① 數學思維和方法有哪些內容
1、數學思維方法有哪些
一、轉化方法:
轉化思維,既是一種方法,也是一種思維。轉化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉換成另一種形式,尋求最佳方法,使問題變得更簡單、更清晰。
二、邏輯方法:
邏輯是一切思考的基礎。羅輯思維,是人們在認識過程中藉助於概念、判斷、推理等思維形式對事物進行觀察、比較、分析、綜合、抽象、概括、判斷、推理的思維過程。羅輯思維,在解決邏輯推理問題時使用廣泛。
三、逆向方法:
逆向思維也叫求異思維,它是對司空見慣的似乎已成定論的事物或觀點反過來思考的一種思維方式。敢於「反其道而思之」,讓思維向對立面的方向發展,從問題的相反面深入地進行探索,樹立新思想,創立新形象。
四、對應方法:
對應思維是在數量關系之間(包括量差、量倍、量率)建立一種直接聯系的思維方法。比較常見的是一般對應(如兩個量或多個量的和差倍之間的對應關系)和量率對應。
五、創新方法:
創新思維是指以新穎獨創的方法解決問題的思維過程,通過這種思維能突破常規思維的界限,以超常規甚至反常規的方法、視角去思考問題,提得出與眾不同的解決方案。可分為差異性、探索式、優化式及否定性四種。
六、系統方法:
系統思維也叫整體思維,系統思維法是指在解題時對具體題目所涉及到的知識點有一個系統的認識,即拿到題目先分析、判斷屬於什麼知識點,然後回憶這類問題分為哪幾種類型,以及對應的解決方法。
七、類比方法:
類比思維是指根據事物之間某些相似性質,將陌生的、不熟悉的問題與熟悉問題或其他事物進行比較,發現知識的共性,找到其本質,從而解決問題的思維方法。
八、形象方法:
形象思維,主要是指人們在認識世界的過程中,對事物表象進行取捨時形成的,是指用直觀形象的表象,解決問題的思維方法。想像是形象思維的高級形式也是其一種基本方法。
如何鍛煉自己的數學思維?
一、做出來不如講出來,聽得懂不如說得通。
做10道題,不如講一道題。孩子做完家庭作業後,家長不妨鼓勵孩子開口講解一下數學作業中的難題,我也在群里會經常發一些比較好的訓練題,您也可以鼓勵去想一想說一說,如果講得好,家長還可進行小獎勵,讓孩子更有成就感。
二、舉一反三,學會變通。
舉一反三出自孔子的《論語·述而》:「舉一隅,不以三隅反,則不復也。」意思是說:我舉出一個牆角,你們應該要能靈活的推想到另外三個牆角,如果不能的話,我也不會再教你們了。後來,大家就把孔子說的這段話變成了「舉一反三」這句成語,意思是說,學一件東西,可以靈活的思考,運用到其他相類似的東西上!
在數學的訓練中,一定要給孩子舉一反三訓練。一道題看似理解了,但他的思維可能比較直線,不多做幾道舉一反三或在此基礎上變式的題,他還是轉不過玩了。
舉一反三其實就是「師傅領進門,學藝在自身」這句話的執行行為。
三、建立錯題本,培養正確的思維習慣
每上第一次課,我所講的課程內容都和學生的錯題有關。我通常把試卷中的錯題摘抄出幾個典型題,作為課堂的例題再講一遍。而學生的反應,或是像沒有見過,或是對題目非常熟悉,但沒有思路。這些現象的發生,都是學生沒有及時總結的原因。所以第一次課後我都建議我的學生做一個錯題本,像寫日記一樣,記錄下自己的錯題和錯因分析。
一般來說,錯題分為三種類型:第一種是特別愚蠢的錯誤、特別簡單的錯誤;第二種就是拿到題目時一點思路都沒有,不知道解題該從何下手,但是一看到答案卻恍然大悟;第三種就是題目難度中等,按道理有能力做對,但是卻做錯了。
尤其第二種、第三種,必須放到錯題本上。建立錯題本的好處就是掌握了自己所犯錯的類型,為防範一類錯誤成為習慣性的思維。
四、圖形推理是培養邏輯思維能力最好的工具
假是真時真亦假,真是假時假亦真;邏輯思維是在規則的確定下而進行的思維,如果聯系生活就屬於非常規思維。一切看似與生活毫無聯系卻自在法則約束規范的范圍內。邏輯推理的「瞞天過海」可謂五花八門,好似一個萬花筒,百變無窮,樂趣無窮。
幾何圖形是助其鍛煉邏輯思維的好工具,經典的圖形推理題總有其構思、思路、巧妙的思維;經典在於其看似變態,而實際解法卻簡而又簡單。
因此,多訓練一些圖形推理題,對其邏輯思維很有幫助。
