增數列、遞減數列)、常數列和擺動數列。

二、數列的項:數列中的每一個數都叫做這個數列的項.各項依次叫做這個數列的第1項(或首項),第2項,…,第n項,….

三、數列的一般形式:,或簡記為,其中an是數列的第n

四、數列的通項公式:如果數列的第n項an與n之間的關系可以用一個公式來表示,那麼這個公式就叫做這個數列的通項公式.

五、數列有三種表示形式:列舉法,通項公式法和圖象法.

(7)數列類型的常用方法擴展閱讀:

一、數列在高考中的地位

高考對於數列的考察主要有兩類:

一類是關於等差、等比數列問題,這類問題的解決方法一般是化基本量解方程;

一類是能夠轉化成等差或等比數列的遞推數列問題,這類問題的解決方法是構造新數列,使之成為等差或等比數列。

二、數列與不等式

近年的高考數列解答題中,數列常與不等式證明交匯作為壓軸題命題,這類問題既需要不等式的基本思路和方法,又要結合數列本身的結構特點,有著較強的技巧性。

數列是高中數學中的重要內容之一,也是高考考察的重點,而數列不等式的證明又是一個難點,放縮法是證明數列不等式的常用方法,在證明過程中,適當地進行放縮,可以化繁為簡,化難為易,希望大家能夠進一步地理解放縮法的運用,掌握基本的放縮法。

參考資料來源:網路—數列

⑧ 數列解題方法有哪些

這講不清楚的呀,不過方法有很多的,你只能看書呀,你把問題發上來吧
基本數列是等差數列和等比數列

一、等差數列

一個等差數列由兩個因素確定:首項a1和公差d.
得知以下任何一項,就可以確定一個等差數列(即求出數列的通項公式):
1、首項a1和公差d
2、數列前n項和s(n),因為s(1)=a1,s(n)-s(n-1)=a(n)
3、任意兩項a(n)和a(m),n,m為已知數

等差數列的性質:
1、前N項和為N的二次函數(d不為0時)
2、a(m)-a(n)=(m-n)*d
3、正整數m、n、p為等差數列時,a(m)、a(n)、a(p)也是等差數列

例題1:已知a(5)=8,a(9)=16,求a(25)
解: a(9)-a(5)=4*d=16-8=8
a(25)-a(5)=20*d=5*4*d=40
a(25)=48

例題2:已知a(6)=13,a(9)=19,求a(12)
解:a(6)、a(9)、a(12)成等差數列
a(12)-a(9)=a(9)-a(6)
a(12)=2*a(9)-a(6)=25

二、等比數列

一個等比數列由兩個因素確定:首項a1和公差d.
得知以下任何一項,就可以確定一個等比數列(即求出數列的通項公式):
1、首項a1和公比r
2、數列前n項和s(n),因為s(1)=a1,s(n)-s(n-1)=a(n)
3、任意兩項a(n)和a(m),n,m為已知數

等比數列的性質:
1、a(m)/a(n)=r^(m-n)
2、正整數m、n、p為等差數列時,a(m)、a(n)、a(p)是等比數列
3、等比數列的連續m項和也是等比數列
即b(n)=a(n)+a(n+1)+...+a(n+m-1)構成的數列是等比數列。

三、數列的前N項和與逐項差

1、如果數列的通項公式是關於N的多項式,最高次數為P,則數列的前N項和是關於N的多項式,最高次數為P+1。
(這與積分很相似)

2、逐項差就是數列相鄰兩項的差組成的數列。
如果數列的通項公式是關於N的多項式,最高次數為P,則數列的逐項差的通項公式是關於N的多項式,最高次數為P-1。
(這與微分很相似)
例子:
1,16,81,256,625,1296 (a(n)=n^4)
15,65,175,369,671
50,110,194,302
60,84,108
24,24
從上例看出,四次數列經過四次逐項差後變成常數數列。

等比數列的逐項差還是等比數列

四、已知數列通項公式A(N),求數列的前N項和S(N)。
這個問題等價於求S(N)的通項公式,而S(N)=S(N-1)+A(N),這就成為遞推數列的問題。
解法是尋找一個數列B(N),
使S(N)+B(N)=S(N-1)+B(N-1)
從而S(N)=A(1)+B(1)-B(N)
猜想B(N)的方法:把A(N)當作函數求積分,對得出的函數形式設待定系數,利用B(N)-B(N-1)=-A(N)求出待定系數。

例題1:求S(N)=2+2*2^2+3*2^3+...+N*2^N
解:S(N)=S(N-1)+N*2^N
N*2^N積分得(N*LN2-1)*2^N/(LN2)^2
因此設B(N)=(PN+Q)*2^N
則 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N
(P*N+P+Q)/2*2^N=-N*2^N
因為上式是恆等式,所以P=-2,Q=2
B(N)=(-2N+2)*2^N
A(1)=2,B(1)=0
因此:S(N)=A(1)+B(1)-B(N)
=(2N-2)*2^N+2

例題2:A(N)=N*(N+1)*(N+2),求S(N)
解法1:S(N)為N的四次多項式,
設:S(N)=A*N^4+B*N^3+C*N^2+D*N+E
利用S(N)-S(N-1)=N*(N+1)*(N+2)
解出A、B、C、D、E

解法2:
S(N)/3!=C(3,3)+C(4,3)+...C(N+2,3)
=C(N+3,4)
S(N)=N*(N+1)*(N+2)*(N+3)/4

⑨ 求數學的數列題常用方法

1.數列求通項的方法
(1)累加
(2)累乘
(3)待定系數法
(4)分解因式法
(5)倒數法
2.求前n項和的方法
(1)公式法
(2)錯位相減法
(3)倒序相加法
(4)分組求和法
(5)列項相消法

閱讀全文

與數列類型的常用方法相關的資料

熱點內容
2己烯和戊烷的鑒別方法 瀏覽:939
如何用繩子做蝴蝶結的方法 瀏覽:367
vivo手機語音控制在哪裡設置方法 瀏覽:247
足外翻治療方法如何治療 瀏覽:382
做小扇子的簡單方法 瀏覽:226
醫美洗臉的正確方法 瀏覽:37
腦膜炎引起癱瘓哪裡可以治療方法 瀏覽:632
橋梁搭建方法視頻 瀏覽:344
哮喘的長期治療方法 瀏覽:30
如何處理活的大龍蝦的方法 瀏覽:264
新手機密碼鎖定方法 瀏覽:582
水晶玉器真假鑒別方法 瀏覽:30
如何只用一種方法就能減肥 瀏覽:105
什麼是大學計算方法 瀏覽:704
敏感肌怎樣才能好有哪些方法 瀏覽:747
面對問題要能夠找到解決方法作文 瀏覽:381
毛豆的種植方法和技術視頻 瀏覽:437
全自動免疫熒光分析儀操作方法 瀏覽:974
如何挑選牛仔褲的裁剪方法 瀏覽:363
甲亢的常用診斷方法 瀏覽:361