② 數學思維十種思維方式是什麼
1、公式法。
運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。
2、對照法。
如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。
這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識。
例:三個連續自然數的和是18,則這三個自然數從小到大分別是多少。
對照自然數的概念和連續自然數的性質可以知道:三個連續自然數和的平均數就是這三個連續自然數的中間那個數。
3、比較法。
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。
比較法要注意:
1、找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。
2、找聯系與區別,這是比較的實質。
3、必須在同一種關系下(同-種標准)進行比較,這是「比較」的基本條件。
4、要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出。
5、因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。
例:六年級同學種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗。六年級有多少學生。
這是兩種方案的比較。相同點是:六年級人數不變;相異點是:兩種方案中的條件不一樣。
找聯系:每人種樹棵數變化了,種樹的總棵數也發生了變化。
找解決思路:每人多種7-5=2(棵), 那麼,全班就多種了75+15=90(棵),全班人數為90+2=45(人)。
4、分類法。
根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。
分類即要注意大類與小類之間的不同層次,又要故到大類之中的各小類不重復、不遺漏、不交叉。
例:自然數按約數的個數來分,可分成幾類。
答:可分為三類。(1)只有一個約數的數,它是一個單位數,只有一個數1; (2)有兩個約數的,也叫質數,有無數個; (3)有三個約數的,也叫合數,也有無數個。
5、分析法。
把整體分解為部分,把復雜的事物分解為各個部分或要素,並對這些部分或要素進行研究、推導的種思維方法叫做分析法。
依據:總體都是由部分構成的。
思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來,再分別對照要求,從而理順解決問題的思路。
也就是從求解的問題出發,正確選擇所需要的兩個條件,依次推導,-直到問題得到解決為止,這種解題模式是「由果溯因」。分析法也叫逆推法。常用「枝形圖」進行圖解思路。
例:玩具廠計劃每天生產200件玩具,已經生產了6天,共生產1260件。問平均每天超過計劃多少件。
思路:要求平均每天超過計劃多少件,必須知道:計劃每天生產多少件和實際每天生產多少件。計劃每天生產多少件已知,實際每天生產多少件,題中沒有告訴,還得求出來。要求實際每天生產多少件玩具,必須知道:實際生產多少天,和實際生產多少件,這兩個條件題中都已知。
6、綜合法。
把對象的各個部分或各個方面或各個要素聯結起來,並組合成一個有機的整體來研究、推導和一種思維方法叫做綜合法。
用綜合法解數學題時,通常把各個題知看作是部分(或要素),經過對各部分(或要素)相互之間內在聯系一層層分析,逐步推導到題目要求,所以,綜合法的解題模式是執因導果,也叫順推法。這種方法適用於己知條件較少,數量關系比較簡單的數學題。
例:兩個質數,它們的差是小於30的合數,它們的和即是11的倍數又是小於50的偶數。寫出適合上面條件的各組數。
思路: 11的倍數同時小於50的偶數有22和44。兩個數都是質數,而和是偶數,顯然這兩個質數中沒有2。
和是22的兩個質數有: 3和19, 5和17。它們的差都是小於30的合數嗎?和是44的兩個質數有: 3和41, 7和37, 13和31。它們的差是小於30的合數嗎?這就是綜合法的思路。
7、方程法。
用字母表示未知數,並根據等量關系列出含有字母的表達式(等式)。列方程是一個抽象概括的過程,解方程是一個演繹推導的過程。方程法最大的特點是把未知數等同於已知數看待。
參與列式、運算,克服了算術法必須避開求知數來列式的不足。有利於由已知向未知的轉化,從而提高了解題的效率和正確率。
例:一個數擴大3倍後再增加100,然後縮小2倍後再減去36,得50。求這個數。
例:一桶油,第一次用去40%,第二次比第一次多用10千克,還剩餘6千克。這桶油重多少千克。
這兩題用方程解就比較容易。
8、參數法。
用只參與列式、運算而不需要解出的字母或數表示有關數量,並根據題意列出算式的-種方法叫做參數法。參數又叫輔助未知數,也稱中間變數。參數法是方程法延伸、拓展的產物。
例: 一項工作,甲多帶帶做要4天完成,乙多帶帶做要5天完成。兩人合做要多少天完成。
其實,把總工作量看作「1」,這個「1」就是參數,如果把總工作量看作「2、3、.....都可以,只不過看作「1」運算最方便。
9、排除法。
排除對立的結果叫做排除法。
排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩餘的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。
例:為什麼說除2外,所有質數都是奇數。
這就要用反證法:比2大的所有自然數不是質數就是合數。假設:比2大的質數有偶數,那麼,這個偶數一定能被2整除,也就是說它一定有約數2。 一個數的約數除了1和它本身外,還有別的約數(約數2),這個數定是合數而不是質數。這和原來假定是質數對立(矛盾)。所以,原來假設錯誤。
10、特例法。
對於涉及一般性結論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法。特例法的邏輯原理是:事物的一。般性存在於特殊性之中。
例:大圓半徑是小圓半徑的2倍,大圓周長是小圓周長的()倍,大圓面積是小圓面積的()倍。
可以取小圓半徑為1,那麼大圓半徑就是2。計算一下,就能得出正確結果。
③ 高中數學思維有哪些
高中常見的數學思維有:
1)分類討論;
2)數形結合;
3)轉化與化歸;
4)函數與方程。
解題中常用的方法有:換元,配方,待定系數法。
④ 數學思想(或思維方式)有哪些
1.函數思想:
把某一數學問題用函數表示出來,並且利用函數探究這個問題的一般規律。這是最基本、最常用的數學方法。
2.數形結合思想:
把代數和幾何相結合,例如對幾何問題用代數方法解答,對代數問題用幾何方法解答,這種方法在解析幾何里最常用。例如求根號((a-1)^2+(b-1)^2)+根號(a^2+(b-1)^2)+根號((a-1)^2+b^2)+根號(a^2+b^2)的最小值,就可以把它放在坐標系中,把它轉化成一個點到(0,1)、(1,0)、(0,0)、(1,1)四點的距離,就可以求出它的最小值。
3.分類討論思想:
當一個問題因為某種量的情況不同而有可能引起問題的結果不同時,需要對這個量的各種情況進行分類討論。比如解不等式|a-1|>4的時候,就要討論a的取值情況。
4.方程思想:
當一個問題可能與某個方程建立關聯時,可以構造方程並對方程的性質進行研究以解決這個問題。例如證明柯西不等式的時候,就可以把柯西不等式轉化成一個二次方程的判別式。
另外,還有歸納類比思想、轉化歸納思想、概率統計思想等數學思想,例如利用歸納類比思想可以對某種相類似的問題進行研究而得出他們的共同點,從而得出解決這些問題的一般方法。轉化歸納思想是把一個較復雜問題轉化為另一個較簡單的問題並且對其方法進行歸納。概率統計思想是指通過概率統計解決一些實際問題,如摸獎的中獎率、某次考試的綜合分析等等。另外,還可以用概率方法解決一些面積問題。
⑤ 高中數學思維模式
在高中階段,數學學習最重要的就是思維方式。很多同學數學成績不好一方面是因為沒能掌握正確學習方法,另一方面是因為缺少數學思維,所以導致大家知識點不會用,公式只會死記硬背,今天小編就給大家整理了幾種學習數學必要要掌握的思維方法,希望能夠幫助到大家!
七、類比方法
類比思維是指根據事物之間某些相似性質,將陌生的、不熟悉的問題與熟悉問題或其他事物進行比較,發現知識的共性,找到其本質,從而解決問題的思維方法。
八、形象方法
形象思維,主要是指人們在認識世界的過程中,對事物表象進行取捨時形成的,是指用直觀形象的表象,解決問題的思維方法。想像是形象思維的高級形式也是其一種基本方法。
⑥ 數學八種思維方法是什麼
數學八種思維方法是代數思想,數形結合,轉化思想,對應思想方法,假設思想方法,比較思想方法,符號化思想方法,極限思想方法。解答數學題的轉化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉換成另一種形式,尋求最佳方法,使問題變得更簡單,更清晰。
數學不同於語文,英語等語言性學科,它對思維能力要求較大,只要掌握了同一類型題目的解題思維,不管題型再如何變化,我們都可以快速解答,數學源於生活又作用於生活,課本上的數學知識其實都可以在實際生活中找到原形,但需要你通過抽象,簡化等方式轉化成數學語言,因此,在學習數學時要多聯系生活實際理解本質含義。
數學八種思維方法的內容
逆向思維也叫求異思維,它是對司空見慣的似乎已成定論的事物或觀點反過來思考的一種思維方式,敢於反其道而思之,讓思維向對立面的方向發展,從問題的相反面深入地進行探索,樹立新思想,創立新形象。
邏輯思維是人們在認識過程中藉助於概念,判斷,推理等思維形式對事物進行觀察,比較分析,綜合,抽象,概括,判斷,推理的思維過程,邏輯思維,在解決邏輯推理問題時使用廣泛,創新思維是指以新穎獨創的方法解決問題的思維過程,
通過這種思維能突破常規思維的界限,以超常規甚至反常規的方法,視角去思考問題,提得出與眾不同的解決方案,可分為差異性,探索式,優化式及否定性四種。
⑦ 如何提高數學思維問題
數學思維涵蓋了四大主要思維模式!
正向思考
就是順著來思考問題,這種思維模式最注重兩個點:
一個是步驟感,就是要一步一步的完成思考,不要跳級,順著事物和問題的發展規律來,並獲取階段性的結論。就比如現在有孩子做數學應用題:"小明每分鍾能夠跳140下",腦子就下意識知道"我知道了他每分鍾的頻率。"無論題目後面問什麼,你早就讀一句就有了結論,順著路走就來到了答案終點。
第二是建立模型,在課堂上,會有很多的模型圖,餅圖、折線圖、柱狀圖等等。用已給的條件正著思考,並建立簡單的模型。
逆向思考
有的時候,當孩子無法找到入口的時候,不如逆著思考一下。好比如讓孩子在1 2 3 4 5 =6在中間的空缺填上運算符號使得等式成立。
如果順著去想,就會像1至5如何才能變成6,就可能有點難,不知道從那裡下手。所以既然結果僅為一個6,不如反著從後面思考吧,前面的1234會得到一個結果,與5運算得出6,那麼孩子很容易知道1+5=6,所以只要把前面的1234湊成一個一。四個數湊成一個結果挺簡單的吧,以此類推倒著就可以找到答案。
有序思考
十個相同的桃子放進四個一樣的籮筐里,到底有多少種放法?
可能孩子一聽到會覺得十分簡單,但是不按順序說著說著就會亂了,根本就不能把所有的放法羅列出來。教會孩子按照一定的順序去從小到大的想,仔細認真才能不漏掉一個答案。
這個題目有很好的延展性,激發孩子的數學思維,我們還可以問"把十個相同的桃子放進四個不同的籮筐里"。這也還聯想的一種,我並不倡導題海戰術,讓孩子學會邏輯思考和關聯,數學其實就是萬變不離其宗,只要思維是對的,數字怎麼變都沒關系。
讓孩子學會自由提問
中國的家長一般會對放學的孩子問:今天在學校聽話嗎?而培養出眾多諾貝爾獲獎者的猶太人家族來講,他們會問:今天在學校你提問了嗎?
自由提問不僅是檢測孩子是否了解這個知識點,是否願意深度的探索這個問題。不要只局限一個點,引導孩子想問什麼就問什麼。
舉個例子:"媽媽,魚為什麼可以在水裡生活,但是我們不可以呢?""因為魚有腮可以吸收水裡的氧氣,但是我們沒有,我們只有肺部只能吸收空氣中的氧氣!"
"媽媽,是不是所有的一加一都等於一呀?""有的時候又不一定,要具體問題具體分析,你看一堆沙子加上一堆沙子是不是還是一堆大沙子?"
讓孩子運用數學思維模式思考,並且學會組織語言的能力。
父母多問孩子開放性的問題
開放性問題不是只回答是與不是,它是讓孩子用自己的想法和語言回答。
"你可以羅列出有多少種可能嗎?""你覺得這樣合適嗎?""再想想,是不是還有別的途徑?"
運用這樣自由開放的問題,讓孩子最大程度的打開大腦,放出創新,不再是規規矩矩的回答。正向或者逆向的思維邏輯,讓孩子找出不同事務的相同規律,這才是我們最終的目的。
如果你僅僅只是讓孩子提高數學成績為標准,那麼孩子的數學思維能力基地就打不牢固,在未來初高中面對難度很大的數學和理科,孩子就會想條溺水的魚無從適應。鍛煉思維方式是長遠的部署,決定了孩子未來的高度。
⑧ 初中數學解題思維方法大全
還在為初中數學解題而煩惱?還在為數學低分而煩躁?那是你沒有全面理解初中數學的解題思維和解題 方法 。暑假不出門,了解初中數學解題思維 方法大全 ,助你在新學期解決數學難題。
初中數學解題思維方法大全
一、選擇題的解法
1、直接法:根據選擇題的題設條件,通過計算、推理或判斷,,最後得到題目的所求。
2、特殊值法:(特殊值淘汰法)有些選擇題所涉及的數學命題與字母的取值范圍有關,在解這類選擇題時,可以考慮從取值范圍內選取某幾個特殊值,代入原命題進行驗證,然後淘汰錯誤的,保留正確的。
3、淘汰法:把題目所給的四個結論逐一代回原題的題干中進行驗證,把錯誤的淘汰掉,直至找到正確的答案。
4、逐步淘汰法:如果我們在計算或推導的過程中不是一步到位,而是逐步進行,既採用“走一走、瞧一瞧”的策略,每走一步都與四個結論比較一次,淘汰掉不可能的,這樣也許走不到最後一步,三個錯誤的結論就被全部淘汰掉了。
5、數形結合法:根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義,使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解題思路,使問題得到解決。
二、常用的數學思想方法
1、數形結合思想:就是根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義,使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解體思路,使問題得到解決。
2、聯系與轉化的思想:事物之間是相互聯系、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯系,可以相互轉化的。在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。
3、分類討論的思想:在數學中,我們常常需要根據研究對象性質的差異,分各種不同情況予以考查,這種分類思考的方法,是一種重要的數學思想方法,同時也是一種重要的解題策略。
4、待定系數法:當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然後解這個方程或方程組就使問題得到解決。
5、配方法:就是把一個代數式設法構造成平方式,然後再進行所需要的變化。配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問題,都有重要的作用。
6、換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。換元法可以把一個較為復雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。
7、分析法:在研究或證明一個命題時,又結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然,則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為“執果尋因”
8、綜合法:在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導得到結論,這種思維過程通常稱為“由因導果”
9、演繹法:由一般到特殊的推理方法。
10、歸納法:由一般到特殊的推理方法。
11、類比法:眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個或兩類事物之間,根據它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法。類比法既可能是特殊到特殊,也可能一般到一般的推理。
三、函數、方程、不等式
常用的數學思想方法:⑴數形結合的思想方法。⑵待定系數法。⑶配方法。⑷聯系與轉化的思想。⑸圖像的平移變換。
四、證明角的相等
1、對頂角相等。
2、角(或同角)的補角相等或餘角相等。
3、兩直線平行,同位角相等、內錯角相等。
4、凡直角都相等。
5、角平分線分得的兩個角相等。
6、同一個三角形中,等邊對等角。
7、等腰三角形中,底邊上的高(或中線)平分頂角。
8、平行四邊形的對角相等。
9、菱形的每一條對角線平分一組對角。
10、 等腰梯形同一底上的兩個角相等。
11、 關系定理:同圓或等圓中,若有兩條弧(或弦、或弦心距)相等,則它們所 對的圓心角相等。
12、 圓內接四邊形的任何一個外角都等於它的內對角。
13、 同弧或等弧所對的圓周角相等。
14、 弦切角等於它所夾的弧對的圓周角。
15、 同圓或等圓中,如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等。
16、 全等三角形的對應角相等。
17、 相似三角形的對應角相等。
18、 利用等量代換。
19、 利用代數或三角計算出角的度數相等
20、 切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,並且這一點和圓心的連線平分兩條切線的夾角。
五、證明直線的平行或垂直
1、證明兩條直線平行的主要依據和方法:
⑴、定義、在同一平面內不相交的兩條直線平行。
⑵、平行定理、兩條直線都和第三條直線平行,這兩條直線也互相平行。
⑶、平行線的判定:同位角相等(內錯角或同旁內角),兩直線平行。
⑷、平行四邊形的對邊平行。
⑸、梯形的兩底平行。
⑹、三角形(或梯形)的中位線平行與第三邊(或兩底)
⑺、一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,則這條直線平行於三角形的第三邊。
2、證明兩條直線垂直的主要依據和方法:
⑴、兩條直線相交所成的四個角中,由一個是直角時,這兩條直線互相垂直。
⑵、直角三角形的兩直角邊互相垂直。
⑶、三角形的兩個銳角互余,則第三個內角為直角。
⑷、三角形一邊的中線等於這邊的一半,則這個三角形為直角三角形。
⑸、三角形一邊的平方等於其他兩邊的平方和,則這邊所對的內角為直角。
⑹、三角形(或多邊形)一邊上的高垂直於這邊。
⑺、等腰三角形的頂角平分線(或底邊上的中線)垂直於底邊。
⑻、矩形的兩臨邊互相垂直。
⑼、菱形的對角線互相垂直。
⑽、平分弦(非直徑)的直徑垂直於這條弦,或平分弦所對的弧的直徑垂直於這條弦。
⑾、半圓或直徑所對的圓周角是直角。
⑿、圓的切線垂直於過切點的半徑。
⒀、相交兩圓的連心線垂直於兩圓的公共弦。
六、證明線段的比例式或等積式的主要依據和方法:
1、比例線段的定義。
2、平行線分線段成比例定理及推論。
3、平行於三角形的一邊,並且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例。
4、過分點作平行線;
5、相似三角形的對應高成比例,對應中線的比和對應角平分線的比都等於相似比。
6、相似三角形的周長的比等於相似比。
7、相似三角形的面積的比等於相似比的平方。
8、相似三角形的對應邊成比例。
9、通過比例的性質推導。
10、用代數、三角方法進行計算。
11、藉助等比或等線段代換。
七、幾何作圖
1、掌握最基本的五種尺規作圖
⑴、作一條線段等於已知線段。
⑵、作一個角等於已知角。
⑶、平分已知角。
⑷、經過一點作已知直線的垂線。
⑸、作線段的垂直平分線。
2、掌握課本中各章要求的作圖題
⑴、根據條件作任意的三角形、等要素那角性、直角三角形。
⑵、根據給出條件作一般四邊形、平行四邊形、矩形、菱形、正方形、梯形等。
⑶、作已知圖形關於一點、一條直線對稱的圖形。
⑷、會作三角形的外接圓、內切圓。
⑸、平分已知弧。
⑹、作兩條線段的比例中項。
⑺、作正三角形、正四邊形、正六邊形等。
八、幾何計算
(一)、角度與弧度的計算
1、三角形和四邊形的角的計算主要依據
⑴、三角形的內角和定理及推論。
⑵、四邊形的內角和定理及推論。
⑶、圓內接四邊形性質定理。
2、弧和相關的角的計算主要依據
⑴、圓心角的度數等於它所對的弧的度數。
⑵、圓周角的度數等於它所對的弧的度數的一半。
⑶、弦切角的度數等於所夾弧度數的一半。
3、多邊形的角的計算主要依據
⑴、n邊形的內角和=(n-2)*180°
⑵、正n邊形的每一內角=(n-2)*180°÷n
⑶、正n邊形的任一外角等於各邊所對的中心角且都等於
(二)、長度的計算
1、 三角形、平行四邊形和梯形的計算
用到的定理主要有三角形全等定理,中位線定理,等腰三角形、直角三角形、正三角形及各種平行四邊形的性質等定理。關於梯形中線段計算主要依據梯形中位線定理及等腰梯形、直角梯形的性質定理等。
2、 有關圓的線段計算的主要依據
⑴、切線長定理
⑵、圓切線的性質定理。
⑶、垂徑定理。
⑷、圓外切四邊形兩組對邊的和相等。
⑸、兩圓外切時圓心距等於兩圓半徑之和,兩圓內切時圓心距等於兩半徑之差。
3、 直角三角形邊的計算
直角三角形邊長的計算應用最廣,其理論依據主要是勾股定理和特殊角三角形的性質及銳角三角函數等。
4、 成比例線段長度的求法
⑴、平行線分線段成比例定理;
⑵、相似形對應線段的比等於相似比;
⑶、射影定理;
⑷、相交弦定理及推論,切割線定理及推論;
⑸、正多邊形的邊和其他線段計算轉化為特殊三角形。
三、圖形面積的計算
1、 四邊形的面積公式
⑴、S□ABCD = a·h
⑵、S菱形 = 1/2a·b (a、b為對角線)
⑶、S梯形 = 1/2(a + b)·h = m·h (m為中位線)
2、 三角形的面積公式
⑴、S△ = 1/2· a·h
⑵、S△ = 1/2· P·r(P為三角形周長,r為三角形內切圓的半徑)
3、 S正多邊形 = 1/2· P n·r n = 1/2·n a n·r n
4、 S圓 =πR2
5、S扇形 = nπ= 1/2LR
6、S弓形 = S扇 - S△
九、證明兩線段相等的方法:
⑴、利用全等三角形對應線段相等;
⑵、利用等腰三角形性質;
⑶、利用同一個三角形中等角對等邊;
⑷、利用線段垂直平分線;
⑸、角平分線的性質;
⑹、利用軸對稱的性質;
⑺、平行線等分線段定理;
⑻、平行四邊形性質;
⑼、垂徑定理:垂直於弦的直徑平分這條弦,並且平分這條弦所對的兩條弧。推論1:平分一條弦所對的弧的直徑,垂直平分弦,並且平分弦所對的另一條弧。
⑽、圓心角、弧、弦、弦心距的關系定理及推論;
⑾、切線長定理。
十、證明弧相等的方法:
⑴、定義;同圓或等圓中,能夠完全重合的兩段弧。
⑵、垂徑定理:垂直於弦的直徑平分這條弦,並且平分這條弦所對的兩條弧。
推論1:①平分弦(不是直徑)的直徑垂直弦,並且平分弦所對的兩條弧。
②垂直平分一條弦的直線,經過圓心,並且平分弦所對的兩條弧。
③平分一條弦所對的弧的直徑,垂直平分弦,並且平分弦所對的另一條弧。
推論2:兩條平行弦所夾的弧相等
⑶、圓心角、弧、圓周角之間度數關系;(圓心角 = 弧 = 2圓周角)
⑷、圓周角定理的推論1;(同弧或等弧所對的圓周角相等,同圓或等圓中相等的圓周角所對的弧相等)
十一、切線小結
1、證明切線的三種方法:
⑴、定義——一個交點;
⑵、d=r;(若一條直線到圓心的距離等於半徑,則這條直線是圓的切線)
⑶、切線的判定定理;(經過半徑外端,並且垂直這條半徑的直線是圓的切線)
2、切線的八個性質:
⑴、定義:唯一交點;
⑵、切線和圓心的距離等於半徑; (d=r)
⑶、切線的性質定理:圓的切線垂直於過切點的半徑;
⑷、推論1:過圓心(且垂直於切線的直線)必過切點;
⑸、推論2:過切點(且垂直於切線的直線)必過圓心;
⑹、切線長相等;過圓外一點作圓的兩條切線,它們的切線長相等,並且這一點和圓心的連線平分兩切線的夾角。
⑺、連結兩平行切線切點間的線段為直徑
⑻、經過直徑兩端點的切線互相平行。
3、證明切線的兩種類型:
⑴、已知直線和圓相交於一點
證明方法:連交點,證垂直
⑵、未知直線和圓是否相交於哪點或沒告訴交點
證明方法:做垂直,證半徑
十二、輔助線的作用與添加方法:
輔助線是溝通已知與未知的橋梁.現已學過的添加輔助線方法有:
1、梯形的七類輔助線:
⑴、作梯形的高;
⑵、延長兩腰;
⑶、平移一腰;
⑷、平移對角線;
⑸、利用中點;
⑹、連結兩腰中點;
2、一般的輔助線
⑴、過兩定點作直線;
⑵、作三角形的高、中線、角平分線;
⑶、延長某一線段;
⑷、作一點關於已知直線的對稱點;
⑸、構造直角三角形;
⑹、作平行線;
⑺、作半徑;
⑻、弦心距;
⑼、構造直徑上的圓周角;
⑽、兩圓相交時常連公共弦;
⑾、構造相交弦;
⑿、見中點連中點構造中位線;
⒀、兩圓外切時作內公切線;
⒁、兩圓內切時作外公切線;
⒂、作輔助圖形(如勾股定理逆定理的證明中作輔助三角形);
初中數學解題思維方法大全相關 文章 :
1. 初中數學解題方法
2. 初中數學的解題方法
3. 初中數學方法有哪些
4. 初中數學學習好方法
5. 初中數學思想方法教學論文
⑨ 小學數學中常見的幾種數學思想方法
小學數學思想方法有哪些?
1、對應思想方法
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
5、類比思想方法
類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。
6、轉化思想方法
轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。
7、分類思想方法
分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,若按能否被2整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構。
8、集合思想方法
集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法